1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
"""Utilities for manipulating the torch.Graph object and the torchscript."""
# TODO(justinchuby): Move more of the symbolic helper functions here and expose
# them to the user.
import dataclasses
import re
import typing
from typing import Any, Dict, Iterable, Optional, Sequence, Tuple, Union
import torch
from torch import _C
from torch._C import _onnx as _C_onnx
from torch.onnx._globals import GLOBALS
from torch.onnx._internal import _beartype
_ATTR_PATTERN = re.compile("^(.+)_(([ifstgz])|(ty))$")
_SKIP_NODE_ATTRIBUTES = {"inplace", "aten"}
@dataclasses.dataclass
class GraphContext:
"""Extra context for symbolic functions with all methods from torch.Graph.
NOTE: This class is not meant for external consumption. Please do not depend on
it outside of torch.onnx as the interface may evolve.
Attributes:
graph: The _C.Graph being constructed.
block: The current _C.Block being constructed.
opset: The opset version.
original_node: Current node that is being converted from.
params_dict: Mapping from graph initializer name to IValue.
env: Mapping from Torch domain graph Value to ONNX domain graph Value.
"""
graph: _C.Graph
block: _C.Block
opset: int
original_node: _C.Node
params_dict: Dict[str, "_C.IValue"]
env: Dict[_C.Value, _C.Value]
# Relay methods from _C.Graph for compatibility with symbolic functions that expect
# a _C.Graph
def __getattr__(self, name: str) -> Any:
return getattr(self.graph, name)
@_beartype.beartype
def op(
self,
opname: str,
*raw_args: Union[torch.Tensor, _C.Value],
outputs: int = 1,
**kwargs,
):
"""Creates an ONNX operator "opname", taking "raw_args" as inputs and "kwargs" as attributes.
The set of operators and the inputs/attributes they take
is documented at https://github.com/onnx/onnx/blob/master/docs/Operators.md
Args:
opname: The ONNX operator name, e.g., `Abs` or `Add`, or an operator qualified
with a namespace, e.g., `aten::add`.
raw_args: The inputs to the operator; usually provided
as arguments to the `symbolic` definition.
outputs: The number of outputs this operator returns.
By default an operator is assumed to return a single output.
If `outputs` is greater than one, this functions returns a tuple
of output `Value`, representing each output of the ONNX operator
in order.
kwargs: The attributes of the ONNX operator, whose keys are named
according to the following convention: `alpha_f` indicates
the `alpha` attribute with type `f`. The valid type specifiers are
`f` (float), `i` (int), `s` (string) or `t` (Tensor). An attribute
specified with type float accepts either a single float, or a
list of floats (e.g., you would say `dims_i` for a `dims` attribute
that takes a list of integers).
Returns:
The value representing the single output of this operator (see the `outputs`
keyword argument for multi-return nodes).
"""
# FIXME(justinchuby): Add the return type back once we know how to handle mypy
return _add_op(self, opname, *raw_args, outputs=outputs, **kwargs)
@_beartype.beartype
def aten_op(self, operator: str, *args, overload_name: str = "", **kwargs):
"""Generates an ONNX ATen op node.
This function is for backward compatibility with the old symbolic functions.
"""
return self.op(
"aten::ATen",
*args,
operator_s=operator,
overload_name_s=overload_name,
**kwargs,
)
@_beartype.beartype
def add_op_with_blocks(
graph_context: GraphContext,
opname: str,
*inputs: _C.Value,
outputs: int = 1,
n_blocks: int = 1,
**attributes,
) -> Tuple[Any, Tuple[GraphContext, ...], _C.Node]:
"""Creates an ONNX operator "opname", taking inputs and attributes.
Args:
graph_context: The context for the current graph.
opname: The ONNX operator name, e.g., `Abs` or `Add`, or an operator qualified
with a namespace, e.g., `aten::add`.
inputs: The inputs to the operator.
outputs: The number of outputs this operator returns.
By default an operator is assumed to return a single output.
If `outputs` is greater than one, this functions returns a tuple
of output `Value`, representing each output of the ONNX operator
in order.
n_blocks: The number of sub-blocks to create in the node.
attributes: The attributes of the ONNX operator.
Returns:
A tuple of (output_values, new_contexts, node) where:
output_values: ONe or more output value of this operator
(see the `outputs` keyword argument for multi-return nodes).
new_contexts: A tuple of new graph contexts for each sub-block.
node: The node representing the operator.
"""
output_values = graph_context.op(opname, *inputs, outputs=outputs, **attributes)
if isinstance(output_values, Sequence):
node = output_values[0].node()
else:
node = output_values.node()
new_contexts = []
for _ in range(n_blocks):
new_block = node.addBlock()
# Create shallow copy of the graph context and update the block
new_context = dataclasses.replace(graph_context, block=new_block)
new_contexts.append(new_context)
return output_values, tuple(new_contexts), node
@_beartype.beartype
def _add_op(
graph_context: GraphContext,
opname: str,
*args: Union[torch.Tensor, _C.Value],
outputs: int = 1,
**kwargs,
):
"""Creates an ONNX operator "opname", taking "args" as inputs and attributes "kwargs".
The set of operators and the inputs/attributes they take
is documented at https://github.com/onnx/onnx/blob/master/docs/Operators.md
This function is monkey-patched onto Graph.
Args:
g: The Torch Graph or Block.
opname: The ONNX operator name, e.g., `Abs` or `Add`, or an operator qualified
with a namespace, e.g., `aten::add`.
args: The inputs to the operator; usually provided
as arguments to the `symbolic` definition.
outputs: The number of outputs this operator returns.
By default an operator is assumed to return a single output.
If `outputs` is greater than one, this functions returns a tuple
of output `Value`, representing each output of the ONNX operator
in order.
kwargs: The attributes of the ONNX operator, whose keys are named
according to the following convention: `alpha_f` indicates
the `alpha` attribute with type `f`. The valid type specifiers are
`f` (float), `i` (int), `s` (string) or `t` (Tensor). An attribute
specified with type float accepts either a single float, or a
list of floats (e.g., you would say `dims_i` for a `dims` attribute
that takes a list of integers).
Returns:
(Union[_C.Value, Tuple[_C.Value, ...]])
The value representing the single output of this operator (see the `outputs`
keyword argument for multi-return nodes).
"""
inputs = [_const_if_tensor(graph_context, arg) for arg in args]
# Filter out None attributes, this can be convenient client side because
# now they can pass through None attributes, and have them not show up
attributes = {k: v for k, v in kwargs.items() if v is not None}
if "::" not in opname:
opname = "onnx::" + opname
node = _create_node(
graph_context.block,
opname,
inputs,
attributes,
params_dict=graph_context.params_dict,
opset_version=graph_context.opset,
n_outputs=outputs,
shape_inference=GLOBALS.onnx_shape_inference,
)
if outputs == 1:
return node.output()
return tuple(node.outputs())
@_beartype.beartype
def _const_if_tensor(graph_context: GraphContext, arg):
if arg is None:
return arg
if isinstance(arg, _C.Value):
return arg
return _add_op(graph_context, "onnx::Constant", value_z=arg)
def _create_node(
graph_or_block: Union[_C.Graph, _C.Block],
domain_op: str,
inputs: Sequence,
attributes: dict,
params_dict: dict,
opset_version: int,
n_outputs: int,
shape_inference: bool = True,
) -> _C.Node:
"""Creates an node 'domain_op', taking inputs and attributes."""
if isinstance(graph_or_block, _C.Graph):
graph = graph_or_block
node = graph.create(domain_op, inputs, n_outputs)
node = graph.insertNode(node)
elif isinstance(graph_or_block, _C.Block):
block = graph_or_block
node = block.addNode(domain_op, inputs)
# Block does not have create defined, so we need to add outputs manually
if n_outputs > 1:
for _ in range(1, n_outputs):
node.addOutput()
node_ouputs = tuple(node.outputs())
assert len(node_ouputs) == n_outputs
aten = domain_op.startswith("aten::")
# Add all attributes
for key, value in sorted(attributes.items()):
if key in _SKIP_NODE_ATTRIBUTES:
continue
_add_attribute(node, key, value, aten=aten)
if shape_inference:
_C._jit_pass_onnx_node_shape_type_inference(node, params_dict, opset_version)
return node
@_beartype.beartype
def _is_onnx_list(value):
return (
not isinstance(value, torch._six.string_classes)
and not isinstance(value, torch.Tensor)
and isinstance(value, Iterable)
)
@_beartype.beartype
def _scalar(x: torch.Tensor):
"""Convert a scalar tensor into a Python value."""
assert x.numel() == 1
return x[0]
@_beartype.beartype
def _is_caffe2_aten_fallback() -> bool:
return (
GLOBALS.operator_export_type == _C_onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK
and _C_onnx._CAFFE2_ATEN_FALLBACK
)
@_beartype.beartype
def _add_attribute(node: _C.Node, key: str, value: Any, aten: bool):
r"""Initializes the right attribute based on type of value."""
m = _ATTR_PATTERN.match(key)
if m is None:
raise ValueError(
f"Invalid attribute specifier '{key}' names "
"must be suffixed with type, e.g. 'dim_i' or 'dims_i'"
)
name, kind = m.group(1), m.group(2)
if _is_onnx_list(value):
kind += "s"
if aten and _is_caffe2_aten_fallback():
if isinstance(value, torch.Tensor):
# Caffe2 proto does not support tensor attribute.
if value.numel() > 1:
raise ValueError("Should not pass tensor attribute")
value = _scalar(value)
if isinstance(value, float):
kind = "f"
else:
kind = "i"
return getattr(node, f"{kind}_")(name, value)
# TODO: Expose this to user when migrating symbolic helper functions to here.
@_beartype.beartype
def _is_tensor(x: _C.Value) -> bool:
return x.type().isSubtypeOf(_C.TensorType.get())
@_beartype.beartype
def get_device_from_value(value: _C.Value) -> Optional[torch.device]:
if not _is_tensor(value):
return None
tensor_type = typing.cast(_C.TensorType, value.type())
return tensor_type.device()
|