1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
# The Tensor classes are added to this module by python_tensor.cpp
from typing import Optional, Tuple, List, Union
import torch
from torch._C import _add_docstr, _sparse # type: ignore[attr-defined]
from torch import Tensor
# A workaround to support both TorchScript and MyPy:
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from torch.types import _dtype as DType
DimOrDims = Optional[Union[int, Tuple[int], List[int]]]
else:
# The JIT doesn't understand Union, nor torch.dtype here
DType = int
DimOrDims = Optional[Tuple[int]]
__all__ = [
'addmm',
'mm',
'sum',
'softmax',
'log_softmax',
]
addmm = _add_docstr(_sparse._sparse_addmm, r"""
sparse.addmm(mat, mat1, mat2, *, beta=1., alpha=1.) -> Tensor
This function does exact same thing as :func:`torch.addmm` in the forward,
except that it supports backward for sparse COO matrix :attr:`mat1`.
When :attr:`mat1` is a COO tensor it must have `sparse_dim = 2`.
When inputs are COO tensors, this function also supports backward for both inputs.
Supports both CSR and COO storage formats.
.. note::
This function doesn't support computing derivaties with respect to CSR matrices.
Args:
mat (Tensor): a dense matrix to be added
mat1 (Tensor): a sparse matrix to be multiplied
mat2 (Tensor): a dense matrix to be multiplied
beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`)
alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
""")
mm = _add_docstr(_sparse._sparse_mm, r"""
Performs a matrix multiplication of the sparse matrix :attr:`mat1`
and the (sparse or strided) matrix :attr:`mat2`. Similar to :func:`torch.mm`, if :attr:`mat1` is a
:math:`(n \times m)` tensor, :attr:`mat2` is a :math:`(m \times p)` tensor, out will be a
:math:`(n \times p)` tensor.
When :attr:`mat1` is a COO tensor it must have `sparse_dim = 2`.
When inputs are COO tensors, this function also supports backward for both inputs.
Supports both CSR and COO storage formats.
.. note::
This function doesn't support computing derivaties with respect to CSR matrices.
Args:
mat1 (Tensor): the first sparse matrix to be multiplied
mat2 (Tensor): the second matrix to be multiplied, which could be sparse or dense
Shape:
The format of the output tensor of this function follows:
- sparse x sparse -> sparse
- sparse x dense -> dense
Example::
>>> a = torch.randn(2, 3).to_sparse().requires_grad_(True)
>>> a
tensor(indices=tensor([[0, 0, 0, 1, 1, 1],
[0, 1, 2, 0, 1, 2]]),
values=tensor([ 1.5901, 0.0183, -0.6146, 1.8061, -0.0112, 0.6302]),
size=(2, 3), nnz=6, layout=torch.sparse_coo, requires_grad=True)
>>> b = torch.randn(3, 2, requires_grad=True)
>>> b
tensor([[-0.6479, 0.7874],
[-1.2056, 0.5641],
[-1.1716, -0.9923]], requires_grad=True)
>>> y = torch.sparse.mm(a, b)
>>> y
tensor([[-0.3323, 1.8723],
[-1.8951, 0.7904]], grad_fn=<SparseAddmmBackward>)
>>> y.sum().backward()
>>> a.grad
tensor(indices=tensor([[0, 0, 0, 1, 1, 1],
[0, 1, 2, 0, 1, 2]]),
values=tensor([ 0.1394, -0.6415, -2.1639, 0.1394, -0.6415, -2.1639]),
size=(2, 3), nnz=6, layout=torch.sparse_coo)
""")
sampled_addmm = _add_docstr(_sparse.sparse_sampled_addmm, r"""
sparse.sampled_addmm(input, mat1, mat2, *, beta=1., alpha=1., out=None) -> Tensor
Performs a matrix multiplication of the dense matrices :attr:`mat1` and :attr:`mat2` at the locations
specified by the sparsity pattern of :attr:`input`. The matrix :attr:`input` is added to the final result.
Mathematically this performs the following operation:
.. math::
\text{out} = \alpha\ (\text{mat1} \mathbin{@} \text{mat2})*\text{spy}(\text{input}) + \beta\ \text{input}
where :math:`\text{spy}(\text{input})` is the sparsity pattern matrix of :attr:`input`, :attr:`alpha`
and :attr:`beta` are the scaling factors.
:math:`\text{spy}(\text{input})` has value 1 at the positions where :attr:`input` has non-zero values, and 0 elsewhere.
.. note::
:attr:`input` must be a sparse CSR tensor. :attr:`mat1` and :attr:`mat2` must be dense tensors.
This function is implemented only for tensors on CUDA devices.
Args:
input (Tensor): a sparse CSR matrix of shape `(m, n)` to be added and used to compute
the sampled matrix multiplication
mat1 (Tensor): a dense matrix of shape `(m, k)` to be multiplied
mat2 (Tensor): a dense matrix of shape `(k, n)` to be multiplied
Keyword args:
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
Examples::
>>> input = torch.eye(3, device='cuda').to_sparse_csr()
>>> mat1 = torch.randn(3, 5, device='cuda')
>>> mat2 = torch.randn(5, 3, device='cuda')
>>> torch.sparse.sampled_addmm(input, mat1, mat2)
tensor(crow_indices=tensor([0, 1, 2, 3]),
col_indices=tensor([0, 1, 2]),
values=tensor([ 0.2847, -0.7805, -0.1900]), device='cuda:0',
size=(3, 3), nnz=3, layout=torch.sparse_csr)
>>> torch.sparse.sampled_addmm(input, mat1, mat2).to_dense()
tensor([[ 0.2847, 0.0000, 0.0000],
[ 0.0000, -0.7805, 0.0000],
[ 0.0000, 0.0000, -0.1900]], device='cuda:0')
>>> torch.sparse.sampled_addmm(input, mat1, mat2, beta=0.5, alpha=0.5)
tensor(crow_indices=tensor([0, 1, 2, 3]),
col_indices=tensor([0, 1, 2]),
values=tensor([ 0.1423, -0.3903, -0.0950]), device='cuda:0',
size=(3, 3), nnz=3, layout=torch.sparse_csr)
""")
def sum(input: Tensor, dim: DimOrDims = None,
dtype: Optional[DType] = None) -> Tensor:
r"""
Returns the sum of each row of the sparse tensor :attr:`input` in the given
dimensions :attr:`dim`. If :attr:`dim` is a list of dimensions,
reduce over all of them. When sum over all ``sparse_dim``, this method
returns a dense tensor instead of a sparse tensor.
All summed :attr:`dim` are squeezed (see :func:`torch.squeeze`), resulting an output
tensor having :attr:`dim` fewer dimensions than :attr:`input`.
During backward, only gradients at ``nnz`` locations of :attr:`input`
will propagate back. Note that the gradients of :attr:`input` is coalesced.
Args:
input (Tensor): the input sparse tensor
dim (int or tuple of ints): a dimension or a list of dimensions to reduce. Default: reduce
over all dims.
dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor.
Default: dtype of :attr:`input`.
Example::
>>> nnz = 3
>>> dims = [5, 5, 2, 3]
>>> I = torch.cat([torch.randint(0, dims[0], size=(nnz,)),
torch.randint(0, dims[1], size=(nnz,))], 0).reshape(2, nnz)
>>> V = torch.randn(nnz, dims[2], dims[3])
>>> size = torch.Size(dims)
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> S = torch.sparse_coo_tensor(I, V, size)
>>> S
tensor(indices=tensor([[2, 0, 3],
[2, 4, 1]]),
values=tensor([[[-0.6438, -1.6467, 1.4004],
[ 0.3411, 0.0918, -0.2312]],
[[ 0.5348, 0.0634, -2.0494],
[-0.7125, -1.0646, 2.1844]],
[[ 0.1276, 0.1874, -0.6334],
[-1.9682, -0.5340, 0.7483]]]),
size=(5, 5, 2, 3), nnz=3, layout=torch.sparse_coo)
# when sum over only part of sparse_dims, return a sparse tensor
>>> torch.sparse.sum(S, [1, 3])
tensor(indices=tensor([[0, 2, 3]]),
values=tensor([[-1.4512, 0.4073],
[-0.8901, 0.2017],
[-0.3183, -1.7539]]),
size=(5, 2), nnz=3, layout=torch.sparse_coo)
# when sum over all sparse dim, return a dense tensor
# with summed dims squeezed
>>> torch.sparse.sum(S, [0, 1, 3])
tensor([-2.6596, -1.1450])
"""
if dtype is None:
if dim is not None:
return torch._sparse_sum(input, dim)
else:
return torch._sparse_sum(input)
else:
if dim is not None:
return torch._sparse_sum(input, dim, dtype=dtype)
else:
return torch._sparse_sum(input, dtype=dtype)
softmax = _add_docstr(_sparse._sparse_softmax, r"""
sparse.softmax(input, dim, *, dtype=None) -> Tensor
Applies a softmax function.
Softmax is defined as:
:math:`\text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)}`
where :math:`i, j` run over sparse tensor indices and unspecified
entries are ignores. This is equivalent to defining unspecified
entries as negative infinity so that :math:`exp(x_k) = 0` when the
entry with index :math:`k` has not specified.
It is applied to all slices along `dim`, and will re-scale them so
that the elements lie in the range `[0, 1]` and sum to 1.
Args:
input (Tensor): input
dim (int): A dimension along which softmax will be computed.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. This is useful for preventing data type
overflows. Default: None
""")
log_softmax = _add_docstr(_sparse._sparse_log_softmax, r"""
sparse.log_softmax(input, dim, *, dtype=None) -> Tensor
Applies a softmax function followed by logarithm.
See :class:`~torch.sparse.softmax` for more details.
Args:
input (Tensor): input
dim (int): A dimension along which softmax will be computed.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. This is useful for preventing data type
overflows. Default: None
""")
spdiags = _add_docstr(
_sparse._spdiags,
r"""
sparse.spdiags(diagonals, offsets, shape, layout=None) -> Tensor
Creates a sparse 2D tensor by placing the values from rows of
:attr:`diagonals` along specified diagonals of the output
The :attr:`offsets` tensor controls which diagonals are set.
- If :attr:`offsets[i]` = 0, it is the main diagonal
- If :attr:`offsets[i]` < 0, it is below the main diagonal
- If :attr:`offsets[i]` > 0, it is above the main diagonal
The number of rows in :attr:`diagonals` must match the length of :attr:`offsets`,
and an offset may not be repeated.
Args:
diagonals (Tensor): Matrix storing diagonals row-wise
offsets (Tensor): The diagonals to be set, stored as a vector
shape (2-tuple of ints): The desired shape of the result
Keyword args:
layout (:class:`torch.layout`, optional): The desired layout of the
returned tensor. ``torch.sparse_coo``, ``torch.sparse_csc`` and ``torch.sparse_csr``
are supported. Default: ``torch.sparse_coo``
Examples:
Set the main and first two lower diagonals of a matrix::
>>> diags = torch.arange(9).reshape(3, 3)
>>> diags
tensor([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> s = torch.sparse.spdiags(diags, torch.tensor([0, -1, -2]), (3, 3))
>>> s
tensor(indices=tensor([[0, 1, 2, 1, 2, 2],
[0, 1, 2, 0, 1, 0]]),
values=tensor([0, 1, 2, 3, 4, 6]),
size=(3, 3), nnz=6, layout=torch.sparse_coo)
>>> s.to_dense()
tensor([[0, 0, 0],
[3, 1, 0],
[6, 4, 2]])
Change the output layout::
>>> diags = torch.arange(9).reshape(3, 3)
>>> diags
tensor([[0, 1, 2],[3, 4, 5], [6, 7, 8])
>>> s = torch.sparse.spdiags(diags, torch.tensor([0, -1, -2]), (3, 3), layout=torch.sparse_csr)
>>> s
tensor(crow_indices=tensor([0, 1, 3, 6]),
col_indices=tensor([0, 0, 1, 0, 1, 2]),
values=tensor([0, 3, 1, 6, 4, 2]), size=(3, 3), nnz=6,
layout=torch.sparse_csr)
>>> s.to_dense()
tensor([[0, 0, 0],
[3, 1, 0],
[6, 4, 2]])
Set partial diagonals of a large output::
>>> diags = torch.tensor([[1, 2], [3, 4]])
>>> offsets = torch.tensor([0, -1])
>>> torch.sparse.spdiags(diags, offsets, (5, 5)).to_dense()
tensor([[1, 0, 0, 0, 0],
[3, 2, 0, 0, 0],
[0, 4, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])
.. note::
When setting the values along a given diagonal the index into the diagonal
and the index into the row of :attr:`diagonals` is taken as the
column index in the output. This has the effect that when setting a diagonal
with a positive offset `k` the first value along that diagonal will be
the value in position `k` of the row of :attr:`diagonals`
Specifying a positive offset::
>>> diags = torch.tensor([[1, 2, 3], [1, 2, 3], [1, 2, 3]])
>>> torch.sparse.spdiags(diags, torch.tensor([0, 1, 2]), (5, 5)).to_dense()
tensor([[1, 2, 3, 0, 0],
[0, 2, 3, 0, 0],
[0, 0, 3, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])
""")
|