1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
import torch
import torch.nn.functional as F
import numpy as np
from typing import List, Optional
from .expanded_weights_utils import \
set_grad_sample_if_exists, unpack_expanded_weight_or_tensor
THRESHOLD = 32
def conv_picker(func, conv1dOpt, conv2dOpt, conv3dOpt):
if func == F.conv1d:
return conv1dOpt
if func == F.conv2d:
return conv2dOpt
else:
assert func == F.conv3d
return conv3dOpt
def conv_args_and_kwargs(kwarg_names, expanded_args_and_kwargs):
args = expanded_args_and_kwargs[:len(expanded_args_and_kwargs) - len(kwarg_names)]
kwargs = expanded_args_and_kwargs[len(expanded_args_and_kwargs) - len(kwarg_names):]
kwargs = {name: arg for (name, arg) in zip(kwarg_names, kwargs)}
return conv_normalizer(*args, **kwargs)
def conv_normalizer(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
return (input, weight), {'bias': bias, 'stride': stride, 'padding': padding, 'dilation': dilation, 'groups': groups}
def conv_input_for_string_padding(func, padding_style, input, dilation, kernel_size):
if padding_style == "valid":
return input
else:
padding = int_padding_for_string_padding(func, padding_style, dilation, kernel_size)
return F.pad(input, padding)
def int_padding_for_string_padding(func, padding_style, dilation, kernel_size):
def get_dilation(i):
return dilation[i] if isinstance(dilation, tuple) else dilation
if padding_style == "same":
padding: List[int] = []
# F.pad needs the padding in reverse order from what conv expects
for i in range(conv_picker(func, 0, 1, 2), -1, -1):
padding += conv_padding_for_same(get_dilation(i), kernel_size[i])
return padding
elif padding_style == "valid":
return conv_picker(func, 2, 4, 6) * (0,)
else:
raise RuntimeError(f"got padding type of {padding_style}, only accept 'same' or 'valid'")
def conv_padding_for_same(dilation, kernel_size):
total_pad = dilation * (kernel_size - 1)
left_pad = total_pad // 2
right_pad = total_pad - left_pad
return left_pad, right_pad
def conv_backward(func, ctx, grad_output):
def weight_grad_sample(weight):
if (batch_size < THRESHOLD and groups == 1):
return conv_group_weight_grad_sample(ctx.input, grad_output, weight_shape, stride, padding, dilation, batch_size, func)
else:
return conv_unfold_weight_grad_sample(ctx.input, grad_output, weight_shape, kernel_size,
stride, padding, dilation, groups, func)
def expand(param):
if isinstance(param, int):
return conv_picker(func, (param,), (param, param), (param, param, param))
else:
return param
def calc_total_padding(func, was_same, padding, dilation, kernel_size):
if was_same:
all_padding = int_padding_for_string_padding(func, "same", dilation, kernel_size)
# F.pad needs the padding in reverse order from what conv expects
total_padding = tuple(all_padding[i] + all_padding[i - 1] for i in range(len(all_padding) - 1, -1, -2))
return total_padding
else:
return tuple(2 * pad for pad in padding)
weight_shape = ctx.weight.shape
stride, padding, dilation, groups = expand(ctx.stride), expand(ctx.padding), expand(ctx.dilation), ctx.groups
kernel_size = []
for i in range(2, conv_picker(func, 3, 4, 5)):
kernel_size.append(weight_shape[i])
batch_size = ctx.batch_size
results: List[Optional[torch.Tensor]] = []
results.append(None) # for kwarg names
results.append(None) # for op reference
# "same" padding may give uneven padding on either side so we need to separate the "padding" attr and total padding
total_padding = calc_total_padding(func, ctx.was_same_padding, padding, dilation, kernel_size)
if ctx.input_required_grad:
output_padding = []
input_dims = conv_picker(func, 1, 2, 3)
for i in range(input_dims):
input_dim = ctx.orig_input_shape[2 + i]
output_padding.append((total_padding[i] + input_dim - (kernel_size[i] * dilation[i] - dilation[i] + 1)) % stride[i])
weight_ = unpack_expanded_weight_or_tensor(ctx.weight)
transpose_func = conv_picker(func, F.conv_transpose1d, F.conv_transpose2d, F.conv_transpose3d)
out = transpose_func(grad_output, weight_, None, stride, padding, tuple(output_padding), groups, dilation)
if ctx.was_same_padding:
for i in range(len(total_padding)):
out = torch.narrow(out, 2 + i, total_padding[i] // 2, ctx.orig_input_shape[2 + i])
results.append(out)
else:
results.append(None)
# weight and bias don't compute batched gradients; no other arguments are differentiable
results = results + [None] * 6
# set grad_sample field for weight and bias with per sample gradients
set_grad_sample_if_exists(ctx.weight, weight_grad_sample)
set_grad_sample_if_exists(ctx.bias, lambda _: grad_output.reshape(*grad_output.shape[:2], -1).sum(dim=2))
return tuple(results)
def conv_unfold_weight_grad_sample(input, grad_output, weight_shape, kernel_size, stride, padding, dilation, groups, func):
n = input.shape[0]
in_channels = input.shape[1]
unfold_func = conv_picker(
func,
lambda: F.unfold(input.unsqueeze(-2),
kernel_size=(1, kernel_size[0]),
dilation=(1, dilation[0]),
padding=(0, padding[0]),
stride=(1, stride[0])),
lambda: F.unfold(input, kernel_size, dilation=dilation, padding=padding, stride=stride),
lambda: unfold3d(input, kernel_size, padding, stride, dilation)
)
input = unfold_func()
grad_output = grad_output.reshape(n, -1, input.shape[-1])
# n=batch_sz; o=num_out_channels; p=(num_in_channels/groups)*kernel_sz
weight_grad_sample = torch.einsum("noq,npq->nop", grad_output, input)
# rearrange the above tensor and extract diagonals.
weight_grad_sample = weight_grad_sample.view(
n,
groups,
-1,
groups,
int(in_channels / groups),
np.prod(kernel_size),
)
weight_grad_sample = torch.einsum("ngrg...->ngr...", weight_grad_sample).contiguous()
shape = [n] + list(weight_shape)
weight_grad_sample = weight_grad_sample.view(shape)
return weight_grad_sample
def conv_group_weight_grad_sample(input, grad_output, weight_shape, stride, padding, dilation, batch_size, func):
I = input.shape[1]
O = grad_output.shape[1]
input_ = input.transpose(0, 1)
grad_output_ = grad_output.view(grad_output.shape[0] * grad_output.shape[1], 1, *grad_output.shape[2:])
weight_grad_sample = func(input_, grad_output_, None, stride=dilation, padding=padding, dilation=stride, groups=batch_size)
input_dims = conv_picker(func, 3, 4, 5)
for i in range(2, input_dims):
weight_grad_sample = weight_grad_sample.narrow(i, 0, weight_shape[i])
weight_grad_sample = weight_grad_sample.view(I, batch_size, O, *weight_grad_sample.shape[2:])
weight_grad_sample = weight_grad_sample.movedim(0, 2)
return weight_grad_sample
def unfold3d(
tensor,
kernel_size,
padding,
stride,
dilation,
):
r"""
Extracts sliding local blocks from an batched input tensor.
:class:`torch.nn.Unfold` only supports 4D inputs (batched image-like tensors).
This method implements the same action for 5D inputs
Args:
tensor: An input tensor of shape ``(B, C, D, H, W)``.
kernel_size: the size of the sliding blocks
padding: implicit zero padding to be added on both sides of input
stride: the stride of the sliding blocks in the input spatial dimensions
dilation: the spacing between the kernel points.
Returns:
A tensor of shape ``(B, C * np.product(kernel_size), L)``, where L - output spatial dimensions.
See :class:`torch.nn.Unfold` for more details
Example:
>>> B, C, D, H, W = 3, 4, 5, 6, 7
>>> tensor = torch.arange(1, B*C*D*H*W + 1.).view(B, C, D, H, W)
>>> # xdoctest: +SKIP
>>> unfold3d(tensor, kernel_size=2, padding=0, stride=1).shape
torch.Size([3, 32, 120])
"""
if len(tensor.shape) != 5:
raise ValueError(
f"Input tensor must be of the shape [B, C, D, H, W]. Got{tensor.shape}"
)
if dilation != (1, 1, 1):
raise NotImplementedError(f"dilation={dilation} not supported.")
batch_size, channels, _, _, _ = tensor.shape
# Input shape: (B, C, D, H, W)
tensor = F.pad(
tensor, (padding[2], padding[2], padding[1], padding[1], padding[0], padding[0])
)
# Output shape: (B, C, D+2*padding[2], H+2*padding[1], W+2*padding[0])
tensor = tensor.unfold(dimension=2, size=kernel_size[0], step=stride[0])
tensor = tensor.unfold(dimension=3, size=kernel_size[1], step=stride[1])
tensor = tensor.unfold(dimension=4, size=kernel_size[2], step=stride[2])
# Output shape: (B, C, D_out, H_out, W_out, kernel_size[0], kernel_size[1], kernel_size[2])
# For D_out, H_out, W_out definitions see :class:`torch.nn.Unfold`
tensor = tensor.permute(0, 2, 3, 4, 1, 5, 6, 7)
# Output shape: (B, D_out, H_out, W_out, C, kernel_size[0], kernel_size[1], kernel_size[2])
tensor = tensor.reshape(batch_size, -1, channels * np.prod(kernel_size)).transpose(
1, 2
)
# Output shape: (B, D_out * H_out * W_out, C * kernel_size[0] * kernel_size[1] * kernel_size[2]
return tensor
|