File: conv_relu.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (166 lines) | stat: -rw-r--r-- 7,011 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

import torch
import torch.ao.nn.intrinsic
import torch.nn.intrinsic.qat
import torch.nn.functional as F
import torch.ao.nn.quantized as nnq

from torch.nn.utils import fuse_conv_bn_weights

_reverse_repeat_padding = nnq.modules.conv._reverse_repeat_padding

# TODO: factor out the common parts to ConvNd
class ConvReLU1d(nnq.Conv1d):
    r"""
    A ConvReLU1d module is a fused module of Conv1d and ReLU

    We adopt the same interface as :class:`torch.ao.nn.quantized.Conv1d`.

    Attributes:
        Same as torch.ao.nn.quantized.Conv1d

    """
    _FLOAT_MODULE = torch.nn.intrinsic.ConvReLU1d  # type: ignore[assignment]

    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=True,
                 padding_mode='zeros', device=None, dtype=None):
        super(ConvReLU1d, self).__init__(
            in_channels, out_channels, kernel_size, stride=stride,
            padding=padding, dilation=dilation, groups=groups, bias=bias,
            padding_mode=padding_mode, device=device, dtype=dtype)

    def forward(self, input):
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 3:
            raise ValueError("Input shape must be `(N, C, L)`!")
        if self.padding_mode != 'zeros':
            # Padding in Conv1d is stored as (p, p), need to get (p,)
            _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding[:1])
            input = F.pad(input, _reversed_padding_repeated_twice,
                          mode=self.padding_mode)
        return torch.ops.quantized.conv1d_relu(
            input, self._packed_params, self.scale, self.zero_point)

    def _get_name(self):
        return 'QuantizedConvReLU1d'

    @classmethod
    def from_float(cls, mod):
        if type(mod) == torch.nn.intrinsic.qat.ConvBnReLU1d:
            mod.weight, mod.bias = fuse_conv_bn_weights(
                mod.weight, mod.bias, mod.bn.running_mean, mod.bn.running_var,
                mod.bn.eps, mod.bn.weight, mod.bn.bias)
        return super(ConvReLU1d, cls).from_float(mod)

    @classmethod
    def from_reference(cls, ref_qconv, output_scale, output_zero_point):
        assert type(ref_qconv) != torch.nn.intrinsic.ConvBnReLU1d, \
            "BatchNorm1d should be fused into Conv1d before converting to reference module"
        return super().from_reference(ref_qconv[0], output_scale, output_zero_point)

class ConvReLU2d(nnq.Conv2d):
    r"""
    A ConvReLU2d module is a fused module of Conv2d and ReLU

    We adopt the same interface as :class:`torch.ao.nn.quantized.Conv2d`.

    Attributes:
        Same as torch.ao.nn.quantized.Conv2d

    """
    _FLOAT_MODULE = torch.nn.intrinsic.ConvReLU2d  # type: ignore[assignment]

    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=True,
                 padding_mode='zeros', device=None, dtype=None):
        super(ConvReLU2d, self).__init__(
            in_channels, out_channels, kernel_size, stride=stride,
            padding=padding, dilation=dilation, groups=groups, bias=bias,
            padding_mode=padding_mode, device=device, dtype=dtype)

    def forward(self, input):
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 4:
            raise ValueError("Input shape must be `(N, C, H, W)`!")
        if self.padding_mode != 'zeros':
            _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding)
            input = F.pad(input, _reversed_padding_repeated_twice,
                          mode=self.padding_mode)
        return torch.ops.quantized.conv2d_relu(
            input, self._packed_params, self.scale, self.zero_point)

    def _get_name(self):
        return 'QuantizedConvReLU2d'

    @classmethod
    def from_float(cls, mod):
        if type(mod) == torch.nn.intrinsic.qat.ConvBnReLU2d:
            mod.weight, mod.bias = fuse_conv_bn_weights(
                mod.weight, mod.bias, mod.bn.running_mean, mod.bn.running_var,
                mod.bn.eps, mod.bn.weight, mod.bn.bias)
        return super(ConvReLU2d, cls).from_float(mod)

    @classmethod
    def from_reference(cls, ref_qconv, output_scale, output_zero_point):
        assert type(ref_qconv) != torch.nn.intrinsic.ConvBnReLU2d, \
            "BatchNorm2d should be fused into Conv2d before converting to reference module"
        return super().from_reference(ref_qconv[0], output_scale, output_zero_point)


class ConvReLU3d(nnq.Conv3d):
    r"""
    A ConvReLU3d module is a fused module of Conv3d and ReLU

    We adopt the same interface as :class:`torch.ao.nn.quantized.Conv3d`.

    Attributes: Same as torch.ao.nn.quantized.Conv3d

    """
    _FLOAT_MODULE = torch.nn.intrinsic.ConvReLU3d  # type: ignore[assignment]

    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=True,
                 padding_mode='zeros', device=None, dtype=None):
        assert padding_mode != 'reflect', "Conv3d does not support reflection padding"
        super(ConvReLU3d, self).__init__(
            in_channels, out_channels, kernel_size, stride=stride,
            padding=padding, dilation=dilation, groups=groups, bias=bias,
            padding_mode=padding_mode, device=device, dtype=dtype)

    def forward(self, input):
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 5:
            raise ValueError("Input shape must be `(N, C, D, H, W)`!")
        if self.padding_mode != 'zeros':
            _reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding)
            input = F.pad(input, _reversed_padding_repeated_twice,
                          mode=self.padding_mode)
        return torch.ops.quantized.conv3d_relu(
            input, self._packed_params, self.scale, self.zero_point)

    def _get_name(self):
        return 'QuantizedConvReLU3d'

    @classmethod
    def from_float(cls, mod):
        if type(mod) == torch.nn.intrinsic.qat.ConvBnReLU3d:
            mod.weight, mod.bias = fuse_conv_bn_weights(
                mod.weight,
                mod.bias,
                mod.bn.running_mean,
                mod.bn.running_var,
                mod.bn.eps,
                mod.bn.weight,
                mod.bn.bias,
            )
        return super(ConvReLU3d, cls).from_float(mod)

    @classmethod
    def from_reference(cls, ref_qconv, output_scale, output_zero_point):
        assert type(ref_qconv) != torch.nn.intrinsic.ConvBnReLU3d, \
            "BatchNorm3d should be fused into Conv3d before converting to reference module"
        return super().from_reference(ref_qconv[0], output_scale, output_zero_point)