1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
|
import difflib
import os
import io
import shutil
import struct
import sys
import torch
import tarfile
import tempfile
import warnings
from contextlib import closing, contextmanager
from ._utils import _import_dotted_name
from ._six import string_classes as _string_classes
from torch._sources import get_source_lines_and_file
from torch.types import Storage
from torch.storage import _get_dtype_from_pickle_storage_type
from typing import Any, BinaryIO, Callable, cast, Dict, Optional, Type, Tuple, Union, IO
from typing_extensions import TypeAlias
import copyreg
import pickle
import pathlib
import torch._weights_only_unpickler as _weights_only_unpickler
DEFAULT_PROTOCOL = 2
LONG_SIZE = struct.Struct('=l').size
INT_SIZE = struct.Struct('=i').size
SHORT_SIZE = struct.Struct('=h').size
MAGIC_NUMBER = 0x1950a86a20f9469cfc6c
PROTOCOL_VERSION = 1001
STORAGE_KEY_SEPARATOR = ','
FILE_LIKE: TypeAlias = Union[str, os.PathLike, BinaryIO, IO[bytes]]
MAP_LOCATION: TypeAlias = Optional[Union[Callable[[torch.Tensor, str], torch.Tensor], torch.device, str, Dict[str, str]]]
__all__ = [
'SourceChangeWarning',
'mkdtemp',
'register_package',
'check_module_version_greater_or_equal',
'validate_cuda_device',
'location_tag',
'default_restore_location',
'normalize_storage_type',
'storage_to_tensor_type',
'save',
'load',
'StorageType',
]
class SourceChangeWarning(Warning):
pass
@contextmanager
def mkdtemp():
path = tempfile.mkdtemp()
yield path
shutil.rmtree(path)
_package_registry = []
def _is_zipfile(f) -> bool:
# This is a stricter implementation than zipfile.is_zipfile().
# zipfile.is_zipfile() is True if the magic number appears anywhere in the
# binary. Since we expect the files here to be generated by torch.save or
# torch.jit.save, it's safe to only check the start bytes and avoid
# collisions and assume the zip has only 1 file.
# See bugs.python.org/issue28494.
# Read the first 4 bytes of the file
read_bytes = []
start = f.tell()
byte = f.read(1)
while byte != b"":
read_bytes.append(byte)
if len(read_bytes) == 4:
break
byte = f.read(1)
f.seek(start)
local_header_magic_number = [b'P', b'K', b'\x03', b'\x04']
return read_bytes == local_header_magic_number
def register_package(priority, tagger, deserializer):
queue_elem = (priority, tagger, deserializer)
_package_registry.append(queue_elem)
_package_registry.sort()
def check_module_version_greater_or_equal(module, req_version_tuple, error_if_malformed=True):
'''
Check if a module's version satisfies requirements
Usually, a module's version string will be like 'x.y.z', which would be represented
as a tuple (x, y, z), but sometimes it could be an unexpected format. If the version
string does not match the given tuple's format up to the length of the tuple, then
error and exit or emit a warning.
Args:
module: the module to check the version of
req_version_tuple: tuple (usually of ints) representing the required version
error_if_malformed: whether we should exit if module version string is malformed
Returns:
requirement_is_met: bool
'''
try:
version_strs = module.__version__.split('.')
# Cast module version fields to match the types of the required version
module_version = tuple(
type(req_field)(version_strs[idx]) for idx, req_field in enumerate(req_version_tuple)
)
requirement_is_met = module_version >= req_version_tuple
except Exception as e:
message = (
"'%s' module version string is malformed '%s' and cannot be compared"
" with tuple %s"
) % (
module.__name__, module.__version__, str(req_version_tuple)
)
if error_if_malformed:
raise RuntimeError(message) from e
else:
warnings.warn(message + ', but continuing assuming that requirement is met')
requirement_is_met = True
return requirement_is_met
def _cpu_tag(obj):
if obj.device.type == 'cpu':
return 'cpu'
def _cuda_tag(obj):
if obj.device.type == 'cuda':
return 'cuda:' + str(obj.device.index)
def _mps_tag(obj):
if obj.device.type == 'mps':
return 'mps'
def _meta_tag(obj):
if obj.device.type == 'meta':
return 'meta'
def _cpu_deserialize(obj, location):
if location == 'cpu':
return obj
def validate_cuda_device(location):
device = torch.cuda._utils._get_device_index(location, True)
if not torch.cuda.is_available():
raise RuntimeError('Attempting to deserialize object on a CUDA '
'device but torch.cuda.is_available() is False. '
'If you are running on a CPU-only machine, '
'please use torch.load with map_location=torch.device(\'cpu\') '
'to map your storages to the CPU.')
device_count = torch.cuda.device_count()
if device >= device_count:
raise RuntimeError('Attempting to deserialize object on CUDA device '
f'{device} but torch.cuda.device_count() is {device_count}. Please use '
'torch.load with map_location to map your storages '
'to an existing device.')
return device
def _cuda_deserialize(obj, location):
if location.startswith('cuda'):
device = validate_cuda_device(location)
if getattr(obj, "_torch_load_uninitialized", False):
with torch.cuda.device(device):
return torch.UntypedStorage(obj.nbytes(), device=torch.device(location))
else:
return obj.cuda(device)
def _mps_deserialize(obj, location):
if location == 'mps':
return obj.mps()
def _meta_deserialize(obj, location):
if location == 'meta':
return torch.UntypedStorage(obj.nbytes(), device='meta')
register_package(10, _cpu_tag, _cpu_deserialize)
register_package(20, _cuda_tag, _cuda_deserialize)
register_package(21, _mps_tag, _mps_deserialize)
register_package(22, _meta_tag, _meta_deserialize)
def location_tag(storage: Union[Storage, torch.storage.TypedStorage, torch.UntypedStorage]):
for _, tagger, _ in _package_registry:
location = tagger(storage)
if location:
return location
raise RuntimeError("don't know how to determine data location of "
+ torch.typename(storage))
def default_restore_location(storage, location):
for _, _, fn in _package_registry:
result = fn(storage, location)
if result is not None:
return result
raise RuntimeError("don't know how to restore data location of "
+ torch.typename(storage) + " (tagged with "
+ location + ")")
def normalize_storage_type(storage_type):
return getattr(torch, storage_type.__name__)
def storage_to_tensor_type(storage):
storage_type = type(storage)
module = _import_dotted_name(storage_type.__module__)
return getattr(module, storage_type.__name__.replace('Storage', 'Tensor'))
def _is_path(name_or_buffer):
return isinstance(name_or_buffer, str) or \
isinstance(name_or_buffer, pathlib.Path)
class _opener(object):
def __init__(self, file_like):
self.file_like = file_like
def __enter__(self):
return self.file_like
def __exit__(self, *args):
pass
class _open_file(_opener):
def __init__(self, name, mode):
super(_open_file, self).__init__(open(name, mode))
def __exit__(self, *args):
self.file_like.close()
class _open_buffer_reader(_opener):
def __init__(self, buffer):
super(_open_buffer_reader, self).__init__(buffer)
_check_seekable(buffer)
class _open_buffer_writer(_opener):
def __exit__(self, *args):
self.file_like.flush()
def _open_file_like(name_or_buffer, mode):
if _is_path(name_or_buffer):
return _open_file(name_or_buffer, mode)
else:
if 'w' in mode:
return _open_buffer_writer(name_or_buffer)
elif 'r' in mode:
return _open_buffer_reader(name_or_buffer)
else:
raise RuntimeError(f"Expected 'r' or 'w' in mode but got {mode}")
class _open_zipfile_reader(_opener):
def __init__(self, name_or_buffer) -> None:
super(_open_zipfile_reader, self).__init__(torch._C.PyTorchFileReader(name_or_buffer))
class _open_zipfile_writer_file(_opener):
def __init__(self, name) -> None:
super(_open_zipfile_writer_file, self).__init__(torch._C.PyTorchFileWriter(str(name)))
def __exit__(self, *args) -> None:
self.file_like.write_end_of_file()
class _open_zipfile_writer_buffer(_opener):
def __init__(self, buffer) -> None:
self.buffer = buffer
super(_open_zipfile_writer_buffer, self).__init__(torch._C.PyTorchFileWriter(buffer))
def __exit__(self, *args) -> None:
self.file_like.write_end_of_file()
self.buffer.flush()
def _open_zipfile_writer(name_or_buffer):
container: Type[_opener]
if _is_path(name_or_buffer):
container = _open_zipfile_writer_file
else:
container = _open_zipfile_writer_buffer
return container(name_or_buffer)
def _is_compressed_file(f) -> bool:
compress_modules = ['gzip']
try:
return f.__module__ in compress_modules
except AttributeError:
return False
def _should_read_directly(f):
"""
Checks if f is a file that should be read directly. It should be read
directly if it is backed by a real file (has a fileno) and is not a
a compressed file (e.g. gzip)
"""
if _is_compressed_file(f):
return False
try:
return f.fileno() >= 0
except io.UnsupportedOperation:
return False
except AttributeError:
return False
def _check_seekable(f) -> bool:
def raise_err_msg(patterns, e):
for p in patterns:
if p in str(e):
msg = (str(e) + ". You can only torch.load from a file that is seekable."
+ " Please pre-load the data into a buffer like io.BytesIO and"
+ " try to load from it instead.")
raise type(e)(msg)
raise e
try:
f.seek(f.tell())
return True
except (io.UnsupportedOperation, AttributeError) as e:
raise_err_msg(["seek", "tell"], e)
return False
def _check_dill_version(pickle_module) -> None:
'''Checks if using dill as the pickle module, and if so, checks if it is the correct version.
If dill version is lower than 0.3.1, a ValueError is raised.
Args:
pickle_module: module used for pickling metadata and objects
'''
if pickle_module is not None and pickle_module.__name__ == 'dill':
required_dill_version = (0, 3, 1)
if not check_module_version_greater_or_equal(pickle_module, required_dill_version, False):
raise ValueError((
"'torch' supports dill >= %s, but you have dill %s."
" Please upgrade dill or switch to 'pickle'"
) % (
'.'.join([str(num) for num in required_dill_version]),
pickle_module.__version__
))
def save(
obj: object,
f: FILE_LIKE,
pickle_module: Any = pickle,
pickle_protocol: int = DEFAULT_PROTOCOL,
_use_new_zipfile_serialization: bool = True
) -> None:
# Reference: https://github.com/pytorch/pytorch/issues/54354
# The first line of this docstring overrides the one Sphinx generates for the
# documentation. We need it so that Sphinx doesn't leak `pickle`s path from
# the build environment (e.g. `<module 'pickle' from '/leaked/path').
"""save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL, _use_new_zipfile_serialization=True)
Saves an object to a disk file.
See also: :ref:`saving-loading-tensors`
Args:
obj: saved object
f: a file-like object (has to implement write and flush) or a string or
os.PathLike object containing a file name
pickle_module: module used for pickling metadata and objects
pickle_protocol: can be specified to override the default protocol
.. note::
A common PyTorch convention is to save tensors using .pt file extension.
.. note::
PyTorch preserves storage sharing across serialization. See
:ref:`preserve-storage-sharing` for more details.
.. note::
The 1.6 release of PyTorch switched ``torch.save`` to use a new
zipfile-based file format. ``torch.load`` still retains the ability to
load files in the old format. If for any reason you want ``torch.save``
to use the old format, pass the kwarg ``_use_new_zipfile_serialization=False``.
Example:
>>> # Save to file
>>> x = torch.tensor([0, 1, 2, 3, 4])
>>> torch.save(x, 'tensor.pt')
>>> # Save to io.BytesIO buffer
>>> buffer = io.BytesIO()
>>> torch.save(x, buffer)
"""
_check_dill_version(pickle_module)
if _use_new_zipfile_serialization:
with _open_zipfile_writer(f) as opened_zipfile:
_save(obj, opened_zipfile, pickle_module, pickle_protocol)
return
else:
with _open_file_like(f, 'wb') as opened_file:
_legacy_save(obj, opened_file, pickle_module, pickle_protocol)
def _legacy_save(obj, f, pickle_module, pickle_protocol) -> None:
import torch.nn as nn
serialized_container_types = {}
serialized_storages = {}
# Since loading storages that view the same data with different dtypes is
# not supported, we need to keep track of the dtype associated with each
# storage data_ptr and throw an error if the dtype is ever different.
# TODO: This feature could be added in the future
storage_dtypes: Dict[int, torch.dtype] = {}
def persistent_id(obj: Any) -> Optional[Tuple]:
# FIXME: the docs say that persistent_id should only return a string
# but torch store returns tuples. This works only in the binary protocol
# see
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
if isinstance(obj, type) and issubclass(obj, nn.Module):
if obj in serialized_container_types:
return None
serialized_container_types[obj] = True
source_file = source = None
try:
source_lines, _, source_file = get_source_lines_and_file(obj)
source = ''.join(source_lines)
except Exception: # saving the source is optional, so we can ignore any errors
warnings.warn("Couldn't retrieve source code for container of "
"type " + obj.__name__ + ". It won't be checked "
"for correctness upon loading.")
return ('module', obj, source_file, source)
if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj):
storage: torch.UntypedStorage
if isinstance(obj, torch.storage.TypedStorage):
# TODO: Once we decide to break serialization FC, this case
# can be deleted
storage = obj._storage
storage_dtype = obj.dtype
storage_type_str = obj.pickle_storage_type()
storage_type = getattr(torch, storage_type_str)
dtype = obj.dtype
storage_numel = obj.size()
elif isinstance(obj, torch.UntypedStorage):
storage = obj
storage_dtype = torch.uint8
storage_type = normalize_storage_type(type(obj))
dtype = torch.uint8
storage_numel = storage.nbytes()
else:
raise TypeError(f'type not recognized: {type(obj)}')
# If storage is allocated, ensure that any other saved storages
# pointing to the same data all have the same dtype. If storage is
# not allocated, don't perform this check
if storage.data_ptr() != 0:
if storage.data_ptr() in storage_dtypes:
if storage_dtype != storage_dtypes[storage.data_ptr()]:
raise RuntimeError(
'Cannot save multiple tensors or storages that '
'view the same data as different types')
else:
storage_dtypes[storage.data_ptr()] = storage_dtype
view_metadata: Optional[Tuple[str, int, int]]
# Offset is always 0, but we keep it for backwards compatibility
# with the old serialization format (which supported storage views)
offset = 0
storage_key = str(storage._cdata)
location = location_tag(storage)
# TODO: There's an issue here with FC. It might be impossible to
# solve, but it's worth noting. Imagine we save a list `[storage,
# tensor]`, where `tensor.storage()` is the same as `storage`, and
# `tensor.element_size() > 1`. Let's say that `tensor.dtype ==
# torch.float`. The storage will be serialized with element size
# of 1, since we're choosing to serialize the first occurance of
# a duplicate storage. Since this legacy serialization format saves
# the numel of the storage, rather than nbytes directly, we'll be
# effectively saving nbytes in this case. We'll be able to load it
# and the tensor back up with no problems in _this_ and future
# versions of pytorch, but in older versions, here's the problem:
# the storage will be loaded up as a UntypedStorage, and then the
# FloatTensor will loaded and the UntypedStorage will be assigned to
# it. Since the storage dtype does not match the tensor dtype, this
# will cause an error. If we reverse the list, like `[tensor,
# storage]`, then we will save the `tensor.storage()` as a faked
# `FloatStorage`, and the saved size will be the correct
# dtype-specific numel count that old versions expect. `tensor`
# will be able to load up properly in old versions, pointing to
# a FloatStorage. However, `storage` is still being translated to
# a UntypedStorage, and it will try to resolve to the same
# FloatStorage that `tensor` contains. This will also cause an
# error. It doesn't seem like there's any way around this.
# Probably, we just cannot maintain FC for the legacy format if the
# saved list contains both a tensor and a storage that point to the
# same data. We should still be able to maintain FC for lists of
# just tensors, as long as all views share the same dtype as the
# tensor they are viewing.
if storage_key not in serialized_storages:
serialized_storages[storage_key] = (storage, dtype)
is_view = storage._cdata != storage._cdata
if is_view:
view_metadata = (str(storage._cdata), offset, storage.nbytes())
else:
view_metadata = None
res = ('storage',
storage_type,
storage_key,
location,
storage_numel,
view_metadata)
return res
return None
sys_info = dict(
protocol_version=PROTOCOL_VERSION,
little_endian=sys.byteorder == 'little',
type_sizes=dict(
short=SHORT_SIZE,
int=INT_SIZE,
long=LONG_SIZE,
),
)
pickle_module.dump(MAGIC_NUMBER, f, protocol=pickle_protocol)
pickle_module.dump(PROTOCOL_VERSION, f, protocol=pickle_protocol)
pickle_module.dump(sys_info, f, protocol=pickle_protocol)
pickler = pickle_module.Pickler(f, protocol=pickle_protocol)
pickler.persistent_id = persistent_id
pickler.dump(obj)
serialized_storage_keys = sorted(serialized_storages.keys())
pickle_module.dump(serialized_storage_keys, f, protocol=pickle_protocol)
f.flush()
for key in serialized_storage_keys:
storage, dtype = serialized_storages[key]
storage._write_file(f, _should_read_directly(f), True, torch._utils._element_size(dtype))
def _save(obj, zip_file, pickle_module, pickle_protocol):
serialized_storages = {}
id_map: Dict[int, str] = {}
# Since loading storages that view the same data with different dtypes is
# not supported, we need to keep track of the dtype associated with each
# storage data_ptr and throw an error if the dtype is ever different.
# TODO: This feature could be added in the future
storage_dtypes: Dict[int, torch.dtype] = {}
def persistent_id(obj):
# FIXME: the docs say that persistent_id should only return a string
# but torch store returns tuples. This works only in the binary protocol
# see
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj):
if isinstance(obj, torch.storage.TypedStorage):
# TODO: Once we decide to break serialization FC, this case
# can be deleted
storage = obj._storage
storage_dtype = obj.dtype
storage_type_str = obj.pickle_storage_type()
storage_type = getattr(torch, storage_type_str)
storage_numel = obj.size()
else:
storage = obj
storage_dtype = torch.uint8
storage_type = normalize_storage_type(type(obj))
storage_numel = storage.nbytes()
# If storage is allocated, ensure that any other saved storages
# pointing to the same data all have the same dtype. If storage is
# not allocated, don't perform this check
if storage.data_ptr() != 0:
if storage.data_ptr() in storage_dtypes:
if storage_dtype != storage_dtypes[storage.data_ptr()]:
raise RuntimeError(
'Cannot save multiple tensors or storages that '
'view the same data as different types')
else:
storage_dtypes[storage.data_ptr()] = storage_dtype
storage_key = id_map.setdefault(storage._cdata, str(len(id_map)))
location = location_tag(storage)
serialized_storages[storage_key] = storage
return ('storage',
storage_type,
storage_key,
location,
storage_numel)
return None
# Write the pickle data for `obj`
data_buf = io.BytesIO()
pickler = pickle_module.Pickler(data_buf, protocol=pickle_protocol)
pickler.persistent_id = persistent_id
pickler.dump(obj)
data_value = data_buf.getvalue()
zip_file.write_record('data.pkl', data_value, len(data_value))
# Write each tensor to a file named tensor/the_tensor_key in the zip archive
for key in sorted(serialized_storages.keys()):
name = f'data/{key}'
storage = serialized_storages[key]
# given that we copy things around anyway, we might use storage.cpu()
# this means to that to get tensors serialized, you need to implement
# .cpu() on the underlying Storage
if storage.device.type != 'cpu':
storage = storage.cpu()
# Now that it is on the CPU we can directly copy it into the zip file
num_bytes = storage.nbytes()
zip_file.write_record(name, storage.data_ptr(), num_bytes)
def load(
f: FILE_LIKE,
map_location: MAP_LOCATION = None,
pickle_module: Any = None,
*,
weights_only: bool = False,
**pickle_load_args: Any
) -> Any:
# Reference: https://github.com/pytorch/pytorch/issues/54354
# The first line of this docstring overrides the one Sphinx generates for the
# documentation. We need it so that Sphinx doesn't leak `pickle`s path from
# the build environment (e.g. `<module 'pickle' from '/leaked/path').
"""load(f, map_location=None, pickle_module=pickle, *, weights_only=False, **pickle_load_args)
Loads an object saved with :func:`torch.save` from a file.
:func:`torch.load` uses Python's unpickling facilities but treats storages,
which underlie tensors, specially. They are first deserialized on the
CPU and are then moved to the device they were saved from. If this fails
(e.g. because the run time system doesn't have certain devices), an exception
is raised. However, storages can be dynamically remapped to an alternative
set of devices using the :attr:`map_location` argument.
If :attr:`map_location` is a callable, it will be called once for each serialized
storage with two arguments: storage and location. The storage argument
will be the initial deserialization of the storage, residing on the CPU.
Each serialized storage has a location tag associated with it which
identifies the device it was saved from, and this tag is the second
argument passed to :attr:`map_location`. The builtin location tags are ``'cpu'``
for CPU tensors and ``'cuda:device_id'`` (e.g. ``'cuda:2'``) for CUDA tensors.
:attr:`map_location` should return either ``None`` or a storage. If
:attr:`map_location` returns a storage, it will be used as the final deserialized
object, already moved to the right device. Otherwise, :func:`torch.load` will
fall back to the default behavior, as if :attr:`map_location` wasn't specified.
If :attr:`map_location` is a :class:`torch.device` object or a string containing
a device tag, it indicates the location where all tensors should be loaded.
Otherwise, if :attr:`map_location` is a dict, it will be used to remap location tags
appearing in the file (keys), to ones that specify where to put the
storages (values).
User extensions can register their own location tags and tagging and
deserialization methods using :func:`torch.serialization.register_package`.
Args:
f: a file-like object (has to implement :meth:`read`, :meth:`readline`, :meth:`tell`, and :meth:`seek`),
or a string or os.PathLike object containing a file name
map_location: a function, :class:`torch.device`, string or a dict specifying how to remap storage
locations
pickle_module: module used for unpickling metadata and objects (has to
match the :attr:`pickle_module` used to serialize file)
weights_only: Indicates whether unpickler should be restricted to
loading only tensors, primitive types and dictionaries
pickle_load_args: (Python 3 only) optional keyword arguments passed over to
:func:`pickle_module.load` and :func:`pickle_module.Unpickler`, e.g.,
:attr:`errors=...`.
.. warning::
:func:`torch.load()` unless `weights_only` parameter is set to `True`,
uses ``pickle`` module implicitly, which is known to be insecure.
It is possible to construct malicious pickle data which will execute arbitrary code
during unpickling. Never load data that could have come from an untrusted
source in an unsafe mode, or that could have been tampered with. **Only load data you trust**.
.. note::
When you call :func:`torch.load()` on a file which contains GPU tensors, those tensors
will be loaded to GPU by default. You can call ``torch.load(.., map_location='cpu')``
and then :meth:`load_state_dict` to avoid GPU RAM surge when loading a model checkpoint.
.. note::
By default, we decode byte strings as ``utf-8``. This is to avoid a common error
case ``UnicodeDecodeError: 'ascii' codec can't decode byte 0x...``
when loading files saved by Python 2 in Python 3. If this default
is incorrect, you may use an extra :attr:`encoding` keyword argument to specify how
these objects should be loaded, e.g., :attr:`encoding='latin1'` decodes them
to strings using ``latin1`` encoding, and :attr:`encoding='bytes'` keeps them
as byte arrays which can be decoded later with ``byte_array.decode(...)``.
Example:
>>> # xdoctest: +SKIP("undefined filepaths")
>>> torch.load('tensors.pt')
# Load all tensors onto the CPU
>>> torch.load('tensors.pt', map_location=torch.device('cpu'))
# Load all tensors onto the CPU, using a function
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage)
# Load all tensors onto GPU 1
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1))
# Map tensors from GPU 1 to GPU 0
>>> torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'})
# Load tensor from io.BytesIO object
>>> with open('tensor.pt', 'rb') as f:
... buffer = io.BytesIO(f.read())
>>> torch.load(buffer)
# Load a module with 'ascii' encoding for unpickling
>>> torch.load('module.pt', encoding='ascii')
"""
UNSAFE_MESSAGE = (
"Weights only load failed. Re-running `torch.load` with `weights_only` set to `False`"
" will likely succeed, but it can result in arbitrary code execution."
"Do it only if you get the file from a trusted source. WeightsUnpickler error: "
)
# Add ability to force safe only weight loads via environment variable
if os.getenv("TORCH_FORCE_WEIGHTS_ONLY_LOAD", "0").lower() in ['1', 'y', 'yes', 'true']:
weights_only = True
if weights_only:
if pickle_module is not None:
raise RuntimeError("Can not safely load weights when expiclit picke_module is specified")
else:
pickle_module = pickle
_check_dill_version(pickle_module)
if 'encoding' not in pickle_load_args.keys():
pickle_load_args['encoding'] = 'utf-8'
with _open_file_like(f, 'rb') as opened_file:
if _is_zipfile(opened_file):
# The zipfile reader is going to advance the current file position.
# If we want to actually tail call to torch.jit.load, we need to
# reset back to the original position.
orig_position = opened_file.tell()
with _open_zipfile_reader(opened_file) as opened_zipfile:
if _is_torchscript_zip(opened_zipfile):
warnings.warn("'torch.load' received a zip file that looks like a TorchScript archive"
" dispatching to 'torch.jit.load' (call 'torch.jit.load' directly to"
" silence this warning)", UserWarning)
opened_file.seek(orig_position)
return torch.jit.load(opened_file, map_location=map_location)
if weights_only:
try:
return _load(opened_zipfile, map_location, _weights_only_unpickler, **pickle_load_args)
except RuntimeError as e:
raise pickle.UnpicklingError(UNSAFE_MESSAGE + str(e)) from None
return _load(opened_zipfile, map_location, pickle_module, **pickle_load_args)
if weights_only:
try:
return _legacy_load(opened_file, map_location, _weights_only_unpickler, **pickle_load_args)
except RuntimeError as e:
raise pickle.UnpicklingError(UNSAFE_MESSAGE + str(e)) from None
return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
# Register pickling support for layout instances such as
# torch.sparse_coo, etc
def _get_layout(name):
"""Get layout extension object from its string representation.
"""
cache = _get_layout.cache # type: ignore[attr-defined]
if not cache:
for v in torch.__dict__.values():
if isinstance(v, torch.layout):
cache[str(v)] = v
return cache[name]
# There are yet not good way to type annotate function attributes https://github.com/python/mypy/issues/2087
_get_layout.cache = {} # type: ignore[attr-defined]
copyreg.pickle(torch.layout, lambda obj: (_get_layout, (str(obj),)))
def _legacy_load(f, map_location, pickle_module, **pickle_load_args):
deserialized_objects: Dict[int, Any] = {}
restore_location = _get_restore_location(map_location)
class UnpicklerWrapper(pickle_module.Unpickler): # type: ignore[name-defined]
def find_class(self, mod_name, name):
if type(name) is str and 'Storage' in name:
try:
return StorageType(name)
except KeyError:
pass
return super().find_class(mod_name, name)
def _check_container_source(container_type, source_file, original_source):
try:
current_source = ''.join(get_source_lines_and_file(container_type)[0])
except Exception: # saving the source is optional, so we can ignore any errors
warnings.warn("Couldn't retrieve source code for container of "
"type " + container_type.__name__ + ". It won't be checked "
"for correctness upon loading.")
return
if original_source != current_source:
if container_type.dump_patches:
file_name = container_type.__name__ + '.patch'
diff = difflib.unified_diff(current_source.split('\n'),
original_source.split('\n'),
source_file,
source_file, lineterm="")
lines = '\n'.join(diff)
try:
with open(file_name, 'a+') as f:
file_size = f.seek(0, 2)
f.seek(0)
if file_size == 0:
f.write(lines)
elif file_size != len(lines) or f.read() != lines:
raise IOError
msg = ("Saved a reverse patch to " + file_name + ". "
"Run `patch -p0 < " + file_name + "` to revert your "
"changes.")
except IOError:
msg = ("Tried to save a patch, but couldn't create a "
"writable file " + file_name + ". Make sure it "
"doesn't exist and your working directory is "
"writable.")
else:
msg = ("you can retrieve the original source code by "
"accessing the object's source attribute or set "
"`torch.nn.Module.dump_patches = True` and use the "
"patch tool to revert the changes.")
msg = f"source code of class '{torch.typename(container_type)}' has changed. {msg}"
warnings.warn(msg, SourceChangeWarning)
def legacy_load(f):
deserialized_objects: Dict[int, Any] = {}
def persistent_load(saved_id):
if isinstance(saved_id, tuple):
# Ignore containers that don't have any sources saved
if all(saved_id[1:]):
_check_container_source(*saved_id)
return saved_id[0]
return deserialized_objects[int(saved_id)]
with closing(tarfile.open(fileobj=f, mode='r:', format=tarfile.PAX_FORMAT)) as tar, \
mkdtemp() as tmpdir:
tar.extract('storages', path=tmpdir)
with open(os.path.join(tmpdir, 'storages'), 'rb', 0) as f:
num_storages = pickle_module.load(f, **pickle_load_args)
for i in range(num_storages):
args = pickle_module.load(f, **pickle_load_args)
key, location, storage_type = args
dtype = storage_type.dtype
obj = cast(Storage, torch.UntypedStorage)._new_with_file(f, torch._utils._element_size(dtype))
obj = restore_location(obj, location)
# TODO: Once we decide to break serialization FC, we can
# stop wrapping with TypedStorage
deserialized_objects[key] = torch.storage.TypedStorage(
wrap_storage=obj,
dtype=dtype)
storage_views = pickle_module.load(f, **pickle_load_args)
for target_cdata, root_cdata, offset, numel in storage_views:
root = deserialized_objects[root_cdata]
element_size = torch._utils._element_size(root.dtype)
offset_bytes = offset * element_size
# TODO: Once we decide to break serialization FC, we can
# stop wrapping with TypedStorage
deserialized_objects[target_cdata] = torch.storage.TypedStorage(
wrap_storage=root._storage[offset_bytes:offset_bytes + numel * element_size],
dtype=root.dtype)
tar.extract('tensors', path=tmpdir)
with open(os.path.join(tmpdir, 'tensors'), 'rb', 0) as f:
num_tensors = pickle_module.load(f, **pickle_load_args)
for _ in range(num_tensors):
args = pickle_module.load(f, **pickle_load_args)
key, storage_id, original_tensor_type = args
storage = deserialized_objects[storage_id]
ndim, = struct.unpack('<i', f.read(4))
# skip next 4 bytes; legacy encoding treated ndim as 8 bytes
f.read(4)
numel = struct.unpack(f'<{ndim}q', f.read(8 * ndim))
stride = struct.unpack(f'<{ndim}q', f.read(8 * ndim))
storage_offset, = struct.unpack('<q', f.read(8))
tensor = torch.tensor([], dtype=storage.dtype).set_(
storage._storage, storage_offset, numel, stride)
deserialized_objects[key] = tensor
pickle_file = tar.extractfile('pickle')
unpickler = UnpicklerWrapper(pickle_file, **pickle_load_args)
unpickler.persistent_load = persistent_load
result = unpickler.load()
return result
deserialized_objects = {}
def persistent_load(saved_id):
assert isinstance(saved_id, tuple)
typename = _maybe_decode_ascii(saved_id[0])
data = saved_id[1:]
if typename == 'module':
# Ignore containers that don't have any sources saved
if all(data[1:]):
_check_container_source(*data)
return data[0]
elif typename == 'storage':
storage_type, root_key, location, numel, view_metadata = data
location = _maybe_decode_ascii(location)
dtype = storage_type.dtype
nbytes = numel * torch._utils._element_size(dtype)
if root_key not in deserialized_objects:
obj = cast(Storage, torch.UntypedStorage(nbytes))
obj._torch_load_uninitialized = True
# TODO: Once we decide to break serialization FC, we can
# stop wrapping with TypedStorage
deserialized_objects[root_key] = torch.storage.TypedStorage(
wrap_storage=restore_location(obj, location),
dtype=dtype)
typed_storage = deserialized_objects[root_key]
if view_metadata is not None:
view_key, offset, view_size = view_metadata
offset_bytes = offset * torch._utils._element_size(dtype)
view_size_bytes = view_size * torch._utils._element_size(dtype)
if view_key not in deserialized_objects:
# TODO: Once we decide to break serialization FC, we can
# stop wrapping with TypedStorage
deserialized_objects[view_key] = torch.storage.TypedStorage(
wrap_storage=typed_storage._storage[offset_bytes:offset_bytes + view_size_bytes],
dtype=dtype)
res = deserialized_objects[view_key]
else:
res = typed_storage
return res
else:
raise RuntimeError("Unknown saved id type: %s" % saved_id[0])
_check_seekable(f)
f_should_read_directly = _should_read_directly(f)
if f_should_read_directly and f.tell() == 0:
# legacy_load requires that f has fileno()
# only if offset is zero we can attempt the legacy tar file loader
try:
return legacy_load(f)
except tarfile.TarError:
if _is_zipfile(f):
# .zip is used for torch.jit.save and will throw an un-pickling error here
raise RuntimeError(
f"{f.name} is a zip archive (did you mean to use torch.jit.load()?)") from None
# if not a tarfile, reset file offset and proceed
f.seek(0)
if not hasattr(f, 'readinto') and (3, 8, 0) <= sys.version_info < (3, 8, 2):
raise RuntimeError(
"torch.load does not work with file-like objects that do not implement readinto on Python 3.8.0 and 3.8.1. "
f"Received object of type \"{type(f)}\". Please update to Python 3.8.2 or newer to restore this "
"functionality.")
magic_number = pickle_module.load(f, **pickle_load_args)
if magic_number != MAGIC_NUMBER:
raise RuntimeError("Invalid magic number; corrupt file?")
protocol_version = pickle_module.load(f, **pickle_load_args)
if protocol_version != PROTOCOL_VERSION:
raise RuntimeError("Invalid protocol version: %s" % protocol_version)
_sys_info = pickle_module.load(f, **pickle_load_args)
unpickler = UnpicklerWrapper(f, **pickle_load_args)
unpickler.persistent_load = persistent_load
result = unpickler.load()
deserialized_storage_keys = pickle_module.load(f, **pickle_load_args)
offset = f.tell() if f_should_read_directly else None
for key in deserialized_storage_keys:
assert key in deserialized_objects
typed_storage = deserialized_objects[key]
typed_storage._storage._set_from_file(
f, offset, f_should_read_directly,
torch._utils._element_size(typed_storage.dtype))
if offset is not None:
offset = f.tell()
torch._utils._validate_loaded_sparse_tensors()
return result
def _maybe_decode_ascii(bytes_str: Union[bytes, str]) -> str:
# When using encoding='bytes' in Py3, some **internal** keys stored as
# strings in Py2 are loaded as bytes. This function decodes them with
# ascii encoding, one that Py3 uses by default.
#
# NOTE: This should only be used on internal keys (e.g., `typename` and
# `location` in `persistent_load` below!
if isinstance(bytes_str, bytes):
return bytes_str.decode('ascii')
return bytes_str
def _get_restore_location(map_location):
if map_location is None:
restore_location = default_restore_location
elif isinstance(map_location, dict):
def restore_location(storage, location):
location = map_location.get(location, location)
return default_restore_location(storage, location)
elif isinstance(map_location, _string_classes):
def restore_location(storage, location):
return default_restore_location(storage, map_location)
elif isinstance(map_location, torch.device):
def restore_location(storage, location):
return default_restore_location(storage, str(map_location))
else:
def restore_location(storage, location):
result = map_location(storage, location)
if result is None:
result = default_restore_location(storage, location)
return result
return restore_location
class StorageType():
def __init__(self, name):
self.dtype = _get_dtype_from_pickle_storage_type(name)
def __str__(self):
return f'StorageType(dtype={self.dtype})'
def _load(zip_file, map_location, pickle_module, pickle_file='data.pkl', **pickle_load_args):
restore_location = _get_restore_location(map_location)
loaded_storages = {}
def load_tensor(dtype, numel, key, location):
name = f'data/{key}'
storage = zip_file.get_storage_from_record(name, numel, torch.UntypedStorage).storage().untyped()
# TODO: Once we decide to break serialization FC, we can
# stop wrapping with TypedStorage
loaded_storages[key] = torch.storage.TypedStorage(
wrap_storage=restore_location(storage, location),
dtype=dtype)
def persistent_load(saved_id):
assert isinstance(saved_id, tuple)
typename = _maybe_decode_ascii(saved_id[0])
data = saved_id[1:]
assert typename == 'storage', \
f"Unknown typename for persistent_load, expected 'storage' but got '{typename}'"
storage_type, key, location, numel = data
if storage_type is torch.UntypedStorage:
dtype = torch.uint8
else:
dtype = storage_type.dtype
if key not in loaded_storages:
nbytes = numel * torch._utils._element_size(dtype)
load_tensor(dtype, nbytes, key, _maybe_decode_ascii(location))
return loaded_storages[key]
load_module_mapping: Dict[str, str] = {
# See https://github.com/pytorch/pytorch/pull/51633
'torch.tensor': 'torch._tensor'
}
# Need to subclass Unpickler instead of directly monkey-patching the find_class method
# because it's marked readonly in pickle.
# The type: ignore is because mypy can't statically determine the type of this class.
class UnpicklerWrapper(pickle_module.Unpickler): # type: ignore[name-defined]
# from https://stackoverflow.com/questions/13398462/unpickling-python-objects-with-a-changed-module-path/13405732
# Lets us override the imports that pickle uses when unpickling an object.
# This is useful for maintaining BC if we change a module path that tensor instantiation relies on.
def find_class(self, mod_name, name):
if type(name) is str and 'Storage' in name:
try:
return StorageType(name)
except KeyError:
pass
mod_name = load_module_mapping.get(mod_name, mod_name)
return super().find_class(mod_name, name)
# Load the data (which may in turn use `persistent_load` to load tensors)
data_file = io.BytesIO(zip_file.get_record(pickle_file))
unpickler = UnpicklerWrapper(data_file, **pickle_load_args)
unpickler.persistent_load = persistent_load
result = unpickler.load()
torch._utils._validate_loaded_sparse_tensors()
return result
def _is_torchscript_zip(zip_file):
return 'constants.pkl' in zip_file.get_all_records()
|