1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
"""Importing this patches torch._C classes to add ONNX conveniences."""
import numbers
import re
from typing import Any, Iterable, Tuple, Union
import torch
from torch import _C
from torch._C import _onnx as _C_onnx
# Import utils to get _params_dict because it is a global that is accessed by c++ code
from torch.onnx import _deprecation, utils
from torch.onnx._globals import GLOBALS
from torch.onnx._internal import _beartype
_ATTR_PATTERN = re.compile("^(.+)_(([ifstgz])|(ty))$")
# TODO(#78694): Remove this file after PyTorch 1.14.
# All functions in this file are deprecated and should not be used
@_deprecation.deprecated(
"1.13",
"1.14",
"note 'g.op()' is to be removed from torch.Graph. Please open a"
" GitHub issue if you need this functionality.",
)
@_beartype.beartype
def _graph_op(
g: _C.Graph,
opname: str,
*raw_args: Union[torch.Tensor, _C.Value],
outputs: int = 1,
**kwargs,
) -> Union[_C.Value, Tuple[_C.Value, ...]]:
r"""Creates an ONNX operator "opname", taking "args" as inputs and attributes "kwargs".
The set of operators and the inputs/attributes they take
is documented at https://github.com/onnx/onnx/blob/master/docs/Operators.md
This function is monkey-patched onto Graph.
Args:
g: The Torch graph.
opname: The ONNX operator name, e.g., `Abs` or `Add`, or an operator qualified
with a namespace, e.g., `aten::add`.
raw_args: The inputs to the operator; usually provided
as arguments to the `symbolic` definition.
outputs: The number of outputs this operator returns.
By default an operator is assumed to return a single output.
If `outputs` is greater than one, this functions returns a tuple
of output `Node`, representing each output of the ONNX operator
in positional.
kwargs: The attributes of the ONNX operator, whose keys are named
according to the following convention: `alpha_f` indicates
the `alpha` attribute with type `f`. The valid type specifiers are
`f` (float), `i` (int), `s` (string) or `t` (Tensor). An attribute
specified with type float accepts either a single float, or a
list of floats (e.g., you would say `dims_i` for a `dims` attribute
that takes a list of integers).
Returns:
The node representing the single output of this operator (see the `outputs`
keyword argument for multi-return nodes).
"""
# Filter out None attributes, this can be convenient client side because
# now they can pass through None attributes, and have them not show up
kwargs = {k: v for k, v in kwargs.items() if v is not None}
args = [_const_if_tensor(g, arg) for arg in raw_args]
if "::" in opname:
namespace, op = opname.split("::")
else:
namespace = "onnx"
op = opname
n = g.insertNode(_new_node(g, namespace, op, outputs, *args, **kwargs))
if GLOBALS.onnx_shape_inference:
_C._jit_pass_onnx_node_shape_type_inference(
n, utils._params_dict, GLOBALS.export_onnx_opset_version
)
if outputs == 1:
return n.output()
return tuple(n.outputs())
@_beartype.beartype
def _const_if_tensor(g: _C.Graph, arg):
if arg is None:
return arg
if isinstance(arg, _C.Value):
return arg
return _graph_op(g, "Constant", value_z=arg)
@_deprecation.deprecated(
"1.13",
"1.14",
"note 'g.at()' is to be removed from torch.Graph. Please open a"
" GitHub issue if you need this functionality.",
)
# Generate an ONNX ATen op node.
@_beartype.beartype
def _aten_op(g: _C.Graph, operator: str, *args, overload_name: str = "", **kwargs):
return _graph_op(
g,
"aten::ATen",
*args,
operator_s=operator,
overload_name_s=overload_name,
**kwargs,
)
@_deprecation.deprecated(
"1.13",
"1.14",
"note 'b.op()' is to be removed from torch.Block. Please open a"
" GitHub issue if you need this functionality.",
)
@_beartype.beartype
def _block_op(block: _C.Block, opname: str, *args: _C.Value, **kwargs):
if "::" in opname:
namespace, op = opname.split("::")
else:
namespace = "onnx"
op = opname
n = block.addNode(f"{namespace}::{op}", args)
aten = namespace == "aten"
skip_attrs = {"inplace", "aten"}
for k, v in sorted(kwargs.items()):
if k in skip_attrs:
continue
_add_attribute(n, k, v, aten=aten)
outputs = tuple(n.outputs())
if len(outputs) == 1:
return n.output()
return outputs
@_beartype.beartype
def _new_node(
g: _C.Graph, namespace: str, op: str, outputs: int, *args: _C.Value, **kwargs
) -> _C.Node:
"""Creates a new node in the graph.
Args:
g: The graph to create the operator on.
namespace: The namespace of the operator. E.g., "aten", "onnx".
op: The name of the operator to create.
outputs: The number of the outputs of the node.
Returns:
The new node.
"""
aten = namespace == "aten"
node = g.create(f"{namespace}::{op}", args, outputs)
skip_attrs = {"inplace", "aten"}
for k, v in sorted(kwargs.items()):
if k in skip_attrs:
continue
_add_attribute(node, k, v, aten=aten)
return node
@_beartype.beartype
def _is_onnx_list(value):
return (
not isinstance(value, torch._six.string_classes)
and not isinstance(value, torch.Tensor)
and isinstance(value, Iterable)
)
@_beartype.beartype
def _scalar(x: torch.Tensor):
"""Convert a scalar tensor into a Python value."""
assert x.numel() == 1
return x[0]
@_beartype.beartype
def _is_caffe2_aten_fallback() -> bool:
return (
GLOBALS.operator_export_type == _C_onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK
and _C_onnx._CAFFE2_ATEN_FALLBACK
)
@_beartype.beartype
def _add_attribute(node: _C.Node, key: str, value: Any, aten: bool):
r"""Initializes the right attribute based on type of value."""
m = _ATTR_PATTERN.match(key)
if m is None:
raise ValueError(
f"Invalid attribute specifier '{key}' names "
"must be suffixed with type, e.g. 'dim_i' or 'dims_i'"
)
name, kind = m.group(1), m.group(2)
if _is_onnx_list(value):
kind += "s"
if aten and _is_caffe2_aten_fallback():
if isinstance(value, torch.Tensor):
# Caffe2 proto does not support tensor attribute.
if value.numel() > 1:
raise ValueError("Should not pass tensor attribute")
value = _scalar(value)
if isinstance(value, float):
kind = "f"
else:
kind = "i"
return getattr(node, f"{kind}_")(name, value)
# TODO(#76254): Remove the deprecated function.
@_deprecation.deprecated(
"1.13", "1.14", "Use 'g.op()' to create a constant node instead."
)
@_beartype.beartype
def _graph_constant(
g,
value,
dims,
type_: str,
*args,
**kwargs,
):
"""This helper function can create either constant tensor or constant scalar.
If dims is None or 0 or [0], generate a 0-d tensor (scalar).
"""
assert isinstance(value, numbers.Number)
assert type_ is not None
isscalar = False
if dims is None or dims == 0 or set(dims) == {0}:
dims = [1]
isscalar = True
type_ = type_.lower()
tensor: Union[
torch.CharTensor,
torch.ShortTensor,
torch.IntTensor,
torch.LongTensor,
torch.HalfTensor,
torch.FloatTensor,
torch.DoubleTensor,
]
if type_ == "char":
tensor = torch.CharTensor(*dims)
elif type_ == "short":
tensor = torch.ShortTensor(*dims)
elif type_ == "int":
tensor = torch.IntTensor(*dims)
elif type_ == "long":
tensor = torch.LongTensor(*dims)
elif type_ == "half":
tensor = torch.HalfTensor(*dims)
elif type_ == "float":
tensor = torch.FloatTensor(*dims)
elif type_ == "double":
tensor = torch.DoubleTensor(*dims)
else:
raise ValueError(
"Unknown type, type should be one of the following strings: "
"char, short, int, long, half, float, double"
)
tensor.fill_(value) # type: ignore[call-overload]
if isscalar:
return g.op("Constant", *args, value_z=tensor, **kwargs)
return g.op("Constant", *args, value_t=tensor, **kwargs)
# TODO(#76254): Remove the deprecated function.
@_deprecation.deprecated(
"1.13",
"1.14",
"Internally use '_node_get' in symbolic_helper instead.",
)
def _node_getitem(self, k):
"""Gets attributes of a node which is polymorphic over return type.
This is monkey-patched onto Node.
"""
sel = self.kindOf(k)
return getattr(self, sel)(k)
torch._C.Graph.op = _graph_op # type: ignore[attr-defined]
torch._C.Graph.at = _aten_op # type: ignore[attr-defined]
torch._C.Block.op = _block_op # type: ignore[attr-defined]
torch._C.Graph.constant = _graph_constant # type: ignore[attr-defined]
torch._C.Node.__getitem__ = _node_getitem # type: ignore[attr-defined, misc, assignment]
|