File: lr_scheduler.pyi

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (117 lines) | stat: -rw-r--r-- 5,888 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from typing import Iterable, Any, Optional, Callable, Union, List
from .optimizer import Optimizer

class _LRScheduler:
    optimizer: Optimizer = ...
    base_lrs: List[float] = ...
    last_epoch: int = ...
    verbose: bool = ...
    def __init__(self, optimizer: Optimizer, last_epoch: int = ..., verbose: bool = ...) -> None: ...
    def state_dict(self) -> dict: ...
    def load_state_dict(self, state_dict: dict) -> None: ...
    def get_last_lr(self) -> List[float]: ...
    def get_lr(self) -> float: ...
    def step(self, epoch: Optional[int] = ...) -> None: ...
    def print_lr(self, is_verbose: bool, group: dict, lr: float, epoch: Optional[int] = ...) -> None: ...

class LambdaLR(_LRScheduler):
    lr_lambdas: List[Callable[[int], float]] = ...
    def __init__(self, optimizer: Optimizer, lr_lambda: Union[Callable[[int], float], List[Callable[[int], float]]], last_epoch: int = ..., verbose: bool = ...) -> None: ...

class MultiplicativeLR(_LRScheduler):
    lr_lambdas: List[Callable[[int], float]] = ...
    def __init__(self, optimizer: Optimizer, lr_lambda: Union[Callable[[int], float], List[Callable[[int], float]]], last_epoch: int = ..., verbose: bool = ...) -> None: ...

class StepLR(_LRScheduler):
    step_size: int = ...
    gamma: float = ...
    def __init__(self, optimizer: Optimizer, step_size: int, gamma: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...

class MultiStepLR(_LRScheduler):
    milestones: Iterable[int] = ...
    gamma: float = ...
    def __init__(self, optimizer: Optimizer, milestones: Iterable[int], gamma: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...

class ConstantLR(_LRScheduler):
    factor: float = ...
    total_iters: int = ...
    def __init__(self, optimizer: Optimizer, factor: float=..., total_iters: int=..., last_epoch: int=..., verbose: bool = ...) -> None: ...

class LinearLR(_LRScheduler):
    start_factor: float = ...
    end_factor: float = ...
    total_iters: int = ...
    def __init__(self, optimizer: Optimizer, start_factor: float=..., end_factor: float= ..., total_iters: int= ..., last_epoch: int= ..., verbose: bool = ...) -> None: ...

class ExponentialLR(_LRScheduler):
    gamma: float = ...
    def __init__(self, optimizer: Optimizer, gamma: float, last_epoch: int = ..., verbose: bool = ...) -> None: ...

class ChainedScheduler(_LRScheduler):
    def __init__(self, schedulers: List[_LRScheduler]) -> None: ...

class SequentialLR(_LRScheduler):
    def __init__(self, optimizer: Optimizer, schedulers: List[_LRScheduler], milestones: List[int], last_epoch: int=..., verbose: bool=...) -> None: ...

class CosineAnnealingLR(_LRScheduler):
    T_max: int = ...
    eta_min: float = ...
    def __init__(self, optimizer: Optimizer, T_max: int, eta_min: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...

class ReduceLROnPlateau:
    factor: float = ...
    optimizer: Optimizer = ...
    min_lrs: List[float] = ...
    patience: int = ...
    verbose: bool = ...
    cooldown: int = ...
    cooldown_counter: int = ...
    mode: str = ...
    threshold: float = ...
    threshold_mode: str = ...
    best: Optional[float] = ...
    num_bad_epochs: Optional[int] = ...
    mode_worse: Optional[float] = ...
    eps: float = ...
    last_epoch: int = ...
    def __init__(self, optimizer: Optimizer, mode: str = ..., factor: float = ..., patience: int = ..., threshold: float = ..., threshold_mode: str = ..., cooldown: int = ..., min_lr: Union[List[float], float] = ..., eps: float = ..., verbose: bool = ...) -> None: ...
    def step(self, metrics: Any, epoch: Optional[int] = ...) -> None: ...
    @property
    def in_cooldown(self) -> bool: ...
    def is_better(self, a: Any, best: Any) -> bool: ...
    def state_dict(self) -> dict: ...
    def load_state_dict(self, state_dict: dict) -> None: ...

class CyclicLR(_LRScheduler):
    max_lrs: List[float] = ...
    total_size: float = ...
    step_ratio: float = ...
    mode: str = ...
    gamma: float = ...
    scale_mode: str = ...
    cycle_momentum: bool = ...
    base_momentums: List[float] = ...
    max_momentums: List[float] = ...
    def __init__(self, optimizer: Optimizer, base_lr: Union[float, List[float]], max_lr: Union[float, List[float]], step_size_up: int = ..., step_size_down: Optional[int] = ..., mode: str = ..., gamma: float = ..., scale_fn: Optional[Callable[[float], float]] = ..., scale_mode: str = ..., cycle_momentum: bool = ..., base_momentum: float = ..., max_momentum: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...
    def scale_fn(self, x: Any) -> float: ...

class CosineAnnealingWarmRestarts(_LRScheduler):
    T_0: int = ...
    T_i: int = ...
    T_mult: Optional[int] = ...
    eta_min: Optional[float] = ...
    T_cur: Any = ...
    def __init__(self, optimizer: Optimizer, T_0: int, T_mult: int = ..., eta_min: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...
    def step(self, epoch: Optional[Any] = ...): ...

class OneCycleLR(_LRScheduler):
    total_steps: int = ...
    anneal_func: Callable[[float, float, float], float] = ...
    cycle_momentum: bool = ...
    use_beta1: bool = ...
    def __init__(self, optimizer: Optimizer, max_lr: Union[float, List[float]], total_steps: int = ..., epochs: int = ..., steps_per_epoch: int = ..., pct_start: float = ..., anneal_strategy: str = ..., cycle_momentum: bool = ..., base_momentum: Union[float, List[float]] = ..., max_momentum: Union[float, List[float]] = ..., div_factor: float = ..., final_div_factor: float = ..., three_phase: bool = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...

class PolynomialLR(_LRScheduler):
    total_iters: int = ...
    power: float = ...
    def __init__(self, optimizer: Optimizer, total_iters: int = ..., power: float = ..., last_epoch: int = ..., verbose: bool = ...) -> None: ...