File: rprop.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (272 lines) | stat: -rw-r--r-- 10,954 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import torch
from torch import Tensor
from .optimizer import Optimizer
from typing import List, Optional

__all__ = ['Rprop', 'rprop']

class Rprop(Optimizer):
    r"""Implements the resilient backpropagation algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \theta_0 \in \mathbf{R}^d \text{ (params)},f(\theta)
                \text{ (objective)},                                                             \\
            &\hspace{13mm}      \eta_{+/-} \text{ (etaplus, etaminus)}, \Gamma_{max/min}
                \text{ (step sizes)}                                                             \\
            &\textbf{initialize} :   g^0_{prev} \leftarrow 0,
                \: \eta_0 \leftarrow \text{lr (learning rate)}                                   \\
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm} \textbf{for} \text{  } i = 0, 1, \ldots, d-1 \: \mathbf{do}            \\
            &\hspace{10mm}  \textbf{if} \:   g^i_{prev} g^i_t  > 0                               \\
            &\hspace{15mm}  \eta^i_t \leftarrow \mathrm{min}(\eta^i_{t-1} \eta_{+},
                \Gamma_{max})                                                                    \\
            &\hspace{10mm}  \textbf{else if}  \:  g^i_{prev} g^i_t < 0                           \\
            &\hspace{15mm}  \eta^i_t \leftarrow \mathrm{max}(\eta^i_{t-1} \eta_{-},
                \Gamma_{min})                                                                    \\
            &\hspace{15mm}  g^i_t \leftarrow 0                                                   \\
            &\hspace{10mm}  \textbf{else}  \:                                                    \\
            &\hspace{15mm}  \eta^i_t \leftarrow \eta^i_{t-1}                                     \\
            &\hspace{5mm}\theta_t \leftarrow \theta_{t-1}- \eta_t \mathrm{sign}(g_t)             \\
            &\hspace{5mm}g_{prev} \leftarrow  g_t                                                \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to the paper
    `A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm
    <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.1417>`_.

    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-2)
        etas (Tuple[float, float], optional): pair of (etaminus, etaplis), that
            are multiplicative increase and decrease factors
            (default: (0.5, 1.2))
        step_sizes (Tuple[float, float], optional): a pair of minimal and
            maximal allowed step sizes (default: (1e-6, 50))
        foreach (bool, optional): whether foreach implementation of optimizer
            is used (default: None)
        maximize (bool, optional): maximize the params based on the objective, instead of
            minimizing (default: False)
    """

    def __init__(self, params, lr=1e-2, etas=(0.5, 1.2), step_sizes=(1e-6, 50),
                 foreach: Optional[bool] = None, maximize: bool = False):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 < etas[0] < 1.0 < etas[1]:
            raise ValueError("Invalid eta values: {}, {}".format(etas[0], etas[1]))

        defaults = dict(lr=lr, etas=etas, step_sizes=step_sizes, foreach=foreach, maximize=maximize)
        super(Rprop, self).__init__(params, defaults)

    def __setstate__(self, state):
        super().__setstate__(state)
        for group in self.param_groups:
            group.setdefault('foreach', None)
            group.setdefault('maximize', False)

    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            params = []
            grads = []
            prevs = []
            step_sizes = []
            etaminus, etaplus = group['etas']
            step_size_min, step_size_max = group['step_sizes']
            foreach = group['foreach']
            maximize = group['maximize']

            for p in group['params']:
                if p.grad is None:
                    continue
                params.append(p)
                grad = p.grad
                if grad.is_sparse:
                    raise RuntimeError('Rprop does not support sparse gradients')

                grads.append(grad)
                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    state['prev'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    if p.dtype.is_complex:
                        # Complex Number should be as if they are two independent real numbers.
                        # Hence the step_size shouldn't be zero for imaginary part.
                        state['step_size'] = grad.new().resize_as_(grad).fill_(complex(group['lr'], group['lr']))
                    else:
                        state['step_size'] = grad.new().resize_as_(grad).fill_(group['lr'])

                prevs.append(state['prev'])
                step_sizes.append(state['step_size'])

                state['step'] += 1

            rprop(params,
                  grads,
                  prevs,
                  step_sizes,
                  step_size_min=step_size_min,
                  step_size_max=step_size_max,
                  etaminus=etaminus,
                  etaplus=etaplus,
                  foreach=foreach,
                  maximize=maximize)

        return loss


def rprop(params: List[Tensor],
          grads: List[Tensor],
          prevs: List[Tensor],
          step_sizes: List[Tensor],
          # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
          # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
          foreach: bool = None,
          maximize: bool = False,
          *,
          step_size_min: float,
          step_size_max: float,
          etaminus: float,
          etaplus: float):
    r"""Functional API that performs rprop algorithm computation.

    See :class:`~torch.optim.Rprop` for details.
    """

    if foreach is None:
        # Placeholder for more complex foreach logic to be added when value is not set
        foreach = False

    if foreach and torch.jit.is_scripting():
        raise RuntimeError('torch.jit.script not supported with foreach optimizers')

    if foreach and not torch.jit.is_scripting():
        func = _multi_tensor_rprop
    else:
        func = _single_tensor_rprop

    func(params,
         grads,
         prevs,
         step_sizes,
         step_size_min=step_size_min,
         step_size_max=step_size_max,
         etaminus=etaminus,
         etaplus=etaplus,
         maximize=maximize)


def _single_tensor_rprop(params: List[Tensor],
                         grads: List[Tensor],
                         prevs: List[Tensor],
                         step_sizes: List[Tensor],
                         *,
                         step_size_min: float,
                         step_size_max: float,
                         etaminus: float,
                         etaplus: float,
                         maximize: bool):

    for i, param in enumerate(params):
        grad = grads[i]
        grad = grad if not maximize else -grad
        prev = prevs[i]
        step_size = step_sizes[i]

        if torch.is_complex(param):
            grad = torch.view_as_real(grad)
            prev = torch.view_as_real(prev)
            param = torch.view_as_real(param)
            step_size = torch.view_as_real(step_size)

        sign = grad.mul(prev).sign()
        sign[sign.gt(0)] = etaplus
        sign[sign.lt(0)] = etaminus
        sign[sign.eq(0)] = 1

        # update stepsizes with step size updates
        step_size.mul_(sign).clamp_(step_size_min, step_size_max)

        # for dir<0, dfdx=0
        # for dir>=0 dfdx=dfdx
        grad = grad.clone(memory_format=torch.preserve_format)
        grad[sign.eq(etaminus)] = 0

        # update parameters
        param.addcmul_(grad.sign(), step_size, value=-1)

        prev.copy_(grad)


def _multi_tensor_rprop(params: List[Tensor],
                        grads: List[Tensor],
                        prevs: List[Tensor],
                        step_sizes: List[Tensor],
                        *,
                        step_size_min: float,
                        step_size_max: float,
                        etaminus: float,
                        etaplus: float,
                        maximize: bool):

    if len(params) == 0:
        return

    # Handle complex params
    def _view_complex_as_real(tensor_list):
        return [torch.view_as_real(t) if torch.is_complex(t) else t for t in tensor_list]

    grads = _view_complex_as_real(grads)
    prevs = _view_complex_as_real(prevs)
    params = _view_complex_as_real(params)
    step_sizes = _view_complex_as_real(step_sizes)

    if maximize:
        grads = torch._foreach_neg(grads)

    signs = torch._foreach_mul(grads, prevs)
    signs = [s.sign() for s in signs]
    for sign in signs:
        sign[sign.gt(0)] = etaplus
        sign[sign.lt(0)] = etaminus
        sign[sign.eq(0)] = 1

    # update stepsizes with step size updates
    torch._foreach_mul_(step_sizes, signs)
    for step_size in step_sizes:
        step_size.clamp_(step_size_min, step_size_max)

    # for dir<0, dfdx=0
    # for dir>=0 dfdx=dfdx
    grads = list(grads)
    for i in range(len(grads)):
        grads[i] = grads[i].clone(memory_format=torch.preserve_format)
        grads[i][signs[i].eq(etaminus)] = 0

    # update parameters
    grad_signs = [grad.sign() for grad in grads]
    torch._foreach_addcmul_(params, grad_signs, step_sizes, value=-1)

    for i in range(len(prevs)):
        prevs[i].copy_(grads[i])