1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
import torch
from torch import Tensor
from .optimizer import Optimizer
from typing import List, Optional
__all__ = ['Adadelta', 'adadelta']
class Adadelta(Optimizer):
r"""Implements Adadelta algorithm.
.. math::
\begin{aligned}
&\rule{110mm}{0.4pt} \\
&\textbf{input} : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)},
\: f(\theta) \text{ (objective)}, \: \rho \text{ (decay)},
\: \lambda \text{ (weight decay)} \\
&\textbf{initialize} : v_0 \leftarrow 0 \: \text{ (square avg)},
\: u_0 \leftarrow 0 \: \text{ (accumulate variables)} \\[-1.ex]
&\rule{110mm}{0.4pt} \\
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
&\hspace{5mm}if \: \lambda \neq 0 \\
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
&\hspace{5mm} v_t \leftarrow v_{t-1} \rho + g^2_t (1 - \rho) \\
&\hspace{5mm}\Delta x_t \leftarrow \frac{\sqrt{u_{t-1} +
\epsilon }}{ \sqrt{v_t + \epsilon} }g_t \hspace{21mm} \\
&\hspace{5mm} u_t \leftarrow u_{t-1} \rho +
\Delta x^2_t (1 - \rho) \\
&\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \Delta x_t \\
&\rule{110mm}{0.4pt} \\[-1.ex]
&\bf{return} \: \theta_t \\[-1.ex]
&\rule{110mm}{0.4pt} \\[-1.ex]
\end{aligned}
For further details regarding the algorithm we refer to `ADADELTA: An Adaptive Learning Rate Method`_.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
rho (float, optional): coefficient used for computing a running average
of squared gradients (default: 0.9)
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-6)
lr (float, optional): coefficient that scale delta before it is applied
to the parameters (default: 1.0)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
foreach (bool, optional): whether foreach implementation of optimizer is used (default: None)
maximize (bool, optional): maximize the params based on the objective, instead of
minimizing (default: False)
.. _ADADELTA\: An Adaptive Learning Rate Method:
https://arxiv.org/abs/1212.5701
"""
def __init__(self, params, lr=1.0, rho=0.9, eps=1e-6, weight_decay=0,
foreach: Optional[bool] = None, *, maximize: bool = False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= rho <= 1.0:
raise ValueError("Invalid rho value: {}".format(rho))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, rho=rho, eps=eps, weight_decay=weight_decay,
maximize=maximize, foreach=foreach)
super(Adadelta, self).__init__(params, defaults)
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault('foreach', None)
group.setdefault('maximize', False)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad = []
grads = []
square_avgs = []
acc_deltas = []
lr, rho, eps, weight_decay, foreach, maximize = (group['lr'],
group['rho'],
group['eps'],
group['weight_decay'],
group['foreach'],
group['maximize'])
for p in group['params']:
if p.grad is None:
continue
params_with_grad.append(p)
if p.grad.is_sparse:
raise RuntimeError('Adadelta does not support sparse gradients')
grads.append(p.grad)
state = self.state[p]
# Lazy state initialization
if len(state) == 0:
state['step'] = 0
state['square_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
state['acc_delta'] = torch.zeros_like(p, memory_format=torch.preserve_format)
square_avgs.append(state['square_avg'])
acc_deltas.append(state['acc_delta'])
state['step'] += 1
adadelta(params_with_grad,
grads,
square_avgs,
acc_deltas,
lr=lr,
rho=rho,
eps=eps,
weight_decay=weight_decay,
foreach=foreach,
maximize=maximize)
return loss
def adadelta(params: List[Tensor],
grads: List[Tensor],
square_avgs: List[Tensor],
acc_deltas: List[Tensor],
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
foreach: bool = None,
*,
lr: float,
rho: float,
eps: float,
weight_decay: float,
maximize: bool):
r"""Functional API that performs Adadelta algorithm computation.
See :class:`~torch.optim.Adadelta` for details.
"""
if foreach is None:
# Placeholder for more complex foreach logic to be added when value is not set
foreach = False
if foreach and torch.jit.is_scripting():
raise RuntimeError('torch.jit.script not supported with foreach optimizers')
if foreach and not torch.jit.is_scripting():
func = _multi_tensor_adadelta
else:
func = _single_tensor_adadelta
func(params,
grads,
square_avgs,
acc_deltas,
lr=lr,
rho=rho,
eps=eps,
weight_decay=weight_decay,
maximize=maximize)
def _single_tensor_adadelta(params: List[Tensor],
grads: List[Tensor],
square_avgs: List[Tensor],
acc_deltas: List[Tensor],
*,
lr: float,
rho: float,
eps: float,
weight_decay: float,
maximize: bool):
for (param, grad, square_avg, acc_delta) in zip(params, grads, square_avgs, acc_deltas):
grad = grad if not maximize else -grad
if weight_decay != 0:
grad = grad.add(param, alpha=weight_decay)
if torch.is_complex(param):
square_avg = torch.view_as_real(square_avg)
acc_delta = torch.view_as_real(acc_delta)
grad = torch.view_as_real(grad)
square_avg.mul_(rho).addcmul_(grad, grad, value=1 - rho)
std = square_avg.add(eps).sqrt_()
delta = acc_delta.add(eps).sqrt_().div_(std).mul_(grad)
acc_delta.mul_(rho).addcmul_(delta, delta, value=1 - rho)
if torch.is_complex(param):
delta = torch.view_as_complex(delta)
param.add_(delta, alpha=-lr)
def _multi_tensor_adadelta(params: List[Tensor],
grads: List[Tensor],
square_avgs: List[Tensor],
acc_deltas: List[Tensor],
*,
lr: float,
weight_decay: float,
rho: float,
eps: float,
maximize: bool):
if len(params) == 0:
return
if maximize:
grads = torch._foreach_neg(grads)
if weight_decay != 0:
torch._foreach_add_(grads, params, alpha=weight_decay)
torch._foreach_mul_(square_avgs, rho)
torch._foreach_addcmul_(square_avgs, grads, grads, value=1 - rho)
std = torch._foreach_add(square_avgs, eps)
torch._foreach_sqrt_(std)
deltas = torch._foreach_add(acc_deltas, eps)
torch._foreach_sqrt_(deltas)
torch._foreach_div_(deltas, std)
torch._foreach_mul_(deltas, grads)
torch._foreach_add_(params, deltas, alpha=-lr)
torch._foreach_mul_(acc_deltas, rho)
torch._foreach_addcmul_(acc_deltas, deltas, deltas, value=1 - rho)
|