1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
import torch
import torch.ao.nn.intrinsic
import torch.nn.intrinsic.qat
import torch.nn.functional as F
import torch.ao.nn.quantized as nnq
from torch.nn.utils import fuse_conv_bn_weights
_reverse_repeat_padding = nnq.modules.conv._reverse_repeat_padding
# TODO: factor out the common parts to ConvNd
class ConvReLU1d(nnq.Conv1d):
r"""
A ConvReLU1d module is a fused module of Conv1d and ReLU
We adopt the same interface as :class:`torch.ao.nn.quantized.Conv1d`.
Attributes:
Same as torch.ao.nn.quantized.Conv1d
"""
_FLOAT_MODULE = torch.nn.intrinsic.ConvReLU1d # type: ignore[assignment]
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True,
padding_mode='zeros', device=None, dtype=None):
super(ConvReLU1d, self).__init__(
in_channels, out_channels, kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, bias=bias,
padding_mode=padding_mode, device=device, dtype=dtype)
def forward(self, input):
# Temporarily using len(shape) instead of ndim due to JIT issue
# https://github.com/pytorch/pytorch/issues/23890
if len(input.shape) != 3:
raise ValueError("Input shape must be `(N, C, L)`!")
if self.padding_mode != 'zeros':
# Padding in Conv1d is stored as (p, p), need to get (p,)
_reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding[:1])
input = F.pad(input, _reversed_padding_repeated_twice,
mode=self.padding_mode)
return torch.ops.quantized.conv1d_relu(
input, self._packed_params, self.scale, self.zero_point)
def _get_name(self):
return 'QuantizedConvReLU1d'
@classmethod
def from_float(cls, mod):
if type(mod) == torch.nn.intrinsic.qat.ConvBnReLU1d:
mod.weight, mod.bias = fuse_conv_bn_weights(
mod.weight, mod.bias, mod.bn.running_mean, mod.bn.running_var,
mod.bn.eps, mod.bn.weight, mod.bn.bias)
return super(ConvReLU1d, cls).from_float(mod)
@classmethod
def from_reference(cls, ref_qconv, output_scale, output_zero_point):
assert type(ref_qconv) != torch.nn.intrinsic.ConvBnReLU1d, \
"BatchNorm1d should be fused into Conv1d before converting to reference module"
return super().from_reference(ref_qconv[0], output_scale, output_zero_point)
class ConvReLU2d(nnq.Conv2d):
r"""
A ConvReLU2d module is a fused module of Conv2d and ReLU
We adopt the same interface as :class:`torch.ao.nn.quantized.Conv2d`.
Attributes:
Same as torch.ao.nn.quantized.Conv2d
"""
_FLOAT_MODULE = torch.nn.intrinsic.ConvReLU2d # type: ignore[assignment]
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True,
padding_mode='zeros', device=None, dtype=None):
super(ConvReLU2d, self).__init__(
in_channels, out_channels, kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, bias=bias,
padding_mode=padding_mode, device=device, dtype=dtype)
def forward(self, input):
# Temporarily using len(shape) instead of ndim due to JIT issue
# https://github.com/pytorch/pytorch/issues/23890
if len(input.shape) != 4:
raise ValueError("Input shape must be `(N, C, H, W)`!")
if self.padding_mode != 'zeros':
_reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding)
input = F.pad(input, _reversed_padding_repeated_twice,
mode=self.padding_mode)
return torch.ops.quantized.conv2d_relu(
input, self._packed_params, self.scale, self.zero_point)
def _get_name(self):
return 'QuantizedConvReLU2d'
@classmethod
def from_float(cls, mod):
if type(mod) == torch.nn.intrinsic.qat.ConvBnReLU2d:
mod.weight, mod.bias = fuse_conv_bn_weights(
mod.weight, mod.bias, mod.bn.running_mean, mod.bn.running_var,
mod.bn.eps, mod.bn.weight, mod.bn.bias)
return super(ConvReLU2d, cls).from_float(mod)
@classmethod
def from_reference(cls, ref_qconv, output_scale, output_zero_point):
assert type(ref_qconv) != torch.nn.intrinsic.ConvBnReLU2d, \
"BatchNorm2d should be fused into Conv2d before converting to reference module"
return super().from_reference(ref_qconv[0], output_scale, output_zero_point)
class ConvReLU3d(nnq.Conv3d):
r"""
A ConvReLU3d module is a fused module of Conv3d and ReLU
We adopt the same interface as :class:`torch.ao.nn.quantized.Conv3d`.
Attributes: Same as torch.ao.nn.quantized.Conv3d
"""
_FLOAT_MODULE = torch.nn.intrinsic.ConvReLU3d # type: ignore[assignment]
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True,
padding_mode='zeros', device=None, dtype=None):
assert padding_mode != 'reflect', "Conv3d does not support reflection padding"
super(ConvReLU3d, self).__init__(
in_channels, out_channels, kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, bias=bias,
padding_mode=padding_mode, device=device, dtype=dtype)
def forward(self, input):
# Temporarily using len(shape) instead of ndim due to JIT issue
# https://github.com/pytorch/pytorch/issues/23890
if len(input.shape) != 5:
raise ValueError("Input shape must be `(N, C, D, H, W)`!")
if self.padding_mode != 'zeros':
_reversed_padding_repeated_twice = _reverse_repeat_padding(self.padding)
input = F.pad(input, _reversed_padding_repeated_twice,
mode=self.padding_mode)
return torch.ops.quantized.conv3d_relu(
input, self._packed_params, self.scale, self.zero_point)
def _get_name(self):
return 'QuantizedConvReLU3d'
@classmethod
def from_float(cls, mod):
if type(mod) == torch.nn.intrinsic.qat.ConvBnReLU3d:
mod.weight, mod.bias = fuse_conv_bn_weights(
mod.weight,
mod.bias,
mod.bn.running_mean,
mod.bn.running_var,
mod.bn.eps,
mod.bn.weight,
mod.bn.bias,
)
return super(ConvReLU3d, cls).from_float(mod)
@classmethod
def from_reference(cls, ref_qconv, output_scale, output_zero_point):
assert type(ref_qconv) != torch.nn.intrinsic.ConvBnReLU3d, \
"BatchNorm3d should be fused into Conv3d before converting to reference module"
return super().from_reference(ref_qconv[0], output_scale, output_zero_point)
|