1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
|
import faulthandler
import logging
import multiprocessing
import os
import sys
import tempfile
import threading
import subprocess
import time
import traceback
import types
import unittest
from contextlib import contextmanager
from dataclasses import dataclass
from datetime import timedelta
from enum import Enum
from functools import (
partial,
reduce,
wraps
)
from io import StringIO
from typing import NamedTuple, Optional, Union
import torch
import torch.cuda.nccl
import torch.distributed as c10d
from torch.testing._internal.common_utils import (
TestCase,
TEST_WITH_ROCM,
TEST_WITH_TSAN,
FILE_SCHEMA,
find_free_port,
retry_on_connect_failures,
IS_SANDCASTLE,
sandcastle_skip_if,
sandcastle_skip,
)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class TestSkip(NamedTuple):
exit_code: int
message: str
TEST_SKIPS = {
"backend_unavailable": TestSkip(
72, "Skipped because distributed backend is not available."
),
"small_worldsize": TestSkip(73, "Skipped due to small world size."),
"odd_worldsize": TestSkip(87, "Skipped due to odd world size."),
"no_cuda": TestSkip(74, "CUDA is not available."),
"multi-gpu-1": TestSkip(75, "Need at least 1 CUDA device"),
"multi-gpu-2": TestSkip(77, "Need at least 2 CUDA devices"),
"multi-gpu-3": TestSkip(80, "Need at least 3 CUDA devices"),
"multi-gpu-4": TestSkip(81, "Need at least 4 CUDA devices"),
"multi-gpu-5": TestSkip(82, "Need at least 5 CUDA devices"),
"multi-gpu-6": TestSkip(83, "Need at least 6 CUDA devices"),
"multi-gpu-7": TestSkip(84, "Need at least 7 CUDA devices"),
"multi-gpu-8": TestSkip(85, "Need at least 8 CUDA devices"),
"nccl": TestSkip(76, "c10d not compiled with NCCL support"),
"skipIfRocm": TestSkip(78, "Test skipped for ROCm"),
"no_peer_access": TestSkip(79, "Test skipped because no GPU peer access"),
"generic": TestSkip(
86, "Test skipped at subprocess level, look at subprocess log for skip reason"
),
}
@dataclass
class DistTestCases:
# Backends that do not support a specific collective
skip_collective = {}
skip_collective["allgather_coalesced"] = {"nccl", "mpi", "ucc"}
skip_collective["reduce"] = set()
skip_collective["sendrecv anysource"] = {"nccl", "ucc"}
skip_collective["cpu barrier"] = {"nccl", "ucc"}
# Sets showing that something is implemented
backend_feature = {}
backend_feature["gpu"] = {"nccl", "gloo"} # TODO(ucc): add sequence number support to ucc and enable it here
backend_feature["cuda"] = {"nccl", "gloo", "ucc"}
backend_feature["ddp"] = {"nccl", "gloo", "ucc"}
backend_feature["subgroup"] = {"nccl", "gloo", "ucc"}
backend_feature["plugin"] = set()
def skip_if_no_gpu(func):
"""Skips if the world size exceeds the number of GPUs, ensuring that if the
test is run, each rank has its own GPU via ``torch.cuda.device(rank)``."""
@wraps(func)
def wrapper(*args, **kwargs):
if not torch.cuda.is_available():
sys.exit(TEST_SKIPS["no_cuda"].exit_code)
world_size = int(os.environ["WORLD_SIZE"])
if torch.cuda.device_count() < world_size:
sys.exit(TEST_SKIPS[f"multi-gpu-{world_size}"].exit_code)
return func(*args, **kwargs)
return wrapper
def skip_if_small_worldsize(func):
@wraps(func)
def wrapper(*args, **kwargs):
if (os.environ["BACKEND"] != "mpi") and int(os.environ["WORLD_SIZE"]) <= 2:
sys.exit(TEST_SKIPS["small_worldsize"].exit_code)
return func(*args, **kwargs)
return wrapper
def skip_if_odd_worldsize(func):
@wraps(func)
def wrapper(*args, **kwargs):
if (os.environ["BACKEND"] != "mpi") and int(os.environ["WORLD_SIZE"]) % 2 == 1:
sys.exit(TEST_SKIPS["odd_worldsize"].exit_code)
return func(*args, **kwargs)
return wrapper
def require_n_gpus_for_nccl_backend(n, backend):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
if backend == "nccl" and torch.cuda.device_count() < n:
sys.exit(TEST_SKIPS[f"multi-gpu-{n}"].exit_code)
else:
return func(*args, **kwargs)
return wrapper
return decorator
def skip_if_lt_x_gpu(x):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
if torch.cuda.is_available() and torch.cuda.device_count() >= x:
return func(*args, **kwargs)
sys.exit(TEST_SKIPS[f"multi-gpu-{x}"].exit_code)
return wrapper
return decorator
# This decorator helps avoiding initializing cuda while testing other backends
def nccl_skip_if_lt_x_gpu(backend, x):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
if backend != "nccl":
return func(*args, **kwargs)
if torch.cuda.is_available() and torch.cuda.device_count() >= x:
return func(*args, **kwargs)
sys.exit(TEST_SKIPS[f"multi-gpu-{x}"].exit_code)
return wrapper
return decorator
def verify_ddp_error_logged(model_DDP, err_substr):
# Verify error was logged in ddp_logging_data.
ddp_logging_data = model_DDP._get_ddp_logging_data()
assert "iteration" in ddp_logging_data
assert "has_error" in ddp_logging_data
assert "error" in ddp_logging_data
logging_err = ddp_logging_data["error"]
# Remove C++ stacktrace if needed.
actual = (
err_substr if err_substr.find("\nException raised from ") == -1
else err_substr.split("\nException raised from ")[0]
)
assert actual in logging_err, f"Did not find expected {actual} in ddp logging data error: {logging_err}"
def with_nccl_blocking_wait(func):
"""
Convenience decorator to set/unset NCCL_BLOCKING_WAIT flag. Note that use of
this decorator will override the setting of NCCL_ASYNC_ERROR_HANDLING for
the particular test. After the test, both NCCL_BLOCKING_WAIT and
NCCL_ASYNC_ERROR_HANDLING will be restored to their original values.
"""
@wraps(func)
def wrapper(*args, **kwargs):
# Save and unset NCCL_ASYNC_ERROR_HANDLING
try:
cached_nccl_async_error_handling: Union[str, None] = os.environ[
"NCCL_ASYNC_ERROR_HANDLING"
]
del os.environ["NCCL_ASYNC_ERROR_HANDLING"]
except KeyError:
# NCCL_ASYNC_ERROR_HANDLING was unset
cached_nccl_async_error_handling = None
# Save val of NCCL_BLOCKING_WAIT and set it.
try:
cached_nccl_blocking_wait: Union[str, None] = os.environ[
"NCCL_BLOCKING_WAIT"
]
except KeyError:
cached_nccl_blocking_wait = None
finally:
os.environ["NCCL_BLOCKING_WAIT"] = "1"
try:
ret = func(*args, **kwargs)
return ret
finally:
# restore old values.
if cached_nccl_async_error_handling is not None:
os.environ[
"NCCL_ASYNC_ERROR_HANDLING"
] = cached_nccl_async_error_handling
if cached_nccl_blocking_wait is not None:
os.environ["NCCL_BLOCKING_WAIT"] = cached_nccl_blocking_wait
return wrapper
def with_dist_debug_levels(levels):
"""
Runs a test for each distributed debug level specified in levels.
"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
old_level = os.environ.get("TORCH_DISTRIBUTED_DEBUG", None)
for level in levels:
os.environ["TORCH_DISTRIBUTED_DEBUG"] = level
c10d.set_debug_level_from_env()
ret = func(*args, **kwargs)
c10d.barrier()
if old_level is not None:
os.environ["TORCH_DISTRIBUTED_DEBUG"] = old_level
# Only returns test return for last test, but since these are
# unittests the return value is not really used and earlier tests
# would've raised had they failed.
return ret
return wrapper
return decorator
def requires_gloo():
return sandcastle_skip_if(
not c10d.is_gloo_available(),
"c10d was not compiled with the Gloo backend",
)
def requires_nccl_version(version, msg):
if not c10d.is_nccl_available():
return sandcastle_skip(
"c10d was not compiled with the NCCL backend",
)
else:
return sandcastle_skip_if(
torch.cuda.nccl.version() < version,
"Requires NCCL version greater than or equal to: {}, found: {}, reason: {}".format(
version, torch.cuda.nccl.version(), msg
),
)
def requires_nccl():
return sandcastle_skip_if(
not c10d.is_nccl_available(),
"c10d was not compiled with the NCCL backend",
)
def requires_mpi():
return sandcastle_skip_if(
not c10d.is_mpi_available(),
"c10d was not compiled with the MPI backend",
)
def skip_if_rocm(func):
"""Skips a test for ROCm"""
func.skip_if_rocm = True
@wraps(func)
def wrapper(*args, **kwargs):
if not TEST_WITH_ROCM:
return func(*args, **kwargs)
sys.exit(TEST_SKIPS["skipIfRocm"].exit_code)
return wrapper
def skip_if_win32():
return sandcastle_skip_if(
sys.platform == 'win32',
"This unit test case is not supportted on Windows platform",
)
@retry_on_connect_failures
def create_tcp_store(
addr="localhost",
world_size=1,
is_master=True,
timeout=timedelta(minutes=5),
wait_for_workers=True,
jit_class=False,
):
"""
Creates a TCP store. Retries if the chosen port is already in use.
"""
port = find_free_port()
if jit_class:
timeout_millisecond = int(timeout / timedelta(milliseconds=1))
return torch.classes.dist_c10d.TCPStore(
addr, port, world_size, is_master, timeout_millisecond
)
else:
return c10d.TCPStore(
addr, port, world_size, is_master, wait_for_workers=wait_for_workers
)
if TEST_WITH_TSAN:
# TSAN runs much slower.
TIMEOUT_DEFAULT = 500
else:
TIMEOUT_DEFAULT = int(os.getenv('DISTRIBUTED_TESTS_DEFAULT_TIMEOUT', '300'))
TIMEOUT_OVERRIDE = {"test_ddp_uneven_inputs": 400}
# https://github.com/pytorch/pytorch/issues/75665
if TEST_WITH_ROCM:
TIMEOUT_OVERRIDE["test_join_kwargs"] = 200
def create_device(interface=None):
if sys.platform == "win32" or interface is None:
return c10d.ProcessGroupGloo.create_device(hostname="127.0.0.1")
else:
return c10d.ProcessGroupGloo.create_device(interface=interface)
def get_timeout(test_id) -> int:
return TIMEOUT_OVERRIDE.get(test_id.split(".")[-1], TIMEOUT_DEFAULT)
@contextmanager
def captured_output():
new_out, new_err = StringIO(), StringIO()
old_out, old_err = sys.stdout, sys.stderr
try:
sys.stdout, sys.stderr = new_out, new_err
yield sys.stdout, sys.stderr
finally:
sys.stdout, sys.stderr = old_out, old_err
def simple_sparse_reduce_tests(rank: int, world_size: int, num_inputs: int = 1):
"""
Generate a number of basic test cases for sparse reduction.
These cover tensors with a varying number of sparse dimensions and a varying
number of dense dimensions. The only reduction operation we support is sum.
"""
def generate(rank: int, world_size: int, sparse_dims: int = 1, dense_dims: int = 0):
# First sparse dimension is [0..rank].
# Subsequent dimensions are always 0, so we know there is
# a non-empty intersection between any two sparse tensors.
indices = torch.reshape(torch.arange(rank + 1), (1, rank + 1))
shape = [world_size] + [2 for _ in range(dense_dims)]
for _ in range(sparse_dims - 1):
indices = torch.cat((indices, torch.zeros(1, rank + 1)))
shape.append(world_size)
values = torch.ones([rank + 1] + [2 for _ in range(dense_dims)])
return torch.sparse_coo_tensor(indices, values, shape)
def compute_sum(fn, world_size: int):
return reduce(
lambda a, b: a + b, [fn(rank, world_size) for rank in range(world_size)]
)
return [
(
[
fn(num_inputs * rank + i, num_inputs * world_size)
for i in range(num_inputs)
],
[compute_sum(fn, num_inputs * world_size) for i in range(num_inputs)],
)
for fn in [
partial(generate, sparse_dims=1),
partial(generate, sparse_dims=2),
partial(generate, sparse_dims=3),
partial(generate, dense_dims=1),
partial(generate, dense_dims=2),
partial(generate, dense_dims=3),
]
]
# HELPER FOR MULTIGPU TESTS
def init_multigpu_helper(world_size: int, backend: str):
"""Multigpu tests are designed to simulate the multi nodes with multi
GPUs on each node. Nccl backend requires equal #GPUs in each process.
On a single node, all visible GPUs are evenly
divided to subsets, each process only uses a subset.
"""
nGPUs = torch.cuda.device_count()
visible_devices = range(nGPUs)
if backend == "nccl":
# This is a hack for a known NCCL issue using multiprocess
# in conjunction with multiple threads to manage different GPUs which
# may cause ncclCommInitRank to fail.
# http://docs.nvidia.com/deeplearning/sdk/nccl-release-notes/rel_2.1.4.html#rel_2.1.4
# It slows down the performance of collective operations.
# Without this setting NCCL might throw unhandled error.
os.environ["NCCL_MAX_NRINGS"] = "1"
# If rank is less than or equal to number of available GPU's
# then each rank can be mapped to corresponding GPU.
nGPUs_per_process = 1
if world_size > nGPUs:
nGPUs_per_process = nGPUs // world_size
rank_to_GPU = {
i: list(
visible_devices[i * nGPUs_per_process : (i + 1) * nGPUs_per_process]
)
for i in range(world_size)
}
return rank_to_GPU
tmp_dir: Optional[tempfile.TemporaryDirectory] = None
def initialize_temp_directories(init_method: Optional[str] = None) -> None:
global tmp_dir
tmp_dir = tempfile.TemporaryDirectory()
os.environ["TEMP_DIR"] = tmp_dir.name
os.mkdir(os.path.join(tmp_dir.name, "barrier"))
os.mkdir(os.path.join(tmp_dir.name, "test_dir"))
init_dir_path = os.path.join(tmp_dir.name, "init_dir")
os.mkdir(init_dir_path)
# Set init method if specified.
if init_method is not None:
os.environ["INIT_METHOD"] = init_method
else:
os.environ["INIT_METHOD"] = FILE_SCHEMA + os.path.join(
init_dir_path, "shared_init_file"
)
def cleanup_temp_dir() -> None:
if tmp_dir is not None:
tmp_dir.cleanup()
# [How does MultiProcessTestCase work?]
# Each MultiProcessTestCase instance uses 1 + `world_size()` processes, by
# default `world_size()` returns 4. Let's take `test_rpc_spawn.py` as an
# example which inherits from this class. Its `Setup()` methods calls into
# `MultiProcessTestCase._spawn_processes()` which spawns `world_size()`
# subprocesses. During the spawn, the main process passes the test name to
# subprocesses, and the name is acquired from self.id(). The subprocesses
# then use the provided test function name to retrieve the function attribute
# from the test instance and run it. The main process simply waits for all
# subprocesses to join.
class MultiProcessTestCase(TestCase):
MAIN_PROCESS_RANK = -1
# This exit code is used to indicate that the test code had an error and
# exited abnormally. There are certain tests that might use sys.exit() to
# simulate failures and in those cases, we can't have an exit code of 0,
# but we still want to ensure we didn't run into any other errors.
TEST_ERROR_EXIT_CODE = 10
# do not early terminate for distributed tests.
def _should_stop_test_suite(self) -> bool:
return False
@property
def world_size(self) -> int:
return 4
def join_or_run(self, fn):
@wraps(fn)
def wrapper(self):
if self.rank == self.MAIN_PROCESS_RANK:
self._join_processes(fn)
else:
fn()
return types.MethodType(wrapper, self)
# The main process spawns N subprocesses that run the test.
# Constructor patches current instance test method to
# assume the role of the main process and join its subprocesses,
# or run the underlying test function.
def __init__(self, method_name: str = "runTest") -> None:
super().__init__(method_name)
fn = getattr(self, method_name)
setattr(self, method_name, self.join_or_run(fn))
def setUp(self) -> None:
super().setUp()
self.skip_return_code_checks = [] # type: ignore[var-annotated]
self.processes = [] # type: ignore[var-annotated]
self.rank = self.MAIN_PROCESS_RANK
self.file_name = tempfile.NamedTemporaryFile(delete=False).name
# pid to pipe consisting of error message from process.
self.pid_to_pipe = {} # type: ignore[var-annotated]
def tearDown(self) -> None:
super().tearDown()
for p in self.processes:
p.terminate()
# Each Process instance holds a few open file descriptors. The unittest
# runner creates a new TestCase instance for each test method and keeps
# it alive until the end of the entire suite. We must thus reset the
# processes to prevent an effective file descriptor leak.
self.processes = []
def _current_test_name(self) -> str:
# self.id() == e.g. '__main__.TestDistributed.TestAdditive.test_get_rank'
return self.id().split(".")[-1]
def _start_processes(self, proc) -> None:
self.processes = []
for rank in range(int(self.world_size)):
parent_conn, child_conn = torch.multiprocessing.Pipe()
process = proc(
target=self.__class__._run,
name="process " + str(rank),
args=(rank, self._current_test_name(), self.file_name, child_conn),
)
process.start()
logger.info(f"Started process {rank} with pid {process.pid}")
self.pid_to_pipe[process.pid] = parent_conn
self.processes.append(process)
def _spawn_processes(self) -> None:
proc = torch.multiprocessing.get_context("spawn").Process
self._start_processes(proc)
class Event(Enum):
GET_TRACEBACK = 1
@staticmethod
def _event_listener(parent_pipe, signal_pipe, rank: int):
logger.info(f"Starting event listener thread for rank {rank}")
while True:
ready_pipes = multiprocessing.connection.wait([parent_pipe, signal_pipe])
if parent_pipe in ready_pipes:
if parent_pipe.closed:
logger.info(
f"Pipe closed for process {rank}, stopping event listener thread"
)
return
event = parent_pipe.recv()
logger.info(f"Received event {event} on process {rank}")
if event == MultiProcessTestCase.Event.GET_TRACEBACK:
# Return traceback to the parent process.
with tempfile.NamedTemporaryFile(mode="r+") as tmp_file:
faulthandler.dump_traceback(tmp_file)
# Flush buffers and seek to read from the beginning
tmp_file.flush()
tmp_file.seek(0)
parent_pipe.send(tmp_file.read())
logger.info(f"Process {rank} sent traceback")
if signal_pipe in ready_pipes:
return
@classmethod
def _run(cls, rank: int, test_name: str, file_name: str, parent_pipe) -> None:
# Enable DDP + ReplicatedTensor
from torch.nn.parallel._replicated_tensor_ddp_utils import _set_ddp_with_replicated_tensor
_set_ddp_with_replicated_tensor(True)
self = cls(test_name)
self.rank = rank
self.file_name = file_name
self.run_test(test_name, parent_pipe)
def run_test(self, test_name: str, parent_pipe) -> None:
# Start event listener thread.
signal_recv_pipe, signal_send_pipe = torch.multiprocessing.Pipe(duplex=False)
event_listener_thread = threading.Thread(
target=MultiProcessTestCase._event_listener,
args=(parent_pipe, signal_recv_pipe, self.rank),
daemon=True,
)
event_listener_thread.start()
if sys.platform != "win32" and sys.platform != "darwin":
# Register signal handler to dump stack traces on FATALs.
# Windows and MacOS do not support the signal handlers.
torch._C._set_print_stack_traces_on_fatal_signal(True)
# Show full C++ stacktraces when a Python error originating from C++ is raised.
os.environ["TORCH_SHOW_CPP_STACKTRACES"] = "1"
# self.id() == e.g. '__main__.TestDistributed.test_get_rank'
# We're retrieving a corresponding test and executing it.
try:
getattr(self, test_name)()
except unittest.SkipTest as se:
logger.info(
f"Process {self.rank} skipping test {test_name} for following reason: {str(se)}"
)
sys.exit(TEST_SKIPS["generic"].exit_code)
except Exception as e:
logger.error(
f"Caught exception: \n{traceback.format_exc()} exiting "
f"process {self.rank} with exit code: {MultiProcessTestCase.TEST_ERROR_EXIT_CODE}"
)
# Send error to parent process.
parent_pipe.send(traceback.format_exc())
sys.exit(MultiProcessTestCase.TEST_ERROR_EXIT_CODE)
finally:
if signal_send_pipe is not None:
signal_send_pipe.send(None)
assert event_listener_thread is not None
event_listener_thread.join()
# Close pipe after done with test.
parent_pipe.close()
def _get_timedout_process_traceback(self) -> None:
pipes = []
for i, process in enumerate(self.processes):
if process.exitcode is None:
pipe = self.pid_to_pipe[process.pid]
try:
pipe.send(MultiProcessTestCase.Event.GET_TRACEBACK)
pipes.append((i, pipe))
except ConnectionError as e:
logger.error(
f"Encountered error while trying to get traceback for process {i}: {e}"
)
# Wait for results.
for rank, pipe in pipes:
try:
# Wait for traceback
if pipe.poll(5):
if pipe.closed:
logger.info(
f"Pipe closed for process {rank}, cannot retrieve traceback"
)
continue
traceback = pipe.recv()
logger.error(
f"Process {rank} timed out with traceback: \n\n{traceback}"
)
else:
logger.error(
f"Could not retrieve traceback for timed out process: {rank}"
)
except ConnectionError as e:
logger.error(
f"Encountered error while trying to get traceback for process {rank}: {e}"
)
def _join_processes(self, fn) -> None:
timeout = get_timeout(self.id())
start_time = time.time()
subprocess_error = False
try:
while True:
# check to see if any subprocess exited with an error early.
for (i, p) in enumerate(self.processes):
# This is the exit code processes exit with if they
# encountered an exception.
if p.exitcode == MultiProcessTestCase.TEST_ERROR_EXIT_CODE:
print(
f"Process {i} terminated with exit code {p.exitcode}, terminating remaining processes."
)
active_children = torch.multiprocessing.active_children()
for ac in active_children:
ac.terminate()
subprocess_error = True
break
if subprocess_error:
break
# All processes have joined cleanly if they all a valid exitcode
if all([p.exitcode is not None for p in self.processes]):
break
# Check if we should time out the test. If so, we terminate each process.
elapsed = time.time() - start_time
if elapsed > timeout:
self._get_timedout_process_traceback()
print(
f"Timing out after {timeout} seconds and killing subprocesses."
)
for p in self.processes:
p.terminate()
break
# Sleep to avoid excessive busy polling.
time.sleep(0.1)
elapsed_time = time.time() - start_time
if fn in self.skip_return_code_checks:
self._check_no_test_errors(elapsed_time)
else:
self._check_return_codes(elapsed_time)
finally:
# Close all pipes
for pid, pipe in self.pid_to_pipe.items():
pipe.close()
def _check_no_test_errors(self, elapsed_time) -> None:
"""
Checks that we didn't have any errors thrown in the child processes.
"""
for i, p in enumerate(self.processes):
if p.exitcode is None:
raise RuntimeError(
"Process {} timed out after {} seconds".format(i, elapsed_time)
)
self.assertNotEqual(self.TEST_ERROR_EXIT_CODE, p.exitcode)
def _check_return_codes(self, elapsed_time) -> None:
"""
Checks that the return codes of all spawned processes match, and skips
tests if they returned a return code indicating a skipping condition.
"""
first_process = self.processes[0]
# first, we check if there are errors in actual processes
# (via TEST_ERROR_EXIT CODE), and raise an exception for those.
# the reason we do this is to attempt to raise a more helpful error
# message than "Process x terminated/timed out"
# TODO: we should pipe the exception of the failed subprocess here.
# Currently, the actual exception is displayed as a logging output.
errored_processes = [
(i, p)
for i, p in enumerate(self.processes)
if p.exitcode == MultiProcessTestCase.TEST_ERROR_EXIT_CODE
]
if errored_processes:
error = ""
for i, process in errored_processes:
# Get error from pipe.
error_message = self.pid_to_pipe[process.pid].recv()
error += (
"Process {} exited with error code {} and exception:\n{}\n".format(
i, MultiProcessTestCase.TEST_ERROR_EXIT_CODE, error_message
)
)
raise RuntimeError(error)
# If no process exited uncleanly, we check for timeouts, and then ensure
# each process exited cleanly.
for i, p in enumerate(self.processes):
if p.exitcode is None:
raise RuntimeError(
"Process {} terminated or timed out after {} seconds".format(
i, elapsed_time
)
)
self.assertEqual(
p.exitcode,
first_process.exitcode,
msg="Expect process {} exit code to match Process 0 exit code of {}, but got {}".format(
i, first_process.exitcode, p.exitcode
),
)
for skip in TEST_SKIPS.values():
if first_process.exitcode == skip.exit_code:
if IS_SANDCASTLE:
# Don't use unittest.skip to skip the test on sandcastle
# since it creates tasks for skipped tests assuming there
# is some follow-up needed. Instead just "pass" the test
# with an appropriate message.
logger.info(
f"Skipping {self.id()} on sandcastle for the following reason: {skip.message}"
)
return
else:
raise unittest.SkipTest(skip.message)
self.assertEqual(
first_process.exitcode,
0,
msg="Expected zero exit code but got {} for pid: {}".format(first_process.exitcode, first_process.pid)
)
@property
def is_master(self) -> bool:
return self.rank == 0
# Cannot use functools.cache as it requires python 3.9
EFA_PROBE_RESULT = None
def has_efa() -> bool:
"""
If shell command `fi_info -p efa -t FI_EP_RDM` returns exit code 0 then we assume that the machine has
Libfabric EFA interfaces and EFA software components installed,
see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html.
"""
global EFA_PROBE_RESULT
if EFA_PROBE_RESULT is not None:
return EFA_PROBE_RESULT
try:
EFA_PROBE_RESULT = subprocess.run(["fi_info", "-p", "efa", "-t", "FI_EP_RDM"]).returncode == 0
except FileNotFoundError:
EFA_PROBE_RESULT = False
return EFA_PROBE_RESULT
def tp_transports():
"""
If the machine has Libfabric EFA interfaces and EFA software components installed it may cause
'RuntimeError: In operator() at tensorpipe/common/ibv.h:172 "": Operation not supported' if tensorpipe
uses InfiniBand transport, so we exclude it from tensorpipe transports,
see https://github.com/pytorch/pytorch/issues/73885 and https://github.com/pytorch/pytorch/issues/65022
"""
return ["shm", "uv"] if has_efa() else None
|