File: adam.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (606 lines) | stat: -rw-r--r-- 27,331 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
from collections import defaultdict
import math
from typing import cast, List, Optional, Dict, Tuple

import torch
from torch import Tensor
from .optimizer import Optimizer, _use_grad_for_differentiable

__all__ = ['Adam', 'adam']


# TODO(crcrpar): Move this to soemwhere (e.g. torch/optim/_utils?) else when adding another fused optimizer.
# NOTE(crcrpar): Almost the same as `_MultiDeviceReplicator` defined in
# torch/cuda/amp/grad_scaler.py except for the key being str only for torch script.
class _MultiDeviceReplicator:
    main_tensor: Tensor
    _per_device_tensors: Dict[str, Tensor]

    def __init__(self, main_tensor: Tensor) -> None:
        self.main_tensor = main_tensor
        self._per_device_tensors = {str(main_tensor.device): main_tensor}

    def get(self, device: str):
        if device in self._per_device_tensors:
            return self._per_device_tensors[device]
        tensor = self.main_tensor.to(device=device, non_blocking=True, copy=True)
        self._per_device_tensors[device] = tensor
        return tensor


# todo(crcrpar): Move this to another place when adding another fused optimizer.
def _get_fp16AMP_params(
    *,
    optimizer: Optimizer,
    grad_scaler: Optional[torch.cuda.amp.GradScaler] = None,
    device: torch.device,
) -> Optional[_MultiDeviceReplicator]:
    if grad_scaler is None:
        return None
    found_inf_dict = grad_scaler._check_inf_per_device(optimizer)
    # Combines found_inf tensors from all devices. As in GradScaler.update(),
    # tensors are combined on the scale's device, which is an arbitrary but
    # reasonable choice that avoids new context creation.
    found_infs = [f.to(device, non_blocking=True) for f in found_inf_dict.values()]
    assert len(found_infs) > 0, "No inf checks were recorded in _check_inf_per_device."
    with torch.no_grad():
        found_inf_combined = cast(torch.Tensor, sum(found_infs))
    return _MultiDeviceReplicator(found_inf_combined)

class Adam(Optimizer):
    r"""Implements Adam algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \beta_1, \beta_2
                \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)}          \\
            &\hspace{13mm}      \lambda \text{ (weight decay)},  \: \textit{amsgrad},
                \:\textit{maximize}                                                              \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                v_0\leftarrow 0 \text{ (second moment)},\: \widehat{v_0}^{max}\leftarrow 0\\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\

            &\hspace{5mm}\textbf{if} \: \textit{maximize}:                                       \\
            &\hspace{10mm}g_t           \leftarrow   -\nabla_{\theta} f_t (\theta_{t-1})         \\
            &\hspace{5mm}\textbf{else}                                                           \\
            &\hspace{10mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})          \\
            &\hspace{5mm}\textbf{if} \: \lambda \neq 0                                           \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
            &\hspace{5mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
            &\hspace{5mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
            &\hspace{5mm}\widehat{v_t} \leftarrow   v_t/\big(1-\beta_2^t \big)                   \\
            &\hspace{5mm}\textbf{if} \: amsgrad                                                  \\
            &\hspace{10mm}\widehat{v_t}^{max} \leftarrow \mathrm{max}(\widehat{v_t}^{max},
                \widehat{v_t})                                                                   \\
            &\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/
                \big(\sqrt{\widehat{v_t}^{max}} + \epsilon \big)                                 \\
            &\hspace{5mm}\textbf{else}                                                           \\
            &\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/
                \big(\sqrt{\widehat{v_t}} + \epsilon \big)                                       \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.

    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        amsgrad (bool, optional): whether to use the AMSGrad variant of this
            algorithm from the paper `On the Convergence of Adam and Beyond`_
            (default: False)
        foreach (bool, optional): whether foreach implementation of optimizer
            is used (default: None)
        maximize (bool, optional): maximize the params based on the objective, instead of
            minimizing (default: False)
        capturable (bool, optional): whether this instance is safe to capture in a CUDA graph.
            Passing True can impair ungraphed performance, so if you don't intend to
            graph capture this instance, leave it False (default: False)
        fused (bool, optional): whether fused implementation of optimizer is used.
            Currently, `torch.float64`, `torch.float32`, `torch.float16`, and `torch.bfloat16`
            are supported. (default: False)

    .. _Adam\: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980
    .. _On the Convergence of Adam and Beyond:
        https://openreview.net/forum?id=ryQu7f-RZ
    """

    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
                 weight_decay=0, amsgrad=False, *, foreach: Optional[bool] = None,
                 maximize: bool = False, capturable: bool = False,
                 differentiable: bool = False, fused: bool = False):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
        if not 0.0 <= weight_decay:
            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
        defaults = dict(lr=lr, betas=betas, eps=eps,
                        weight_decay=weight_decay, amsgrad=amsgrad,
                        maximize=maximize, foreach=foreach, capturable=capturable,
                        differentiable=differentiable, fused=fused)
        super(Adam, self).__init__(params, defaults)

        if fused:
            if differentiable:
                raise RuntimeError("`fused` cannot be `differentiable`")
            self._step_supports_amp_scaling = True
            # TODO(crcrpar): [low prec params & their higher prec copy]
            # Suppor AMP with FP16/BF16 model params which would need
            # higher prec copy of params to do update math in higher prec to
            # alleviate the loss of information.
            if not all(
                p.is_cuda and torch.is_floating_point(p)
                for pg in self.param_groups for p in pg['params']
            ):
                raise RuntimeError("FusedAdam requires all the params to be CUDA, floating point")

    def __setstate__(self, state):
        super().__setstate__(state)
        for group in self.param_groups:
            group.setdefault('amsgrad', False)
            group.setdefault('maximize', False)
            group.setdefault('foreach', None)
            group.setdefault('capturable', False)
            group.setdefault('differentiable', False)
            group.setdefault('fused', False)
        state_values = list(self.state.values())
        step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step'])
        if not step_is_tensor:
            for s in state_values:
                s['step'] = torch.tensor(float(s['step']))

    @_use_grad_for_differentiable
    def step(self, closure=None, *, grad_scaler=None):
        """Performs a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
            grad_scaler (:class:`torch.cuda.amp.GradScaler`, optional): A GradScaler which is
                supplied from ``grad_scaler.step(optimizer)``.
        """
        self._cuda_graph_capture_health_check()

        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            params_with_grad = []
            grads = []
            exp_avgs = []
            exp_avg_sqs = []
            max_exp_avg_sqs = []
            state_steps = []
            beta1, beta2 = group['betas']

            grad_scale = None
            found_inf = None
            if group['fused'] and grad_scaler is not None:
                grad_scale = grad_scaler._get_scale_async()
                device = grad_scale.device
                grad_scale = _MultiDeviceReplicator(grad_scale)
                found_inf = _get_fp16AMP_params(optimizer=self, grad_scaler=grad_scaler, device=device)

            for p in group['params']:
                if p.grad is not None:
                    params_with_grad.append(p)
                    if p.grad.is_sparse:
                        raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
                    grads.append(p.grad)

                    state = self.state[p]
                    # Lazy state initialization
                    if len(state) == 0:
                        state['step'] = (
                            torch.zeros((1,), dtype=torch.float, device=p.device)
                            if self.defaults['capturable'] or self.defaults['fused']
                            else torch.tensor(0.)
                        )
                        # Exponential moving average of gradient values
                        state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                        # Exponential moving average of squared gradient values
                        state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                        if group['amsgrad']:
                            # Maintains max of all exp. moving avg. of sq. grad. values
                            state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)

                    exp_avgs.append(state['exp_avg'])
                    exp_avg_sqs.append(state['exp_avg_sq'])

                    if group['amsgrad']:
                        max_exp_avg_sqs.append(state['max_exp_avg_sq'])
                    if group['differentiable'] and state['step'].requires_grad:
                        raise RuntimeError('`requires_grad` is not supported for `step` in differentiable mode')
                    state_steps.append(state['step'])

            adam(params_with_grad,
                 grads,
                 exp_avgs,
                 exp_avg_sqs,
                 max_exp_avg_sqs,
                 state_steps,
                 amsgrad=group['amsgrad'],
                 beta1=beta1,
                 beta2=beta2,
                 lr=group['lr'],
                 weight_decay=group['weight_decay'],
                 eps=group['eps'],
                 maximize=group['maximize'],
                 foreach=group['foreach'],
                 capturable=group['capturable'],
                 differentiable=group['differentiable'],
                 fused=group['fused'],
                 grad_scale=grad_scale,
                 found_inf=found_inf)

        return loss


def adam(params: List[Tensor],
         grads: List[Tensor],
         exp_avgs: List[Tensor],
         exp_avg_sqs: List[Tensor],
         max_exp_avg_sqs: List[Tensor],
         state_steps: List[Tensor],
         # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
         # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
         foreach: Optional[bool] = None,
         capturable: bool = False,
         differentiable: bool = False,
         fused: bool = False,
         grad_scale: Optional[_MultiDeviceReplicator] = None,
         found_inf: Optional[_MultiDeviceReplicator] = None,
         *,
         amsgrad: bool,
         beta1: float,
         beta2: float,
         lr: float,
         weight_decay: float,
         eps: float,
         maximize: bool):
    r"""Functional API that performs Adam algorithm computation.
    See :class:`~torch.optim.Adam` for details.
    """

    if not all(isinstance(t, torch.Tensor) for t in state_steps):
        raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors")

    if foreach is None:
        # Placeholder for more complex foreach logic to be added when value is not set
        foreach = False

    if foreach and torch.jit.is_scripting():
        raise RuntimeError('torch.jit.script not supported with foreach optimizers')

    if foreach and not torch.jit.is_scripting():
        func = _multi_tensor_adam
    elif fused and not torch.jit.is_scripting():
        func = _fused_adam
    else:
        func = _single_tensor_adam

    func(params,
         grads,
         exp_avgs,
         exp_avg_sqs,
         max_exp_avg_sqs,
         state_steps,
         amsgrad=amsgrad,
         beta1=beta1,
         beta2=beta2,
         lr=lr,
         weight_decay=weight_decay,
         eps=eps,
         maximize=maximize,
         capturable=capturable,
         differentiable=differentiable,
         grad_scale=grad_scale,
         found_inf=found_inf)


def _single_tensor_adam(params: List[Tensor],
                        grads: List[Tensor],
                        exp_avgs: List[Tensor],
                        exp_avg_sqs: List[Tensor],
                        max_exp_avg_sqs: List[Tensor],
                        state_steps: List[Tensor],
                        grad_scale: Optional[_MultiDeviceReplicator],
                        found_inf: Optional[_MultiDeviceReplicator],
                        *,
                        amsgrad: bool,
                        beta1: float,
                        beta2: float,
                        lr: float,
                        weight_decay: float,
                        eps: float,
                        maximize: bool,
                        capturable: bool,
                        differentiable: bool):

    assert grad_scale is None and found_inf is None

    for i, param in enumerate(params):

        grad = grads[i] if not maximize else -grads[i]
        exp_avg = exp_avgs[i]
        exp_avg_sq = exp_avg_sqs[i]
        step_t = state_steps[i]

        if capturable:
            assert param.is_cuda and step_t.is_cuda, "If capturable=True, params and state_steps must be CUDA tensors."

        # update step
        step_t += 1

        if weight_decay != 0:
            grad = grad.add(param, alpha=weight_decay)

        if torch.is_complex(param):
            grad = torch.view_as_real(grad)
            exp_avg = torch.view_as_real(exp_avg)
            exp_avg_sq = torch.view_as_real(exp_avg_sq)
            param = torch.view_as_real(param)

        # Decay the first and second moment running average coefficient
        exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
        exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2)

        if capturable or differentiable:
            step = step_t

            # 1 - beta1 ** step can't be captured in a CUDA graph, even if step is a CUDA tensor
            # (incurs "RuntimeError: CUDA error: operation not permitted when stream is capturing")
            bias_correction1 = 1 - torch.pow(beta1, step)
            bias_correction2 = 1 - torch.pow(beta2, step)

            step_size = lr / bias_correction1
            step_size_neg = step_size.neg()

            bias_correction2_sqrt = bias_correction2.sqrt()

            if amsgrad:
                # Maintains the maximum of all 2nd moment running avg. till now
                if differentiable:
                    max_exp_avg_sqs_i = max_exp_avg_sqs[i].clone()
                else:
                    max_exp_avg_sqs_i = max_exp_avg_sqs[i]
                max_exp_avg_sqs[i].copy_(torch.maximum(max_exp_avg_sqs_i, exp_avg_sq))
                # Uses the max. for normalizing running avg. of gradient
                # Folds in (admittedly ugly) 1-elem step_size math here to avoid extra param-set-sized read+write
                # (can't fold it into addcdiv_ below because addcdiv_ requires value is a Number, not a Tensor)
                denom = (max_exp_avg_sqs[i].sqrt() / (bias_correction2_sqrt * step_size_neg)).add_(eps / step_size_neg)
            else:
                denom = (exp_avg_sq.sqrt() / (bias_correction2_sqrt * step_size_neg)).add_(eps / step_size_neg)

            param.addcdiv_(exp_avg, denom)
        else:
            step = step_t.item()

            bias_correction1 = 1 - beta1 ** step
            bias_correction2 = 1 - beta2 ** step

            step_size = lr / bias_correction1

            bias_correction2_sqrt = math.sqrt(bias_correction2)

            if amsgrad:
                # Maintains the maximum of all 2nd moment running avg. till now
                torch.maximum(max_exp_avg_sqs[i], exp_avg_sq, out=max_exp_avg_sqs[i])
                # Use the max. for normalizing running avg. of gradient
                denom = (max_exp_avg_sqs[i].sqrt() / bias_correction2_sqrt).add_(eps)
            else:
                denom = (exp_avg_sq.sqrt() / bias_correction2_sqrt).add_(eps)

            param.addcdiv_(exp_avg, denom, value=-step_size)


def _multi_tensor_adam(params: List[Tensor],
                       grads: List[Tensor],
                       exp_avgs: List[Tensor],
                       exp_avg_sqs: List[Tensor],
                       max_exp_avg_sqs: List[Tensor],
                       state_steps: List[Tensor],
                       grad_scale: Optional[_MultiDeviceReplicator],
                       found_inf: Optional[_MultiDeviceReplicator],
                       *,
                       amsgrad: bool,
                       beta1: float,
                       beta2: float,
                       lr: float,
                       weight_decay: float,
                       eps: float,
                       maximize: bool,
                       capturable: bool,
                       differentiable: bool):
    if len(params) == 0:
        return

    if capturable:
        assert all(p.is_cuda and step.is_cuda for p, step in zip(params, state_steps)), \
            "If capturable=True, params and state_steps must be CUDA tensors."

    assert grad_scale is None and found_inf is None

    if maximize:
        grads = torch._foreach_neg(tuple(grads))  # type: ignore[assignment]

    assert not differentiable, "_foreach ops don't support autograd"
    # Handle complex parameters
    grads = [torch.view_as_real(x) if torch.is_complex(x) else x for x in grads]
    exp_avgs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avgs]
    exp_avg_sqs = [torch.view_as_real(x) if torch.is_complex(x) else x for x in exp_avg_sqs]
    params_ = [torch.view_as_real(x) if torch.is_complex(x) else x for x in params]

    # update steps
    torch._foreach_add_(state_steps, 1)

    if weight_decay != 0:
        torch._foreach_add_(grads, params, alpha=weight_decay)

    # Decay the first and second moment running average coefficient
    torch._foreach_mul_(exp_avgs, beta1)
    torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)

    torch._foreach_mul_(exp_avg_sqs, beta2)
    torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2)

    if capturable:
        # TODO: use foreach_pow if/when foreach_pow is added
        bias_correction1 = [torch.pow(beta1, step) for step in state_steps]
        bias_correction2 = [torch.pow(beta2, step) for step in state_steps]
        # foreach_sub doesn't allow a scalar as the first arg
        torch._foreach_sub_(bias_correction1, 1)
        torch._foreach_sub_(bias_correction2, 1)
        torch._foreach_neg_(bias_correction1)
        torch._foreach_neg_(bias_correction2)

        # foreach_div doesn't allow a scalar as the first arg
        step_size = torch._foreach_div(bias_correction1, lr)
        torch._foreach_reciprocal_(step_size)
        torch._foreach_neg_(step_size)

        bias_correction2_sqrt = torch._foreach_sqrt(bias_correction2)

        if amsgrad:
            # Maintains the maximum of all 2nd moment running avg. till now
            torch._foreach_maximum_(max_exp_avg_sqs, exp_avg_sqs)  # type: ignore[assignment]

            # Use the max. for normalizing running avg. of gradient
            max_exp_avg_sq_sqrt = torch._foreach_sqrt(max_exp_avg_sqs)
            # Folds in (admittedly ugly) 1-elem step_size math here to avoid extra param-set-sized read+write
            # (can't fold it into addcdiv_ below because addcdiv_ requires value is a Number, not a Tensor)
            torch._foreach_div_(max_exp_avg_sq_sqrt, torch._foreach_mul(bias_correction2_sqrt, step_size))
            eps_over_step_size = torch._foreach_div(step_size, eps)
            torch._foreach_reciprocal_(eps_over_step_size)
            denom = torch._foreach_add(max_exp_avg_sq_sqrt, eps_over_step_size)
        else:
            exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs)
            torch._foreach_div_(exp_avg_sq_sqrt, torch._foreach_mul(bias_correction2_sqrt, step_size))
            eps_over_step_size = torch._foreach_div(step_size, eps)
            torch._foreach_reciprocal_(eps_over_step_size)
            denom = torch._foreach_add(exp_avg_sq_sqrt, eps_over_step_size)

        torch._foreach_addcdiv_(params_, exp_avgs, denom)
    else:
        bias_correction1 = [1 - beta1 ** step.item() for step in state_steps]
        bias_correction2 = [1 - beta2 ** step.item() for step in state_steps]

        step_size = [(lr / bc) * -1 for bc in bias_correction1]

        bias_correction2_sqrt = [math.sqrt(bc) for bc in bias_correction2]

        if amsgrad:
            # Maintains the maximum of all 2nd moment running avg. till now
            torch._foreach_maximum_(max_exp_avg_sqs, exp_avg_sqs)

            # Use the max. for normalizing running avg. of gradient
            max_exp_avg_sq_sqrt = torch._foreach_sqrt(max_exp_avg_sqs)
            torch._foreach_div_(max_exp_avg_sq_sqrt, bias_correction2_sqrt)
            denom = torch._foreach_add(max_exp_avg_sq_sqrt, eps)
        else:
            exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs)
            torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt)
            denom = torch._foreach_add(exp_avg_sq_sqrt, eps)

        torch._foreach_addcdiv_(params_, exp_avgs, denom, step_size)


# TODO(crcrpar): Move this to another place when adding another fused optimizer.
# TODO(crcrpar): Make this generic when there's more fused optimizers.
# TODO(crcrpar): Think of rewriting this in C++.
@torch.no_grad()
def _group_params_by_device_and_dtype(
    params: List[Tensor],
    grads: List[Tensor],
    exp_avgs: List[Tensor],
    exp_avg_sqs: List[Tensor],
    max_exp_avg_sqs: List[Tensor],
    state_steps: List[Tensor],
) -> Dict[Tuple[str, torch.dtype], List[List[Tensor]]]:
    per_device_and_dtype_tensors = defaultdict(lambda: [[] for _ in range(6)])
    for i, (p, step) in enumerate(zip(params, state_steps)):
        key = (str(p.device), p.dtype)
        per_device_and_dtype_tensors[key][0].append(p)
        per_device_and_dtype_tensors[key][1].append(grads[i])
        per_device_and_dtype_tensors[key][2].append(exp_avgs[i])
        per_device_and_dtype_tensors[key][3].append(exp_avg_sqs[i])
        if max_exp_avg_sqs:
            per_device_and_dtype_tensors[key][4].append(max_exp_avg_sqs[i])
        per_device_and_dtype_tensors[key][5].append(step)
    return per_device_and_dtype_tensors


def _fused_adam(
    params: List[Tensor],
    grads: List[Tensor],
    exp_avgs: List[Tensor],
    exp_avg_sqs: List[Tensor],
    max_exp_avg_sqs: List[Tensor],
    state_steps: List[Tensor],
    grad_scale: Optional[_MultiDeviceReplicator],
    found_inf: Optional[_MultiDeviceReplicator],
    *,
    amsgrad: bool,
    beta1: float,
    beta2: float,
    lr: float,
    weight_decay: float,
    eps: float,
    maximize: bool,
    capturable: bool,  # Needed for consistency.
    differentiable: bool,
) -> None:
    grouped_tensors = _group_params_by_device_and_dtype(params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps)
    for (device, dtype) in grouped_tensors:
        (
            device_params,
            device_grads,
            device_exp_avgs,
            device_exp_avg_sqs,
            device_max_exp_avg_sqs,
            device_state_steps,
        ) = grouped_tensors[(device, dtype)]
        if grad_scale is not None and found_inf is not None:
            device_grad_scale = grad_scale.get(device)
            device_found_inf = found_inf.get(device)
        else:
            device_grad_scale = None
            device_found_inf = None
        torch._foreach_add_(device_state_steps, 1)
        torch._fused_adam_(
            device_params,
            device_grads,
            device_exp_avgs,
            device_exp_avg_sqs,
            device_max_exp_avg_sqs,
            device_state_steps,
            amsgrad=amsgrad,
            lr=lr,
            beta1=beta1,
            beta2=beta2,
            weight_decay=weight_decay,
            eps=eps,
            maximize=maximize,
            grad_scale=device_grad_scale,
            found_inf=device_found_inf,
        )
        if device_found_inf is not None:
            torch._foreach_sub_(device_state_steps, [device_found_inf] * len(device_state_steps))