File: symbolic_opset15.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (66 lines) | stat: -rw-r--r-- 2,259 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
"""This file exports ONNX ops for opset 15.

Note [ONNX operators that are added/updated in opset 15]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
https://github.com/onnx/onnx/blob/master/docs/Changelog.md#version-15-of-the-default-onnx-operator-set
New operators:
    Bernoulli
    CastLike
    Optional
    OptionalGetElement
    OptionalHasElement

Updated operators:
    BatchNormalization https://github.com/onnx/onnx/pull/3545
                        Backwards compatible
                        TODO: test coverage for mixed types inputs.
    Pow                https://github.com/onnx/onnx/pull/3412
                        Backwards compatible
                        TODO: bfloat16 support.
    Shape              https://github.com/onnx/onnx/pull/3580
                        Backwards compatible
                        TODO: optional start/end attribute.
"""

# EDITING THIS FILE? READ THIS FIRST!
# see Note [Edit Symbolic Files] in README.md

import functools

import torch
from torch import _C
from torch.onnx import symbolic_helper, symbolic_opset9 as opset9
from torch.onnx._internal import _beartype, jit_utils, registration

_onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=15)


@_onnx_symbolic("aten::__is_")
@_beartype.beartype
def aten__is_(g: jit_utils.GraphContext, self, other):
    if symbolic_helper._is_none(other):
        if isinstance(self.type(), _C.OptionalType):
            none = g.op("OptionalHasElement", self)
            return g.op("Not", none)
        else:
            return g.op("Constant", value_t=torch.BoolTensor([0]))
    return opset9.eq(g, self, other)


@_onnx_symbolic("aten::__isnot_")
@opset9.wrap_logical_op_with_negation  # type: ignore[has-type]
@_beartype.beartype
def aten__isnot_(g: jit_utils.GraphContext, self, other):
    return aten__is_(g, self, other)


@_onnx_symbolic("prim::unchecked_cast")
@_beartype.beartype
def prim_unchecked_cast(g: jit_utils.GraphContext, self):
    # exists to refine the type of the Value
    # if x is Optional[Tensor], unchecked_cast will cast
    # x to Tensor, so the rest of the graph knows that x is a Tensor.
    if isinstance(self.type(), _C.OptionalType):
        return g.op("OptionalGetElement", self)

    return self