1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
# Torch
import torch
import torch.cuda
import torch.jit
import torch.jit._logging
import torch.jit.frontend
import torch.jit.quantized
# Testing utils
from torch.testing._internal.common_dtype import floating_and_complex_types_and
from torch.testing._internal.common_utils import TestCase, \
freeze_rng_state, TemporaryFileName, enable_profiling_mode_for_profiling_tests, is_iterable_of_tensors
from torch.testing._internal.common_utils import enable_profiling_mode # noqa: F401
# Standard library
from itertools import chain
from typing import List, Union
from torch._C import TensorType
import io
def check_output_types(self, func, ref_outputs, args, kwargs):
graph = getattr(func, 'last_graph', None)
types = [o.type() for o in graph.outputs()]
self.assertTrue(len(types) == 1)
t = types[0]
torch._C._jit_assert_is_instance(ref_outputs, t)
# Test names in this set are only checked for a single derivative
nn_functional_single_grad = frozenset('test_nn_' + name for name in [
'pdist',
'multilabel_margin_loss',
'max_unpool3d',
'multi_margin_loss',
'binary_cross_entropy',
'binary_cross_entropy_size_average',
'ctc_loss',
'grid_sample',
])
def check_against_reference(self, func, reference_func, output_func, args, kwargs=None,
allow_unused=True, check_types=True, no_grad=False, no_gradgrad=False):
"""Verifies a function performs identically to some reference implementation.
Commonly, this is used to verify that a JIT implementation
(output_func) matches the behavior of the eager implementation
(reference_func).
"""
kwargs = kwargs if kwargs else {}
def allSum(vs):
if isinstance(vs, torch.Tensor):
vs = (vs,)
return sum((i + 1) * v.sum()
for i, v in enumerate(vs)
if v is not None and v.dtype in floating_and_complex_types_and(torch.half, torch.bfloat16))
def clone_tensor(t, preserve_requires_grad):
require_grad = preserve_requires_grad and t.requires_grad
return t.detach().clone().requires_grad_(require_grad)
def clone_inputs(preserve_requires_grad: bool):
inputs: List[Union[torch.Tensor, List[torch.Tensor]]] = []
for arg in args:
if isinstance(arg, torch.Tensor):
inputs.append(clone_tensor(arg, preserve_requires_grad))
elif is_iterable_of_tensors(arg):
inputs.append([clone_tensor(t, preserve_requires_grad) for t in arg])
else:
inputs.append(arg)
return inputs
# Returns tensors in args that requires_grad, including tensors in TensorList args
def get_recording_tensors(args):
recording_tensors: List[torch.Tensor] = []
for arg in args:
if isinstance(arg, torch.Tensor) and arg.requires_grad:
recording_tensors.append(arg)
elif is_iterable_of_tensors(arg):
recording_tensors.extend(filter(lambda t: t.requires_grad, arg))
return recording_tensors
# test no gradients case
nograd_inputs = clone_inputs(preserve_requires_grad=False)
outputs = self.runAndSaveRNG(reference_func, nograd_inputs, kwargs)
with enable_profiling_mode_for_profiling_tests():
outputs_test = self.runAndSaveRNG(func, nograd_inputs, kwargs)
self.assertEqual(outputs, outputs_test)
if check_types:
check_output_types(self, func, outputs_test, nograd_inputs, kwargs)
if no_grad:
# skip grad tests
return
with enable_profiling_mode_for_profiling_tests():
# test single grad case
recording_inputs = clone_inputs(preserve_requires_grad=True)
recording_tensors = get_recording_tensors(recording_inputs)
outputs = output_func(self.runAndSaveRNG(reference_func, recording_inputs, kwargs))
grads = torch.autograd.grad(allSum(outputs), recording_tensors,
allow_unused=allow_unused)
outputs_test = output_func(self.runAndSaveRNG(func, recording_inputs, kwargs))
grads_test = torch.autograd.grad(allSum(outputs_test), recording_tensors,
allow_unused=allow_unused)
self.assertEqual(outputs, outputs_test)
self.assertEqual(grads, grads_test)
# test the grad grad case
if self._testMethodName in nn_functional_single_grad or no_gradgrad:
return
outputs = output_func(self.runAndSaveRNG(reference_func, recording_inputs, kwargs))
l1 = allSum(outputs)
grads = torch.autograd.grad(l1, recording_tensors, create_graph=True,
allow_unused=allow_unused)
l2 = (allSum(grads) * l1)
grads2 = torch.autograd.grad(l2, recording_tensors, allow_unused=allow_unused)
recording_inputs = clone_inputs(preserve_requires_grad=True)
recording_tensors = get_recording_tensors(recording_inputs)
outputs_test = output_func(self.runAndSaveRNG(func, recording_inputs, kwargs))
l1_test = allSum(outputs_test)
grads_test = torch.autograd.grad(
l1_test, recording_tensors, create_graph=True, allow_unused=allow_unused)
l2_test = (allSum(grads_test) * l1_test)
grads2_test = torch.autograd.grad(l2_test, recording_tensors, allow_unused=allow_unused)
self.assertEqual(outputs, outputs_test)
self.assertEqual(grads, grads_test)
for g2, g2_test in zip(grads2, grads2_test):
if g2 is None and g2_test is None:
continue
self.assertEqual(g2, g2_test, atol=5e-4, rtol=1e-4)
class JitCommonTestCase(TestCase):
def createFunctionFromGraph(self, trace):
graph = trace if isinstance(trace, torch._C.Graph) else trace.graph()
return torch._C._create_function_from_graph("forward", graph)
def assertExportImport(self, trace, inputs):
m = self.createFunctionFromGraph(trace)
self.assertExportImportModule(m, inputs)
def assertExportImportModule(self, m, inputs):
m_import = self.getExportImportCopy(m)
a = self.runAndSaveRNG(m, inputs)
b = self.runAndSaveRNG(m_import, inputs)
self.assertEqual(a, b, "Results of original model and "
"exported/imported version of model differed")
def runAndSaveRNG(self, func, inputs, kwargs=None):
kwargs = kwargs if kwargs else {}
with freeze_rng_state():
results = func(*inputs, **kwargs)
return results
def getExportImportCopy(self, m, also_test_file=True, map_location=None):
buffer = io.BytesIO()
torch.jit.save(m, buffer)
buffer.seek(0)
imported = torch.jit.load(buffer, map_location=map_location)
if not also_test_file:
return imported
with TemporaryFileName() as fname:
torch.jit.save(imported, fname)
return torch.jit.load(fname, map_location=map_location)
def autoDiffErrorMessage(self, should_autodiff_node, nodes_not_in_diff_graph,
fusion_nodes_not_found, non_fusible_nodes_being_fused,
fusion_nodes_found, nodes_in_diff_graph):
err_msg = "\nFailure in testing nodes' autodifferentiation. "
if should_autodiff_node:
err_msg += "One or more nodes were expected to be autodiffed, " \
"but were not found in specified fusible/nonfusible " \
"DifferentiableGraph groups. \nSpecifically:"
# The node is intended to appear in a differentiable graph but doesn't
diff_nodes_missing = []
# The node is intended to appear in a differentiable graph
# outside of a fusion group but instead is in a fusion group
diff_nodes_in_fusion = []
# The node is intended to appear in a fusion group but doesn't
fusion_nodes_missing = []
# The node is intended to appear in a fusion group but instead
# is just in an outer differentiable graph
fusion_nodes_in_diff = []
for node in nodes_not_in_diff_graph:
if node in non_fusible_nodes_being_fused:
diff_nodes_in_fusion.append(node)
else:
diff_nodes_missing.append(node)
for node in fusion_nodes_not_found:
if node in nodes_in_diff_graph:
fusion_nodes_in_diff.append(node)
else:
fusion_nodes_missing.append(node)
if len(diff_nodes_missing) > 0:
err_msg += f"\n {diff_nodes_missing} were not in one of the " \
"DifferentiableGraphs when they were expected to be. " \
"Did you intend for these nodes to be autodiffed? " \
"If not, remove them from the list of nonfusible nodes."
if len(diff_nodes_in_fusion) > 0:
err_msg += f"\n {diff_nodes_in_fusion} were found in one of the FusionGroups " \
"when they were expected to be just in a DifferentiableGraph. If it was " \
"intended for these nodes to be in FusionGroups, reclassify these nodes as " \
"fusible nodes. If these nodes were not intended to be fused, your " \
"autodifferentiation logic might be wrong."
if len(fusion_nodes_missing) > 0:
err_msg += f"\n {fusion_nodes_missing} were not in one of the FusionGroups " \
"of the DifferentiableGraphs when they were expected to be. " \
"They were also not found in an outer DifferentiableGraph. Did you " \
"intend for these nodes to be autodifferentiated? If not, you should " \
"remove these nodes from the test's fusible nodes. Otherwise your " \
"autodifferentiation logic might be wrong."
if len(fusion_nodes_in_diff) > 0:
err_msg += f"\n {fusion_nodes_in_diff} were not in one of the FusionGroups " \
"of the DifferentiableGraphs when they were expected to be, " \
"instead they were found just in an outer DifferentiableGraph. " \
"Did you intend for these nodes to be fused? If not, you should " \
"move these nodes into the test's nonfusible nodes. Otherwise your " \
"autodifferentiation logic might be wrong."
else:
err_msg += "One or more nodes were not expected to be autodiffed " \
"but were found in a DifferentiableGraph or in a FusionGroup " \
"of a DifferentiableGraph. Did you intend for these nodes to be " \
"autodiffed? If so, change this test to expect autodifferentiation. " \
"\nSpecifically:"
if len(fusion_nodes_found) > 0:
err_msg += f"\n {fusion_nodes_found} were not expected to be in " \
"one of the DifferentiableGraphs, but appeared in a FusionGroup " \
"of a DifferentiableGraph. "
if len(nodes_in_diff_graph) > 0:
err_msg += f"\n {nodes_in_diff_graph} were not expected to " \
"be in one of the DifferentiableGraphs but were."
return err_msg
def assertAutodiffNode(self, graph, should_autodiff_node, nonfusible_nodes, fusible_nodes):
diff_nodes = graph.findAllNodes('prim::DifferentiableGraph')
diff_subgraphs = [node.g('Subgraph') for node in diff_nodes]
# Note: currently no tests have fusible_nodes
fusion_nodes = list(chain.from_iterable([g.findAllNodes('prim::FusionGroup') for g in diff_subgraphs]))
fusion_subgraphs = [node.g('Subgraph') for node in fusion_nodes]
# For any non-fusible node, it must show up in one of the DifferentiableGraphs.
nodes_in_diff_graph = []
nodes_not_in_diff_graph = []
non_fusible_nodes_being_fused = []
for node in nonfusible_nodes:
if any(g.findNode(node) is not None for g in diff_subgraphs):
nodes_in_diff_graph.append(node)
else:
nodes_not_in_diff_graph.append(node)
if any(g.findNode(node) is not None for g in fusion_subgraphs):
non_fusible_nodes_being_fused.append(node)
found_all_nonfusible_nodes = len(nodes_in_diff_graph) == len(nonfusible_nodes)
# For any fusible node, it must show up in one of the FusionGroups in one of the DifferentiableGraphs.
fusion_nodes_found = []
fusion_nodes_not_found = []
for node in fusible_nodes:
if any(g.findNode(node) is not None for g in fusion_subgraphs):
fusion_nodes_found.append(node)
else:
fusion_nodes_not_found.append(node)
found_all_fusible_nodes = len(fusion_nodes_found) == len(fusible_nodes)
if should_autodiff_node is not None:
err_msg = self.autoDiffErrorMessage(should_autodiff_node,
nodes_not_in_diff_graph,
fusion_nodes_not_found,
non_fusible_nodes_being_fused,
fusion_nodes_found,
nodes_in_diff_graph)
self.assertEqual(should_autodiff_node,
found_all_nonfusible_nodes and found_all_fusible_nodes, err_msg)
def checkShapeAnalysis(self, out_sizes: Union[List[int], List[List[int]]],
traced_graph, assert_propagation, constant_prop=True):
# repropagte input shapes provided by tracing,
prev_symbolic_shapes_test_enabled = torch._C._jit_symbolic_shapes_test_mode_enabled()
for enable_test_mode in [True, False]:
# here we are testing allowing/disallowing substituting in complete shapes as constants,
# disallowing constants helps stress test partial eval and substitution pipeline
torch._C._jit_set_symbolic_shapes_test_mode(enable_test_mode)
torch._C._jit_erase_non_input_shape_information(traced_graph)
if constant_prop:
torch._C._jit_pass_constant_propagation(traced_graph)
torch._C._jit_pass_propagate_shapes_on_graph(traced_graph)
# Add sizes to default tensor type to avoid checking something out of scope
# and difficulties with tracer leaving in other parts of tensor type
output = next(traced_graph.outputs()).type()
def test_type(type, actual_size):
sizes = type.symbolic_sizes()
out_type = TensorType.get().with_sizes(sizes)
actual_type = TensorType.get().with_sizes(actual_size)
# always check actual shape is a subtype of the output
self.assertTrue(actual_type.isSubtypeOf(out_type))
# and then if assertion flag is provided, check shape analysis
# is successful
if assert_propagation:
self.assertEqual(out_type.sizes(), actual_size)
if output.isSubtypeOf(torch._C.TensorType.get()):
test_type(output, out_sizes)
else:
tuple_elements = output.elements()
for i in range(len(tuple_elements)):
test_type(tuple_elements[i], out_sizes[i])
torch._C._jit_set_symbolic_shapes_test_mode(prev_symbolic_shapes_test_enabled)
|