1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
|
import torch
import unittest
from copy import deepcopy
from enum import Enum
from functools import wraps, partial
from itertools import chain, product
import itertools
import torch.nn.functional as F
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import TEST_CUDNN
from torch.testing._internal.common_dtype import floating_types, floating_and_complex_types_and
from torch.testing._internal.common_device_type import (
_TestParametrizer, _update_param_kwargs, toleranceOverride, tol,
skipCUDAIfCudnnVersionLessThan, skipCUDAIfRocm, precisionOverride, skipMeta)
from torch.testing._internal.common_methods_invocations import DecorateInfo
from torch.testing._internal.common_nn import nllloss_reference, get_reduction
from torch.testing._internal.common_utils import (
freeze_rng_state, set_single_threaded_if_parallel_tbb, skipIfMps, GRADCHECK_NONDET_TOL, TEST_WITH_ROCM)
from types import ModuleType
from typing import List, Tuple, Type, Set, Dict
# List of all namespaces containing modules to test.
MODULE_NAMESPACES: List[ModuleType] = [
torch.nn.modules,
torch.ao.nn.qat.modules,
torch.nn.quantizable.modules,
torch.nn.quantized.modules,
torch.ao.nn.quantized.modules,
]
# Modules that shouldn't be tested for one reason or another.
MODULES_TO_SKIP: Set[Type] = {
torch.nn.Module, # abstract base class
torch.nn.Container, # deprecated
torch.nn.NLLLoss2d, # deprecated
torch.nn.quantized.MaxPool2d, # aliases to nn.MaxPool2d
torch.ao.nn.quantized.MaxPool2d, # aliases to nn.MaxPool2d
}
# List of all module classes to test.
MODULE_CLASSES: List[Type] = list(chain(*[
[getattr(namespace, module_name) for module_name in namespace.__all__] # type: ignore[attr-defined]
for namespace in MODULE_NAMESPACES]))
MODULE_CLASSES = [cls for cls in MODULE_CLASSES if cls not in MODULES_TO_SKIP]
# Dict of module class -> common name. Useful for making test names more intuitive.
# Example: torch.nn.modules.linear.Linear -> "nn.Linear"
MODULE_CLASS_NAMES: Dict[Type, str] = {}
for namespace in MODULE_NAMESPACES:
for module_name in namespace.__all__: # type: ignore[attr-defined]
module_cls = getattr(namespace, module_name)
namespace_name = namespace.__name__.replace('torch.', '').replace('.modules', '')
MODULE_CLASS_NAMES[module_cls] = f'{namespace_name}.{module_name}'
# Specifies the modes (i.e. train, eval) to test over.
TrainEvalMode = Enum('TrainEvalMode', ('train_only', 'eval_only', 'train_and_eval'))
class modules(_TestParametrizer):
""" PROTOTYPE: Decorator for specifying a list of modules over which to run a test. """
def __init__(self, module_info_list, allowed_dtypes=None, train_eval_mode=TrainEvalMode.train_and_eval):
self.module_info_list = module_info_list
self.allowed_dtypes = set(allowed_dtypes) if allowed_dtypes is not None else None
self.train_eval_mode = train_eval_mode
def _get_training_flags(self, module_info):
training_flags = []
if (self.train_eval_mode == TrainEvalMode.train_only or
self.train_eval_mode == TrainEvalMode.train_and_eval):
training_flags.append(True)
if (self.train_eval_mode == TrainEvalMode.eval_only or
self.train_eval_mode == TrainEvalMode.train_and_eval):
training_flags.append(False)
# If train and eval modes don't differ for the module, don't bother using more than one.
if not module_info.train_and_eval_differ:
training_flags = training_flags[:1]
return training_flags
def _parametrize_test(self, test, generic_cls, device_cls):
if device_cls is None:
raise RuntimeError('The @modules decorator is only intended to be used in a device-specific '
'context; use it with instantiate_device_type_tests() instead of '
'instantiate_parametrized_tests()')
for module_info in self.module_info_list:
dtypes = set(module_info.dtypes)
if self.allowed_dtypes is not None:
dtypes = dtypes.intersection(self.allowed_dtypes)
training_flags = self._get_training_flags(module_info)
for (training, dtype) in product(training_flags, dtypes):
# Construct the test name; device / dtype parts are handled outside.
# See [Note: device and dtype suffix placement]
test_name = module_info.formatted_name
if len(training_flags) > 1:
test_name += f"_{'train_mode' if training else 'eval_mode'}"
# Construct parameter kwargs to pass to the test.
param_kwargs = {'module_info': module_info}
_update_param_kwargs(param_kwargs, 'dtype', dtype)
_update_param_kwargs(param_kwargs, 'training', training)
try:
@wraps(test)
def test_wrapper(*args, **kwargs):
return test(*args, **kwargs)
for decorator in module_info.get_decorators(generic_cls.__name__, test.__name__,
device_cls.device_type, dtype):
test_wrapper = decorator(test_wrapper)
yield (test_wrapper, test_name, param_kwargs)
except Exception as ex:
# Provides an error message for debugging before rethrowing the exception
print("Failed to instantiate {0} for module {1}!".format(test_name, module_info.name))
raise ex
def get_module_fully_qualified_name(module_cls):
""" Returns the common name of the module class formatted for use in test names. """
return MODULE_CLASS_NAMES[module_cls]
class FunctionInput(object):
""" Contains args and kwargs to pass as input to a function. """
__slots__ = ['args', 'kwargs']
def __init__(self, *args, **kwargs):
self.args = args
self.kwargs = kwargs
class ModuleInput(object):
""" Contains args / kwargs for module instantiation + forward pass. """
__slots__ = ['constructor_input', 'forward_input', 'desc', 'reference_fn']
def __init__(self, constructor_input, forward_input=None, desc='', reference_fn=None):
self.constructor_input = constructor_input # Inputs to pass during construction
self.forward_input = forward_input # Inputs to pass to forward()
self.desc = desc # Description for this set of inputs
self.reference_fn = reference_fn # Reference with signature: reference_fn(module, parameters, *args, **kwargs)
if reference_fn is not None:
@wraps(reference_fn)
def copy_reference_fn(m, *args, **kwargs):
# Copy inputs to avoid undesired side effects from calling the reference.
args, kwargs = deepcopy(args), deepcopy(kwargs)
# Note that module parameters are passed in for convenience.
return reference_fn(m, list(m.parameters()), *args, **kwargs)
self.reference_fn = copy_reference_fn
class ModuleInfo(object):
""" Module information to be used in testing. """
def __init__(self,
module_cls, # Class object for the module under test
*,
module_inputs_func, # Function to generate module inputs
skips=(), # Indicates which tests to skip
decorators=None, # Additional decorators to apply to generated tests
dtypes=floating_types(), # dtypes this function is expected to work with
supports_gradgrad=True, # whether the op supports second order gradients
gradcheck_nondet_tol=0.0, # tolerance for nondeterminism while performing gradcheck
module_memformat_affects_out=False, # whether converting module to channels last will generate
# channels last output
train_and_eval_differ=False, # whether the module has differing behavior between train and eval
):
self.module_cls = module_cls
self.module_inputs_func = module_inputs_func
self.decorators = (*(decorators if decorators else []), *(skips if skips else []))
self.dtypes = dtypes
self.supports_gradgrad = supports_gradgrad
self.gradcheck_nondet_tol = gradcheck_nondet_tol
self.module_memformat_affects_out = module_memformat_affects_out
self.train_and_eval_differ = train_and_eval_differ
def get_decorators(self, test_class, test_name, device, dtype):
result = [set_single_threaded_if_parallel_tbb]
for decorator in self.decorators:
if isinstance(decorator, DecorateInfo):
if decorator.is_active(test_class, test_name, device, dtype):
result.extend(decorator.decorators)
else:
result.append(decorator)
return result
@property
def name(self):
return get_module_fully_qualified_name(self.module_cls)
@property
def formatted_name(self):
return self.name.replace('.', '_')
def module_inputs_torch_nn_Linear(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
module_inputs = [
ModuleInput(constructor_input=FunctionInput(10, 8),
forward_input=FunctionInput(input=make_input((4, 10))),
reference_fn=lambda m, p, input: torch.mm(input, p[0].t()) + p[1].view(1, -1).expand(4, 8)),
ModuleInput(constructor_input=FunctionInput(10, 8, bias=False),
forward_input=FunctionInput(make_input((4, 10))),
desc='no_bias',
reference_fn=lambda m, p, i: torch.mm(i, p[0].t())),
ModuleInput(constructor_input=FunctionInput(3, 5),
forward_input=FunctionInput(make_input(3)),
desc='no_batch_dim',
reference_fn=lambda m, p, i: torch.mm(i.view(1, -1), p[0].t()).view(-1) + p[1])
]
return module_inputs
def module_inputs_torch_nn_Bilinear(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
def bilinear_reference_fn(m, p, x1, x2, bias=True):
result = torch.einsum('bn,anm,bm->ba', x1, p[0], x2)
if bias:
if x1.shape[0] == 1:
result = result.view(-1) + p[1]
else:
result = result + p[1].view(1, -1).expand(x1.shape[0], p[0].shape[0])
return result
module_inputs = [
ModuleInput(constructor_input=FunctionInput(2, 3, 4),
forward_input=FunctionInput(make_input((8, 2)), make_input((8, 3))),
reference_fn=lambda m, p, x1, x2: bilinear_reference_fn(m, p, x1, x2)),
ModuleInput(constructor_input=FunctionInput(2, 3, 4, bias=False),
forward_input=FunctionInput(make_input((8, 2)), make_input((8, 3))),
desc='no_bias',
reference_fn=lambda m, p, x1, x2: bilinear_reference_fn(m, p, x1, x2, bias=False)),
ModuleInput(constructor_input=FunctionInput(2, 3, 4),
forward_input=FunctionInput(make_input((2)), make_input((3))),
desc='no_batch_dim',
reference_fn=lambda m, p, x1, x2: bilinear_reference_fn(m, p, x1.view(1, -1), x2.view(1, -1))),
]
return module_inputs
def module_inputs_torch_nn_NLLLoss(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
make_weight = partial(make_tensor, device=device, dtype=dtype, requires_grad=False)
cases: List[Tuple[str, dict]] = [
('', {}),
('reduction_sum', {'reduction': 'sum'}),
('reduction_none', {'reduction': 'none'}),
('ignore_index', {'ignore_index': 2}),
('weights', {'weight': make_weight(10).abs()}),
('weights_ignore_index', {'weight': make_weight(10).abs(), 'ignore_index': 2}),
('weights_ignore_index_neg', {'weight': make_weight(10).abs(), 'ignore_index': -1})
]
# TODO: Uncomment when negative weights is supported.
# negative_weight = make_weight(10)
# negative_weight[0] = -1
# cases.append(('weights_negative', {'weight': negative_weight}))
module_inputs = []
for desc, constructor_kwargs in cases:
def reference_fn(m, p, i, t, constructor_kwargs=constructor_kwargs):
return nllloss_reference(i, t, **constructor_kwargs)
module_inputs.append(
ModuleInput(constructor_input=FunctionInput(**constructor_kwargs),
forward_input=FunctionInput(make_input((15, 10)).log_softmax(dim=1),
torch.empty(15, device=device).uniform_().mul(10).floor().long()),
desc=desc,
reference_fn=reference_fn)
)
return module_inputs
def module_inputs_torch_nn_GaussianNLLLoss(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
make_target = partial(make_tensor, device=device, dtype=dtype, requires_grad=False)
cases: List[Tuple[str, dict]] = [
('', {}),
('reduction_sum', {'reduction': 'sum'}),
('reduction_mean', {'reduction': 'mean'}),
('reduction_none', {'reduction': 'none'}),
]
module_inputs = []
for desc, constructor_kwargs in cases:
module_inputs.append(
ModuleInput(constructor_input=FunctionInput(**constructor_kwargs),
forward_input=FunctionInput(make_input((3)),
make_target((3)),
make_input((1)).abs()),
desc=desc,
reference_fn=no_batch_dim_reference_fn)
)
return module_inputs
def no_batch_dim_reference_fn(m, p, *args, **kwargs):
"""Reference function for modules supporting no batch dimensions.
Unbatched inputs are unsqueezed to form a
single batch input before passing them to the module.
The output is squeezed to compare with the
output of unbatched input to the module.
Currently it only supports modules which return a single Tensor as output.
You can bind the following kwargs.
Kwargs:
batch_first[bool] : If True, all the Tensors in `args` while be unsqueezed at dim `0` .
and output will be squeezed at dim `0` else dim `1` for both.
kwargs_to_batchify[dict] : Dictionary specifying the name of the argument and dimension to unsqueeze.
Useful if there are few arguments whose batch dimension are different
from the ones selected by `batch_first`.
is_criterion[bool] : Specify if the module is a criterion and handle the reduction for output accordingly.
"""
def get_and_pop(key, default):
v = kwargs.get(key, default)
if key in kwargs:
kwargs.pop(key)
return v
batch_dim = 0 if get_and_pop('batch_first', True) else 1
kwargs_to_batchify = get_and_pop('kwargs_to_batchify', None)
is_criterion = get_and_pop('is_criterion', False)
if kwargs_to_batchify is not None:
assert isinstance(kwargs_to_batchify, dict)
for k, v in kwargs.items():
if k in kwargs_to_batchify and v is not None:
bdim = kwargs_to_batchify[k]
kwargs[k] = v.unsqueeze(bdim)
single_batch_input_args = [input.unsqueeze(batch_dim) for input in args]
with freeze_rng_state():
output = m(*single_batch_input_args, **kwargs).squeeze(batch_dim)
if is_criterion:
reduction = get_reduction(m)
if reduction == 'none':
return output.squeeze(0)
return output
def no_batch_dim_reference_mha(m, p, *args, **kwargs):
"""Reference function for MultiheadAttention supporting no batch dimensions.
Unbatched inputs are unsqueezed to form a
single batch input before passing them to the module.
The output is squeezed to compare with the
output of unbatched input to the module.
"""
batch_dim = 0 if kwargs.get('batch_first', True) else 1
if 'batch_first' in kwargs:
kwargs.pop('batch_first')
if 'key_padding_mask' in kwargs and kwargs['key_padding_mask'] is not None:
kwargs['key_padding_mask'] = kwargs['key_padding_mask'].unsqueeze(0)
single_batch_input_args = [input.unsqueeze(batch_dim) for input in args]
with freeze_rng_state():
output = m(*single_batch_input_args, **kwargs)
return (output[0].squeeze(batch_dim), output[1].squeeze(0))
def no_batch_dim_reference_rnn_gru(m, p, *args, **kwargs):
"""Reference function for RNN and GRU supporting no batch dimensions.
Unbatched inputs are unsqueezed to form a
single batch input before passing them to the module.
The output is squeezed to compare with the
output of unbatched input to the module.
"""
if len(args) == 1:
inp, = args
h = None
elif len(args) == 2:
inp, h = args
h = h.unsqueeze(1)
batch_dim = 0 if kwargs['batch_first'] else 1
kwargs.pop('batch_first')
inp = inp.unsqueeze(batch_dim)
single_batch_input_args = (inp, h)
with freeze_rng_state():
output = m(*single_batch_input_args, **kwargs)
return (output[0].squeeze(batch_dim), output[1].squeeze(1))
def no_batch_dim_reference_lstm(m, p, *args, **kwargs):
"""Reference function for LSTM supporting no batch dimensions.
Unbatched inputs are unsqueezed to form a
single batch input before passing them to the module.
The output is squeezed to compare with the
output of unbatched input to the module.
"""
if len(args) == 1:
inp, = args
h = None
elif len(args) == 2:
inp, h = args
h = (h[0].unsqueeze(1), h[1].unsqueeze(1))
batch_dim = 0 if kwargs['batch_first'] else 1
kwargs.pop('batch_first')
inp = inp.unsqueeze(batch_dim)
single_batch_input_args = (inp, h)
with freeze_rng_state():
output = m(*single_batch_input_args, **kwargs)
return (output[0].squeeze(batch_dim), (output[1][0].squeeze(1), output[1][1].squeeze(1)))
def no_batch_dim_reference_lstmcell(m, p, *args, **kwargs):
"""Reference function for LSTMCell supporting no batch dimensions.
The module is passed the input and target in batched form with a single item.
The output is squeezed to compare with the no-batch input.
"""
inp, (h, c) = args
single_batch_input_args = (inp.unsqueeze(0), (h.unsqueeze(0), c.unsqueeze(0)))
with freeze_rng_state():
output = m(*single_batch_input_args, **kwargs)
return (output[0].squeeze(0), output[1].squeeze(0))
def generate_regression_criterion_inputs(make_input):
return [
ModuleInput(
constructor_input=FunctionInput(reduction=reduction),
forward_input=FunctionInput(make_input((4, )), make_input(4,)),
reference_fn=partial(no_batch_dim_reference_fn, is_criterion=True),
desc='no_batch_dim_{}'.format(reduction)
) for reduction in ['none', 'mean', 'sum']]
def module_inputs_torch_nn_AvgPool1d(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
return [
ModuleInput(constructor_input=FunctionInput(kernel_size=2),
forward_input=FunctionInput(make_input((3, 6))),
desc='no_batch_dim',
reference_fn=no_batch_dim_reference_fn)]
def module_inputs_torch_nn_AdaptiveAvgPool2d(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
return [
ModuleInput(constructor_input=FunctionInput(3,),
forward_input=FunctionInput(make_input((1, 3, 5, 6))),
desc='single')]
def module_inputs_torch_nn_BatchNorm2d(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
return [
ModuleInput(constructor_input=FunctionInput(3,),
forward_input=FunctionInput(make_input((2, 3, 6, 6))))]
def module_inputs_torch_nn_BatchNorm3d(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
return [
ModuleInput(constructor_input=FunctionInput(3,),
forward_input=FunctionInput(make_input((2, 3, 4, 4, 4))))]
def module_inputs_torch_nn_ConvNd(module_info, device, dtype, requires_grad, training, **kwargs):
N = kwargs['N']
lazy = kwargs.get('lazy', False)
transposed = kwargs.get('transposed', False)
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
conv_kwargs_list = [{}] if transposed else [{}, {'padding': 'same'}]
kernel_size, C_in, C_out = 3, 4, 5
input_no_batch_shape = (C_in,) + tuple((i + 3 for i in range(N)))
input_batch_shape = (2,) + input_no_batch_shape
return [
ModuleInput(constructor_input=(FunctionInput(C_out, kernel_size, **conv_kwargs) if lazy else
FunctionInput(C_in, C_out, kernel_size, **conv_kwargs)),
forward_input=FunctionInput(make_input(
input_batch_shape if with_batch else input_no_batch_shape)),
desc=('' if with_batch else 'no_batch_dim'),
reference_fn=(None if with_batch else no_batch_dim_reference_fn))
for with_batch, conv_kwargs in itertools.product([True, False], conv_kwargs_list)
]
def module_inputs_torch_nn_ELU(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
return [
ModuleInput(constructor_input=FunctionInput(alpha=2.),
forward_input=FunctionInput(make_input((3, 2, 5))),
reference_fn=lambda m, p, i: torch.where(i >= 0, i, 2 * (i.exp() - 1))),
ModuleInput(constructor_input=FunctionInput(alpha=2.),
forward_input=FunctionInput(make_input(())),
desc='scalar'),
ModuleInput(constructor_input=FunctionInput(),
forward_input=FunctionInput(make_input((3,))),
desc='no_batch_dim',
reference_fn=no_batch_dim_reference_fn),
ModuleInput(constructor_input=FunctionInput(alpha=2.),
forward_input=FunctionInput(make_input((2, 3, 2, 5))),
desc='4d_input')]
def module_inputs_torch_nn_CELU(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
return [
ModuleInput(constructor_input=FunctionInput(alpha=2.),
forward_input=FunctionInput(make_input((3, 2, 5))),
reference_fn=lambda m, p, i: torch.where(i >= 0, i, 2. * ((.5 * i).exp() - 1))),
ModuleInput(constructor_input=FunctionInput(alpha=2.),
forward_input=FunctionInput(make_input(())),
reference_fn=lambda m, p, i: torch.where(i >= 0, i, 2 * (i.exp() - 1)),
desc='scalar'),
ModuleInput(constructor_input=FunctionInput(alpha=2.),
forward_input=FunctionInput(make_input((3,))),
desc='no_batch_dim',
reference_fn=no_batch_dim_reference_fn)]
def module_inputs_torch_nn_ReLU(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
return [
ModuleInput(constructor_input=FunctionInput(),
forward_input=FunctionInput(make_input(4)),
desc='no_batch_dim'),
ModuleInput(constructor_input=FunctionInput(),
forward_input=FunctionInput(make_input((2, 3, 4, 5))),
desc='channels_last_mem_format'),
ModuleInput(constructor_input=FunctionInput(),
forward_input=FunctionInput(make_input((2, 3, 3, 4, 5))),
desc='channels_last_3d_mem_format')]
def module_inputs_torch_nn_L1Loss(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
return [
ModuleInput(constructor_input=FunctionInput(),
forward_input=FunctionInput(make_input((2, 3, 4)),
make_input((2, 3, 4))),
reference_fn=lambda m, p, i, t: 1. / i.numel() * sum((a - b).abs().sum()
for a, b in zip(i, t))),
ModuleInput(constructor_input=FunctionInput(),
forward_input=FunctionInput(make_input(()), make_input(())),
reference_fn=lambda m, p, i, t: 1. / i.numel() * (i - t).abs().sum(),
desc='scalar')] + generate_regression_criterion_inputs(make_input)
def module_inputs_torch_nn_CrossEntropyLoss(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
make_target = partial(make_tensor, device=device, dtype=torch.long, requires_grad=False)
make_weight = partial(make_tensor, device=device, dtype=dtype, requires_grad=False)
reductions = ['sum', 'mean', 'none']
samples = []
# Samples below are for validating the no-batch-dim support.
for reduction in reductions:
samples.append(
ModuleInput(constructor_input=FunctionInput(reduction=reduction),
forward_input=FunctionInput(make_input((9,)), make_target((), low=0, high=9)),
reference_fn=partial(no_batch_dim_reference_fn, is_criterion=True))
)
samples.append(
ModuleInput(constructor_input=FunctionInput(reduction=reduction, weight=make_weight((9,))),
forward_input=FunctionInput(make_input((9,)), make_target((), low=0, high=9)),
reference_fn=partial(no_batch_dim_reference_fn, is_criterion=True))
)
samples.append(
ModuleInput(constructor_input=FunctionInput(reduction=reduction, label_smoothing=0.5),
forward_input=FunctionInput(make_input((9,)), make_target((), low=0, high=9)),
reference_fn=partial(no_batch_dim_reference_fn, is_criterion=True))
)
samples.append(
ModuleInput(constructor_input=FunctionInput(reduction=reduction, label_smoothing=0.5,
weight=make_weight((9,))),
forward_input=FunctionInput(make_input((9,)), make_target((), low=0, high=9)),
reference_fn=partial(no_batch_dim_reference_fn, is_criterion=True))
)
return samples
def module_inputs_torch_nn_Hardswish(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
return [
ModuleInput(
constructor_input=FunctionInput(),
forward_input=FunctionInput(make_input(4)),
reference_fn=no_batch_dim_reference_fn,
desc='no_batch_dim',
),
ModuleInput(
constructor_input=FunctionInput(),
forward_input=FunctionInput(make_input((2, 3, 2, 5))),
desc='4d_input')
]
def module_inputs_torch_nn_MaxPool2d(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
return [
ModuleInput(
constructor_input=FunctionInput((3, 3), (2, 2), (1, 1)),
forward_input=FunctionInput(make_input(((3, 7, 7)))),
desc='3d_input'),
ModuleInput(
constructor_input=FunctionInput((3, 3), (2, 2), (1, 1)),
forward_input=FunctionInput(make_input((1, 3, 7, 7))),
desc='4d_input'),
ModuleInput(
constructor_input=FunctionInput((3, 3), (2, 2), (1, 1), return_indices=True),
forward_input=FunctionInput(make_input((1, 3, 7, 7))),
desc='return_indices'),
]
def module_inputs_torch_nn_Sigmoid(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
return [
ModuleInput(
constructor_input=FunctionInput(),
forward_input=FunctionInput(make_input((2, 3, 4, 5))),
desc='channels_last_mem_format'
),
ModuleInput(
constructor_input=FunctionInput(),
forward_input=FunctionInput(make_input((2, 3, 3, 4, 5))),
desc='channels_last_3d_mem_format'
)
]
def module_inputs_torch_nn_TransformerEncoderLayer(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
samples = [
ModuleInput(
constructor_input=FunctionInput(4, 2, 16, 0.0),
forward_input=FunctionInput(
make_input((2, 3, 4))
),
desc='relu_activation'
),
ModuleInput(
constructor_input=FunctionInput(4, 2, 8, 0.0, F.gelu),
forward_input=FunctionInput(
make_input((2, 3, 4))
),
desc='gelu_activation'
), ]
# Samples below are for validating the no-batch-dim support.
key_padding_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool))
attn_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool).expand((3, 3)))
for src_mask, src_key_padding_mask, norm_first in itertools.product(attn_masks, key_padding_masks, (True, False)):
samples.append(
ModuleInput(
constructor_input=FunctionInput(d_model=4, nhead=2, dim_feedforward=8,
dropout=0.0, batch_first=True, norm_first=norm_first),
forward_input=FunctionInput(
make_input((3, 4)), src_mask=src_mask, src_key_padding_mask=src_key_padding_mask
),
reference_fn=partial(no_batch_dim_reference_fn,
batch_first=True, kwargs_to_batchify={'src_key_padding_mask': 0}),
desc='no_batch_dim_batch_first'
))
samples.append(
ModuleInput(
constructor_input=FunctionInput(4, 2, 8, dropout=0.0, batch_first=False, norm_first=norm_first),
forward_input=FunctionInput(
make_input((3, 4)), src_mask=src_mask, src_key_padding_mask=src_key_padding_mask
),
reference_fn=partial(no_batch_dim_reference_fn,
batch_first=False, kwargs_to_batchify={'src_key_padding_mask': 0}),
desc='no_batch_dim'
))
def fast_path_reference_fn(module, parameters, *args, **kwargs):
assert not module.training
module = module.train(True)
output = module(*args, **kwargs)
module = module.train(False)
return output
if not training:
for norm_first in (True, False):
samples.append(
ModuleInput(
constructor_input=FunctionInput(4, 2, 8, dropout=0.0, batch_first=True, norm_first=norm_first),
forward_input=FunctionInput(
make_input((2, 3, 4)),
),
reference_fn=fast_path_reference_fn,
desc="fast_path_norm_first" if norm_first else "fast_path"
)
)
return samples
def module_inputs_torch_nn_TransformerDecoderLayer(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
samples = [
ModuleInput(
constructor_input=FunctionInput(4, 2, 16, 0.0),
forward_input=FunctionInput(
make_input((2, 3, 4)), make_input((2, 3, 4))
),
desc='relu_activation'
),
ModuleInput(
constructor_input=FunctionInput(4, 2, 8, 0.0, F.gelu),
forward_input=FunctionInput(
make_input((2, 3, 4)), make_input((2, 3, 4))
),
desc='gelu_activation'
), ]
# Samples below are for validating the no-batch-dim support.
key_padding_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool))
attn_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool).expand((3, 3)))
for tgt_mask, tgt_key_padding_mask, norm_first in itertools.product(attn_masks, key_padding_masks, (True, False)):
# Using same mask for tgt and memory
memory_mask = tgt_mask
memory_key_padding_mask = tgt_key_padding_mask
samples.append(
ModuleInput(
constructor_input=FunctionInput(d_model=4, nhead=2, dim_feedforward=8,
dropout=0.0, batch_first=True, norm_first=norm_first),
forward_input=FunctionInput(
make_input((3, 4)), make_input((3, 4)), tgt_mask=tgt_mask, memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask
),
reference_fn=partial(no_batch_dim_reference_fn,
batch_first=True,
kwargs_to_batchify={'tgt_key_padding_mask': 0, 'memory_key_padding_mask': 0}),
desc='no_batch_dim_batch_first'
))
samples.append(
ModuleInput(
constructor_input=FunctionInput(4, 2, 8, dropout=0.0, batch_first=False, norm_first=norm_first),
forward_input=FunctionInput(
make_input((3, 4)), make_input((3, 4)), tgt_mask=tgt_mask, memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask
),
reference_fn=partial(no_batch_dim_reference_fn,
batch_first=False,
kwargs_to_batchify={'tgt_key_padding_mask': 0, 'memory_key_padding_mask': 0}),
desc='no_batch_dim'
))
return samples
def module_inputs_torch_nn_Transformer(module_info, device, dtype, requires_grad, training, **kwargs):
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
samples = []
# Samples below are for validating the no-batch-dim support.
key_padding_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool))
attn_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool).expand((3, 3)))
for mask, key_padding_mask, norm_first in itertools.product(attn_masks, key_padding_masks, (True, False)):
# Using same mask for tgt and memory
src_mask , tgt_mask = (mask,) * 2
src_key_padding_mask, tgt_key_padding_mask = (key_padding_mask,) * 2
samples.append(
ModuleInput(
constructor_input=FunctionInput(d_model=4, nhead=2, dim_feedforward=8,
num_encoder_layers=1, num_decoder_layers=1,
dropout=0.0, batch_first=True, norm_first=norm_first),
forward_input=FunctionInput(
make_input((3, 4)), make_input((3, 4)), tgt_mask=tgt_mask, src_mask=src_mask,
tgt_key_padding_mask=tgt_key_padding_mask, src_key_padding_mask=src_key_padding_mask
),
reference_fn=partial(no_batch_dim_reference_fn,
batch_first=True,
kwargs_to_batchify={'tgt_key_padding_mask': 0, 'src_key_padding_mask': 0}),
desc='no_batch_dim_batch_first'
))
samples.append(
ModuleInput(
constructor_input=FunctionInput(d_model=4, nhead=2, dim_feedforward=8,
num_encoder_layers=1, num_decoder_layers=1,
dropout=0.0, batch_first=False, norm_first=norm_first),
forward_input=FunctionInput(
make_input((3, 4)), make_input((3, 4)), tgt_mask=tgt_mask, src_mask=src_mask,
tgt_key_padding_mask=tgt_key_padding_mask, src_key_padding_mask=src_key_padding_mask
),
reference_fn=partial(no_batch_dim_reference_fn,
batch_first=False,
kwargs_to_batchify={'tgt_key_padding_mask': 0, 'src_key_padding_mask': 0}),
desc='no_batch_dim'
))
return samples
def module_inputs_torch_nn_Embedding(module_info, device, dtype, requires_grad, training, **kwargs):
make_empty = partial(torch.empty, device=device, dtype=torch.long, requires_grad=False)
return [
ModuleInput(
constructor_input=FunctionInput(num_embeddings=4, embedding_dim=3),
forward_input=FunctionInput(make_empty(2, 3).random_(4))
),
ModuleInput(
constructor_input=FunctionInput(num_embeddings=4, embedding_dim=3),
forward_input=FunctionInput(make_empty(1, 512).random_(4).expand(7, 512)),
desc='discontiguous'
),
]
def module_inputs_torch_nn_MultiheadAttention(module_info, device, dtype, requires_grad, training, **kwargs):
# Currently all samples below are for validating the no-batch-dim support.
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
samples = []
bool_vals = (True, False)
key_padding_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool))
attn_masks = (None, torch.tensor([False, False, True], device=device, dtype=torch.bool).expand((3, 3, 3)))
products = itertools.product(bool_vals, bool_vals, bool_vals, key_padding_masks, attn_masks)
for bias, add_bias_kv, add_zero_attn, key_padding_mask, attn_mask in products:
samples.append(
ModuleInput(
constructor_input=FunctionInput(embed_dim=3, num_heads=3, batch_first=True,
bias=bias, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn),
forward_input=FunctionInput(make_input((3, 3)), make_input((3, 3)), make_input((3, 3)),
key_padding_mask=key_padding_mask, attn_mask=attn_mask),
reference_fn=no_batch_dim_reference_mha,
)
)
samples.append(
ModuleInput(
constructor_input=FunctionInput(embed_dim=3, num_heads=3, batch_first=False,
bias=bias, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn),
forward_input=FunctionInput(make_input((3, 3)), make_input((3, 3)), make_input((3, 3)),
key_padding_mask=key_padding_mask, attn_mask=attn_mask),
reference_fn=partial(no_batch_dim_reference_mha, batch_first=False),
)
)
return samples
def module_inputs_torch_nn_RNN_GRU_Cell(module_info, device, dtype, requires_grad, training, **kwargs):
# Currently all samples below are for validating the no-batch-dim support.
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
samples = [
ModuleInput(
constructor_input=FunctionInput(5, 10),
forward_input=FunctionInput(make_input(5), make_input(10)),
reference_fn=no_batch_dim_reference_fn,
),
ModuleInput(
constructor_input=FunctionInput(5, 10, bias=True),
forward_input=FunctionInput(make_input(5), make_input(10)),
reference_fn=no_batch_dim_reference_fn,
)
]
is_rnn = kwargs.get('is_rnn', False)
if is_rnn:
# RNN also supports `nonlinearity` argument.
# `tanh` is the default, so we check with `relu`
samples.append(
ModuleInput(
constructor_input=FunctionInput(5, 10, bias=True, nonlinearity='relu'),
forward_input=FunctionInput(make_input(5), make_input(10)),
reference_fn=no_batch_dim_reference_fn,
)
)
return samples
def module_inputs_torch_nn_LSTMCell(module_info, device, dtype, requires_grad, training, **kwargs):
# Currently all samples below are for validating the no-batch-dim support.
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
samples = (
ModuleInput(
constructor_input=FunctionInput(5, 10),
forward_input=FunctionInput(make_input(5), (make_input(10), make_input(10))),
reference_fn=no_batch_dim_reference_lstmcell,
),
ModuleInput(
constructor_input=FunctionInput(5, 10, bias=True),
forward_input=FunctionInput(make_input(5), (make_input(10), make_input(10))),
reference_fn=no_batch_dim_reference_lstmcell,
),
)
return samples
def module_inputs_torch_nn_RNN_GRU(module_info, device, dtype, requires_grad, training, **kwargs):
# Currently all samples below are for validating the no-batch-dim support.
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
is_rnn = kwargs['is_rnn']
nonlinearity = ('relu', 'tanh')
bias = (False, True)
batch_first = (False, True)
bidirectional = (False, True)
samples = []
if is_rnn:
prod_gen = product(nonlinearity, bias, batch_first, bidirectional)
else:
prod_gen = product(bias, batch_first, bidirectional)
for args in prod_gen:
if is_rnn:
nl, b, b_f, bidir = args
else:
b, b_f, bidir = args
cons_args = {'input_size': 2, 'hidden_size': 2, 'num_layers': 2,
'batch_first': b_f, 'bias': b, 'bidirectional': bidir}
cons_args_hidden = {'input_size': 2, 'hidden_size': 3, 'num_layers': 2,
'batch_first': b_f, 'bias': b, 'bidirectional': bidir}
if is_rnn:
cons_args['nonlinearity'] = nl
cons_args_hidden['nonlinearity'] = nl
samples.append(
ModuleInput(
constructor_input=FunctionInput(**cons_args),
forward_input=FunctionInput(make_input((2, 2))),
reference_fn=partial(no_batch_dim_reference_rnn_gru, batch_first=b_f),
)
)
samples.append(
ModuleInput(
constructor_input=FunctionInput(**cons_args_hidden),
forward_input=FunctionInput(make_input((3, 2)), make_input((4 if bidir else 2, 3))),
reference_fn=partial(no_batch_dim_reference_rnn_gru, batch_first=b_f),
)
)
return samples
def module_inputs_torch_nn_LSTM(module_info, device, dtype, requires_grad, training, **kwargs):
# Currently all samples below are for validating the no-batch-dim support.
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
bias = (False, True)
batch_first = (False, True)
bidirectional = (False, True)
proj_sizes = (0, 2)
samples = []
prod_gen = product(bias, batch_first, bidirectional, proj_sizes)
for args in prod_gen:
b, b_f, bidir, proj_size = args
hidden_size = 3
cons_args = {'input_size': 2, 'hidden_size': hidden_size, 'num_layers': 2, 'proj_size': proj_size,
'batch_first': b_f, 'bias': b, 'bidirectional': bidir}
cons_args_hidden = {'input_size': 2, 'hidden_size': hidden_size, 'num_layers': 2, 'proj_size': proj_size,
'batch_first': b_f, 'bias': b, 'bidirectional': bidir}
samples.append(
ModuleInput(
constructor_input=FunctionInput(**cons_args),
forward_input=FunctionInput(make_input((2, 2))),
reference_fn=partial(no_batch_dim_reference_lstm, batch_first=b_f),
)
)
h_out = proj_size if proj_size > 0 else hidden_size
hx = (make_input((4 if bidir else 2, h_out)), make_input((4 if bidir else 2, hidden_size)))
samples.append(
ModuleInput(
constructor_input=FunctionInput(**cons_args_hidden),
forward_input=FunctionInput(make_input((3, 2)), hx),
reference_fn=partial(no_batch_dim_reference_lstm, batch_first=b_f),
)
)
return samples
# All these operators share similar issues on cuDNN and MIOpen
rnn_gru_lstm_module_info_decorators = (
# RuntimeError: Batching rule not implemented for aten::_cudnn_rnn_backward.
# We could not generate a fallback
DecorateInfo(
unittest.expectedFailure, "TestModule", "test_grad",
active_if=(TEST_CUDNN and not TEST_WITH_ROCM), device_type='cuda'
),
# NotImplementedError: the derivative for '_cudnn_rnn_backward' is not implemented.
# Double backwards is not supported for CuDNN RNNs due to limitations in the CuDNN API
DecorateInfo(
unittest.expectedFailure, "TestModule", "test_gradgrad",
active_if=(TEST_CUDNN and not TEST_WITH_ROCM), device_type='cuda'
),
# CUDNN GRU doesn't accept non-contiguous hx
DecorateInfo(
unittest.expectedFailure, "TestModule", "test_non_contiguous_tensors",
active_if=(TEST_CUDNN and not TEST_WITH_ROCM), device_type='cuda'
),
# MIOPEN GRU doesn't accept non-contiguous hx (this is dispatched to miopen only for float).
DecorateInfo(
unittest.expectedFailure, "TestModule", "test_non_contiguous_tensors",
active_if=(TEST_CUDNN and TEST_WITH_ROCM), dtypes=(torch.float,), device_type='cuda'
),
)
# Database of ModuleInfo entries in alphabetical order.
module_db: List[ModuleInfo] = [
ModuleInfo(torch.nn.AdaptiveAvgPool2d,
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
module_inputs_func=module_inputs_torch_nn_AdaptiveAvgPool2d,
skips=(
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.AvgPool1d,
module_inputs_func=module_inputs_torch_nn_AvgPool1d,
skips=(
# No channels_last support for AvgPool1d as it does not take 4D inputs
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.BatchNorm2d,
train_and_eval_differ=True,
module_inputs_func=module_inputs_torch_nn_BatchNorm2d,
skips=(
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.BatchNorm3d,
train_and_eval_differ=True,
module_inputs_func=module_inputs_torch_nn_BatchNorm3d,
skips=(
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.Conv1d,
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=1, lazy=False),
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
module_memformat_affects_out=True,
skips=(
# channels_last support on cuda requires cudnn >= 7603
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'),
# Failure on ROCM for float32 issue #70125
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64])
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
)),
ModuleInfo(torch.nn.Conv2d,
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=2, lazy=False),
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
module_memformat_affects_out=True,
skips=(
# channels_last support on cuda requires cudnn >= 7603
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'),
# Failure on ROCM for float32 issue #70125
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
# This was wrongly being skipped before and needs investigation.
# See https://github.com/pytorch/pytorch/issues/80247
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format",
device_type='cuda', dtypes=[torch.float64]),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
)),
ModuleInfo(torch.nn.Conv3d,
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=3, lazy=False),
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
module_memformat_affects_out=True,
skips=(
# channels_last support on cuda requires cudnn >= 8005
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=8005), 'TestModule', 'test_memory_format'),
# Failure on ROCM for float32 issue #70125
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
# This was wrongly being skipped before and needs investigation.
# See https://github.com/pytorch/pytorch/issues/80247
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format"),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
)),
ModuleInfo(torch.nn.ConvTranspose1d,
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=1, lazy=False, transposed=True),
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
module_memformat_affects_out=True,
dtypes=floating_and_complex_types_and(torch.chalf),
skips=(
# channels_last support on cuda requires cudnn >= 7603
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'),
# Failure on ROCM for float32 issue #70125
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
# Not implmented for chalf on CPU
DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_forward',
dtypes=(torch.chalf,), device_type='cpu'),
DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_memory_format',
dtypes=(torch.chalf,), device_type='cpu'),
DecorateInfo(unittest.expectedFailure, 'TestModule',
'test_if_train_and_eval_modes_differ', dtypes=(torch.chalf,), device_type='cpu'),
DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_non_contiguous_tensors',
dtypes=(torch.chalf,), device_type='cpu'),
DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_cpu_gpu_parity',
dtypes=(torch.chalf,), device_type='cuda'),
DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_multiple_device_transfer',
dtypes=(torch.chalf,), device_type='cuda'),
# Ref: https://github.com/pytorch/pytorch/issues/73502
DecorateInfo(unittest.expectedFailure, 'TestModule', 'test_pickle', dtypes=(torch.chalf,)),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
)),
ModuleInfo(torch.nn.ConvTranspose2d,
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=2, lazy=False, transposed=True),
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
module_memformat_affects_out=True,
skips=(
# channels_last support on cuda requires cudnn >= 7603
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'),
# Failure on ROCM for float32 issue #70125
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
# This was wrongly being skipped before and needs investigation.
# See https://github.com/pytorch/pytorch/issues/80247
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", device_type='cpu'),
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", device_type='cuda',
dtypes=[torch.float64]),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
)),
ModuleInfo(torch.nn.ConvTranspose3d,
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=3, lazy=False, transposed=True),
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
module_memformat_affects_out=True,
skips=(
# channels_last support on cuda requires cudnn >= 8005
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=8005), 'TestModule', 'test_memory_format'),
# Failure on ROCM for float32 issue #70125
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
# This was wrongly being skipped before and needs investigation.
# See https://github.com/pytorch/pytorch/issues/80247
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format"),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
)),
ModuleInfo(torch.nn.ELU,
module_inputs_func=module_inputs_torch_nn_ELU,
skips=(
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.L1Loss,
module_inputs_func=module_inputs_torch_nn_L1Loss,
skips=(
# No channels_last support for loss functions.
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.LazyConv1d,
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=1, lazy=True),
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
module_memformat_affects_out=True,
skips=(
# channels_last support on cuda requires cudnn >= 7603
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'),
# Failure on ROCM for float32 issue #70125
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
# Lazy modules don't currently play well with ModuleInfo tests on the meta device.
# See https://github.com/pytorch/pytorch/issues/70505 for more info.
DecorateInfo(skipMeta),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
)),
ModuleInfo(torch.nn.LazyConv2d,
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=2, lazy=True),
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
module_memformat_affects_out=True,
skips=(
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
# channels_last support on cuda requires cudnn >= 7603
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'),
# Failure on ROCM for float32 issue #70125
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
# Lazy modules don't currently play well with ModuleInfo tests on the meta device.
# See https://github.com/pytorch/pytorch/issues/70505 for more info.
DecorateInfo(skipMeta),
# This was wrongly being skipped before and needs investigation.
# See https://github.com/pytorch/pytorch/issues/80247
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format",
device_type='cuda', dtypes=[torch.float64]),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
)),
ModuleInfo(torch.nn.LazyConv3d,
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=3, lazy=True),
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
module_memformat_affects_out=True,
skips=(
# channels_last support on cuda requires cudnn >= 8005
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=8005), 'TestModule', 'test_memory_format'),
# Failure on ROCM for float32 issue #70125
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
# Lazy modules don't currently play well with ModuleInfo tests on the meta device.
# See https://github.com/pytorch/pytorch/issues/70505 for more info.
DecorateInfo(skipMeta),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
# This was wrongly being skipped before and needs investigation.
# See https://github.com/pytorch/pytorch/issues/80247
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format"),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
)),
ModuleInfo(torch.nn.LazyConvTranspose1d,
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=1, lazy=True, transposed=True),
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
module_memformat_affects_out=True,
skips=(
# channels_last support on cuda requires cudnn >= 7603
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'),
# Failure on ROCM for float32 issue #70125
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
# Lazy modules don't currently play well with ModuleInfo tests on the meta device.
# See https://github.com/pytorch/pytorch/issues/70505 for more info.
DecorateInfo(skipMeta),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
)),
ModuleInfo(torch.nn.LazyConvTranspose2d,
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=2, lazy=True, transposed=True),
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
module_memformat_affects_out=True,
skips=(
# channels_last support on cuda requires cudnn >= 7603
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=7603), 'TestModule', 'test_memory_format'),
# Failure on ROCM for float32 issue #70125
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
# Lazy modules don't currently play well with ModuleInfo tests on the meta device.
# See https://github.com/pytorch/pytorch/issues/70505 for more info.
DecorateInfo(skipMeta),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
# This was wrongly being skipped before and needs investigation.
# See https://github.com/pytorch/pytorch/issues/80247
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", device_type='cpu'),
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format", device_type='cuda',
dtypes=[torch.float64]),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
)),
ModuleInfo(torch.nn.LazyConvTranspose3d,
module_inputs_func=partial(module_inputs_torch_nn_ConvNd, N=3, lazy=True, transposed=True),
gradcheck_nondet_tol=GRADCHECK_NONDET_TOL,
module_memformat_affects_out=True,
skips=(
# channels_last support on cuda requires cudnn >= 8005
DecorateInfo(skipCUDAIfCudnnVersionLessThan(version=8005), 'TestModule', 'test_memory_format'),
# Failure on ROCM for float32 issue #70125
DecorateInfo(skipCUDAIfRocm, 'TestModule', 'test_memory_format', dtypes=[torch.float32]),
# Lazy modules don't currently play well with ModuleInfo tests on the meta device.
# See https://github.com/pytorch/pytorch/issues/70505 for more info.
DecorateInfo(skipMeta),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
# This was wrongly being skipped before and needs investigation.
# See https://github.com/pytorch/pytorch/issues/80247
DecorateInfo(unittest.expectedFailure, "TestModule", "test_memory_format"),
),
decorators=(
DecorateInfo(precisionOverride({torch.float32: 1e-04}), 'TestModule', 'test_memory_format'),
)),
ModuleInfo(torch.nn.Linear,
module_inputs_func=module_inputs_torch_nn_Linear,
skips=(
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
# No channels_last support for Linear currently.
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),)
),
ModuleInfo(torch.nn.Bilinear,
module_inputs_func=module_inputs_torch_nn_Bilinear,
decorators=[
DecorateInfo(
toleranceOverride({
torch.float32: tol(atol=1e-4, rtol=1e-4),
torch.float64: tol(atol=1e-4, rtol=1e-4)}),
'TestModule', 'test_forward', device_type='cpu')
],
skips=(
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
# No channels_last support for Bilinear currently.
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),)
),
ModuleInfo(torch.nn.MaxPool2d,
module_inputs_func=module_inputs_torch_nn_MaxPool2d,
skips=(
# TODO: test_non_contiguous_tensors doesn't handle case where output is not a singleton (such as
# return_indices=True for MaxPool2D), submit fix
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_non_contiguous_tensors'),
# TODO: test_cpu_gpu_parity doesn't handle case where output is not a singleton, submit fix
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_cpu_gpu_parity'),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.NLLLoss,
module_inputs_func=module_inputs_torch_nn_NLLLoss,
skips=(
# No channels_last support for loss functions.
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.GaussianNLLLoss,
module_inputs_func=module_inputs_torch_nn_GaussianNLLLoss,
skips=(
# No channels_last support for loss functions.
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),)),
ModuleInfo(torch.nn.CrossEntropyLoss,
module_inputs_func=module_inputs_torch_nn_CrossEntropyLoss,
skips=(
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.Hardswish,
module_inputs_func=module_inputs_torch_nn_Hardswish,
skips=(
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),),
supports_gradgrad=False),
ModuleInfo(torch.nn.TransformerEncoderLayer,
train_and_eval_differ=True,
module_inputs_func=module_inputs_torch_nn_TransformerEncoderLayer,
skips=(
# No channels_last support for TransformerEncoderLayer currently.
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.TransformerDecoderLayer,
module_inputs_func=module_inputs_torch_nn_TransformerDecoderLayer,
skips=(
# No channels_last support for TransformerDecoderLayer currently.
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.Transformer,
module_inputs_func=module_inputs_torch_nn_Transformer,
skips=(
# No channels_last support for Transformer currently.
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.MultiheadAttention,
train_and_eval_differ=True,
module_inputs_func=module_inputs_torch_nn_MultiheadAttention,
skips=(
# No channels_last support for MultiheadAttention currently.
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.Embedding,
module_inputs_func=module_inputs_torch_nn_Embedding,
skips=(
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.ReLU,
module_inputs_func=module_inputs_torch_nn_ReLU,
skips=(
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.RNNCell,
module_inputs_func=partial(module_inputs_torch_nn_RNN_GRU_Cell, is_rnn=True),
skips=(
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.GRUCell,
module_inputs_func=module_inputs_torch_nn_RNN_GRU_Cell,
skips=(
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.LSTMCell,
module_inputs_func=module_inputs_torch_nn_LSTMCell,
skips=(
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.Sigmoid,
module_inputs_func=module_inputs_torch_nn_Sigmoid,
skips=(
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),)
),
ModuleInfo(torch.nn.RNN,
train_and_eval_differ=True,
module_inputs_func=partial(module_inputs_torch_nn_RNN_GRU, is_rnn=True),
skips=(
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),),
decorators=rnn_gru_lstm_module_info_decorators
),
ModuleInfo(torch.nn.GRU,
train_and_eval_differ=True,
module_inputs_func=partial(module_inputs_torch_nn_RNN_GRU, is_rnn=False),
skips=(
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),),
decorators=rnn_gru_lstm_module_info_decorators),
ModuleInfo(torch.nn.LSTM,
train_and_eval_differ=True,
module_inputs_func=module_inputs_torch_nn_LSTM,
skips=(
DecorateInfo(skipIfMps, 'TestModule', dtypes=[torch.float64]),),
decorators=rnn_gru_lstm_module_info_decorators)
]
|