1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
|
r"""Importing this file must **not** initialize CUDA context. test_distributed
relies on this assumption to properly run. This means that when this is imported
no CUDA calls shall be made, including torch.cuda.device_count(), etc.
torch.testing._internal.common_cuda.py can freely initialize CUDA context when imported.
"""
import argparse
import contextlib
import copy
import ctypes
import errno
import functools
import gc
import inspect
import io
import json
import math
import operator
import os
import platform
import random
import re
import shutil
import socket
import subprocess
import sys
import tempfile
import threading
import time
import types
import unittest
import warnings
from collections.abc import Mapping, Sequence
from contextlib import closing, contextmanager
from copy import deepcopy
from enum import Enum
from functools import partial, wraps
from itertools import product
from pathlib import Path
from statistics import mean
from typing import (
Any,
Callable,
Dict,
Iterable,
Iterator,
List,
Optional,
Tuple,
Type,
TypeVar,
Union,
)
from unittest.mock import MagicMock
import expecttest
import numpy as np
import __main__ # type: ignore[import]
import torch
import torch.backends.cudnn
import torch.backends.mkl
import torch.backends.xnnpack
import torch.cuda
from torch import Tensor
from torch._C import ScriptDict, ScriptList # type: ignore[attr-defined]
from torch._six import string_classes
from torch._utils_internal import get_writable_path
from torch.nn import (
ModuleDict,
ModuleList,
ParameterDict,
ParameterList,
Sequential,
)
from torch.onnx import (
register_custom_op_symbolic,
unregister_custom_op_symbolic,
)
from torch.testing import make_tensor
from torch.testing._comparison import (
BooleanPair,
ErrorMeta,
NonePair,
NumberPair,
Pair,
TensorLikePair,
UnsupportedInputs,
)
from torch.testing._comparison import assert_equal as assert_equal
from torch.testing._internal.common_dtype import get_all_dtypes
from .composite_compliance import no_dispatch
torch.backends.disable_global_flags()
FILE_SCHEMA = "file://"
if sys.platform == 'win32':
FILE_SCHEMA = "file:///"
IS_CI = bool(os.getenv('CI'))
IS_SANDCASTLE = os.getenv('SANDCASTLE') == '1' or os.getenv('TW_JOB_USER') == 'sandcastle'
IS_FBCODE = os.getenv('PYTORCH_TEST_FBCODE') == '1'
IS_REMOTE_GPU = os.getenv('PYTORCH_TEST_REMOTE_GPU') == '1'
RETRY_TEST_CASES = os.getenv('PYTORCH_RETRY_TEST_CASES') == '1'
OVERRIDE_FLAKY_SIGNAL = os.getenv('PYTORCH_OVERRIDE_FLAKY_SIGNAL') == '1'
DISABLE_RUNNING_SCRIPT_CHK = os.getenv('PYTORCH_DISABLE_RUNNING_SCRIPT_CHK') == '1'
MAX_NUM_RETRIES = 3
DEFAULT_DISABLED_TESTS_FILE = '.pytorch-disabled-tests.json'
DEFAULT_SLOW_TESTS_FILE = '.pytorch-slow-tests.json'
disabled_tests_dict = {}
slow_tests_dict = {}
# set them here in case the tests are running in a subprocess that doesn't call run_tests
if os.getenv("SLOW_TESTS_FILE", ""):
with open(os.getenv("SLOW_TESTS_FILE"), 'r') as fp:
slow_tests_dict = json.load(fp)
warnings.warn(f"loaded {len(slow_tests_dict)} slow tests")
if os.getenv("DISABLED_TESTS_FILE", ""):
with open(os.getenv("DISABLED_TESTS_FILE"), 'r') as fp:
disabled_tests_dict = json.load(fp)
warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests")
NATIVE_DEVICES = ('cpu', 'cuda', 'meta')
class _TestParametrizer(object):
"""
Decorator class for parametrizing a test function, yielding a set of new tests spawned
from the original generic test, each specialized for a specific set of test inputs. For
example, parametrizing a test across the set of ops will result in a test function per op.
The decision of how to parametrize / what to parametrize over is intended to be implemented
by each derived class.
In the details, the decorator adds a 'parametrize_fn' property to the test function that is called
during device-specific test instantiation performed in instantiate_device_type_tests(). Because of this,
there is no need to parametrize over device type, as that is already handled separately.
If the decorator is applied to a test function that already has a 'parametrize_fn' property, a new
composite 'parametrize_fn' will be created that generates tests with the product of the parameters
generated by the old and new parametrize_fns. This allows for convenient composability of decorators.
"""
def _parametrize_test(self, test, generic_cls, device_cls):
"""
Parametrizes the given test function across whatever dimension is specified by the derived class.
Tests can be parametrized over any arbitrary dimension or combination of dimensions, such as all
ops, all modules, or all ops + their associated dtypes.
Args:
test (fn): Test function to parametrize over
generic_cls (class): Generic test class object containing tests (e.g. TestFoo)
device_cls (class): Device-specialized test class object (e.g. TestFooCPU); set to None
if the tests are not part of a device-specific set
Returns:
Generator object returning 3-tuples of:
test (fn): Parametrized test function; must support a device arg and args for any params
test_name (str): Parametrized suffix for the test (e.g. opname_int64); will be appended to
the base name of the test
param_kwargs (dict): Param kwargs to pass to the test (e.g. {'op': 'add', 'dtype': torch.int64})
"""
raise NotImplementedError
def __call__(self, fn):
if hasattr(fn, 'parametrize_fn'):
# Do composition with the product of args.
old_parametrize_fn = fn.parametrize_fn
new_parametrize_fn = self._parametrize_test
fn.parametrize_fn = compose_parametrize_fns(old_parametrize_fn, new_parametrize_fn)
else:
fn.parametrize_fn = self._parametrize_test
return fn
def compose_parametrize_fns(old_parametrize_fn, new_parametrize_fn):
"""
Returns a parametrize_fn that parametrizes over the product of the parameters handled
by the given parametrize_fns. Each given parametrize_fn should each have the signature
f(test, generic_cls, device_cls).
The test names will be a combination of the names produced by the parametrize_fns in
"<new_name>_<old_name>" order. This order is done to match intuition for constructed names
when composing multiple decorators; the names will be built in top to bottom order when stacking
parametrization decorators.
Args:
old_parametrize_fn (callable) - First parametrize_fn to compose.
new_parametrize_fn (callable) - Second parametrize_fn to compose.
"""
def composite_fn(test, generic_cls, device_cls,
old_parametrize_fn=old_parametrize_fn,
new_parametrize_fn=new_parametrize_fn):
old_tests = [(test, test_name, param_kwargs) for (test, test_name, param_kwargs) in
old_parametrize_fn(test, generic_cls, device_cls)]
for (old_test, old_test_name, old_param_kwargs) in old_tests:
for (new_test, new_test_name, new_param_kwargs) in \
new_parametrize_fn(old_test, generic_cls, device_cls):
redundant_params = set(old_param_kwargs.keys()).intersection(new_param_kwargs.keys())
if redundant_params:
raise RuntimeError('Parametrization over the same parameter by multiple parametrization '
'decorators is not supported. For test "{}", the following parameters '
'are handled multiple times: {}'.format(
test.__name__, redundant_params))
full_param_kwargs = {**old_param_kwargs, **new_param_kwargs}
merged_test_name = '{}{}{}'.format(new_test_name,
'_' if old_test_name != '' and new_test_name != '' else '',
old_test_name)
yield (new_test, merged_test_name, full_param_kwargs)
return composite_fn
def instantiate_parametrized_tests(generic_cls):
"""
Instantiates tests that have been decorated with a parametrize_fn. This is generally performed by a
decorator subclass of _TestParametrizer. The generic test will be replaced on the test class by
parametrized tests with specialized names.
You can also use it as a class decorator. E.g.
```
@instantiate_parametrized_tests
class TestFoo(TestCase):
...
```
Args:
generic_cls (class): Generic test class object containing tests (e.g. TestFoo)
"""
for attr_name in tuple(dir(generic_cls)):
class_attr = getattr(generic_cls, attr_name)
if not hasattr(class_attr, 'parametrize_fn'):
continue
# Remove the generic test from the test class.
delattr(generic_cls, attr_name)
# Add parametrized tests to the test class.
def instantiate_test_helper(cls, name, test, param_kwargs):
@wraps(test)
def instantiated_test(self, param_kwargs=param_kwargs):
test(self, **param_kwargs)
assert not hasattr(generic_cls, name), "Redefinition of test {0}".format(name)
setattr(generic_cls, name, instantiated_test)
for (test, test_suffix, param_kwargs) in class_attr.parametrize_fn(
class_attr, generic_cls=generic_cls, device_cls=None):
full_name = '{}_{}'.format(test.__name__, test_suffix)
instantiate_test_helper(cls=generic_cls, name=full_name, test=test, param_kwargs=param_kwargs)
return generic_cls
class subtest(object):
"""
Explicit subtest case for use with test parametrization.
Allows for explicit naming of individual subtest cases as well as applying
decorators to the parametrized test.
Args:
arg_values (iterable): Iterable of arg values (e.g. range(10)) or
tuples of arg values (e.g. [(1, 2), (3, 4)]).
name (str): Optional name to use for the test.
decorators (iterable): Iterable of decorators to apply to the generated test.
"""
__slots__ = ['arg_values', 'name', 'decorators']
def __init__(self, arg_values, name=None, decorators=None):
self.arg_values = arg_values
self.name = name
self.decorators = decorators if decorators else []
class parametrize(_TestParametrizer):
"""
Decorator for applying generic test parametrizations.
The interface for this decorator is modeled after `@pytest.mark.parametrize`.
Basic usage between this decorator and pytest's is identical. The first argument
should be a string containing comma-separated names of parameters for the test, and
the second argument should be an iterable returning values or tuples of values for
the case of multiple parameters.
Beyond this basic usage, the decorator provides some additional functionality that
pytest does not.
1. Parametrized tests end up as generated test functions on unittest test classes.
Since this differs from how pytest works, this decorator takes on the additional
responsibility of naming these test functions. The default test names consists of
the test's base name followed by each parameter name + value (e.g. "test_bar_x_1_y_foo"),
but custom names can be defined using `name_fn` or the `subtest` structure (see below).
2. The decorator specially handles parameter values of type `subtest`, which allows for
more fine-grained control over both test naming and test execution. In particular, it can
be used to tag subtests with explicit test names or apply arbitrary decorators (see examples
below).
Examples::
@parametrize("x", range(5))
def test_foo(self, x):
...
@parametrize("x,y", [(1, 'foo'), (2, 'bar'), (3, 'baz')])
def test_bar(self, x, y):
...
@parametrize("x,y", [(1, 'foo'), (2, 'bar'), (3, 'baz')],
name_fn=lambda x, y: '{}_{}'.format(x, y))
def test_bar_custom_names(self, x, y):
...
@parametrize("x, y", [subtest((1, 2), name='double'),
subtest((1, 3), name='triple', decorators=[unittest.expectedFailure]),
subtest((1, 4), name='quadruple')])
def test_baz(self, x, y):
...
Args:
arg_str (str): String of arg names separate by commas (e.g. "x,y").
arg_values (iterable): Iterable of arg values (e.g. range(10)) or
tuples of arg values (e.g. [(1, 2), (3, 4)]).
name_fn (Callable): Optional function that takes in parameters and returns subtest name.
"""
def __init__(self, arg_str, arg_values, name_fn=None):
self.arg_names: List[str] = [s.strip() for s in arg_str.split(',')]
self.arg_values = arg_values
self.name_fn = name_fn
def _formatted_str_repr(self, name, value):
""" Returns a string representation for the given arg that is suitable for use in test function names. """
if isinstance(value, torch.dtype):
return dtype_name(value)
elif isinstance(value, torch.device):
return str(value)
# Can't use isinstance as it would cause a circular import
elif value.__class__.__name__ == 'OpInfo' or value.__class__.__name__ == 'ModuleInfo':
return value.formatted_name
else:
# Include name and value separated by underscore.
return '{}_{}'.format(name, str(value).replace('.', '_'))
def _default_subtest_name(self, values):
return '_'.join([self._formatted_str_repr(a, v) for a, v in zip(self.arg_names, values)])
def _get_subtest_name(self, values, explicit_name=None):
if explicit_name:
subtest_name = explicit_name
elif self.name_fn:
subtest_name = self.name_fn(*values)
else:
subtest_name = self._default_subtest_name(values)
return subtest_name
def _parametrize_test(self, test, generic_cls, device_cls):
if len(self.arg_names) == 0:
# No additional parameters needed for the test.
test_name = ''
yield (test, test_name, {})
else:
# Each "values" item is expected to be either:
# * A tuple of values with one for each arg. For a single arg, a single item is expected.
# * A subtest instance with arg_values matching the previous.
values = check_exhausted_iterator = object()
for values in self.arg_values:
maybe_name = None
if isinstance(values, subtest):
sub = values
values = sub.arg_values
maybe_name = sub.name
# Apply decorators.
@wraps(test)
def test_wrapper(*args, **kwargs):
return test(*args, **kwargs)
for decorator in sub.decorators:
test_wrapper = decorator(test_wrapper)
gen_test = test_wrapper
else:
gen_test = test
values = list(values) if len(self.arg_names) > 1 else [values]
if len(values) != len(self.arg_names):
raise RuntimeError('Expected # values == # arg names, but got: {} '
'values and {} names for test "{}"'.format(
len(values), len(self.arg_names), test.__name__))
param_kwargs = {
name: value for name, value in zip(self.arg_names, values)
}
test_name = self._get_subtest_name(values, explicit_name=maybe_name)
if '.' in test_name:
raise RuntimeError('Test name cannot contain periods, but got: {}'.format(test_name))
yield (gen_test, test_name, param_kwargs)
if values is check_exhausted_iterator:
raise ValueError('An empty arg_values was passed to @parametrize. '
'Note that this may result from reuse of a generator.')
class ProfilingMode(Enum):
LEGACY = 1
SIMPLE = 2
PROFILING = 3
def cppProfilingFlagsToProfilingMode():
old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
old_prof_mode_state = torch._C._get_graph_executor_optimize(True)
torch._C._jit_set_profiling_executor(old_prof_exec_state)
torch._C._get_graph_executor_optimize(old_prof_mode_state)
if old_prof_exec_state:
if old_prof_mode_state:
return ProfilingMode.PROFILING
else:
return ProfilingMode.SIMPLE
else:
return ProfilingMode.LEGACY
@contextmanager
def enable_profiling_mode_for_profiling_tests():
if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
old_prof_mode_state = torch._C._get_graph_executor_optimize(True)
try:
yield
finally:
if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
torch._C._jit_set_profiling_executor(old_prof_exec_state)
torch._C._get_graph_executor_optimize(old_prof_mode_state)
@contextmanager
def enable_profiling_mode():
old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
old_prof_mode_state = torch._C._get_graph_executor_optimize(True)
try:
yield
finally:
torch._C._jit_set_profiling_executor(old_prof_exec_state)
torch._C._get_graph_executor_optimize(old_prof_mode_state)
@contextmanager
def num_profiled_runs(num_runs):
old_num_runs = torch._C._jit_set_num_profiled_runs(num_runs)
try:
yield
finally:
torch._C._jit_set_num_profiled_runs(old_num_runs)
func_call = torch._C.ScriptFunction.__call__
meth_call = torch._C.ScriptMethod.__call__
def prof_callable(callable, *args, **kwargs):
if 'profile_and_replay' in kwargs:
del kwargs['profile_and_replay']
if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
with enable_profiling_mode_for_profiling_tests():
callable(*args, **kwargs)
return callable(*args, **kwargs)
return callable(*args, **kwargs)
def prof_func_call(*args, **kwargs):
return prof_callable(func_call, *args, **kwargs)
def prof_meth_call(*args, **kwargs):
return prof_callable(meth_call, *args, **kwargs)
# TODO fix when https://github.com/python/mypy/issues/2427 is address
torch._C.ScriptFunction.__call__ = prof_func_call # type: ignore[assignment]
torch._C.ScriptMethod.__call__ = prof_meth_call # type: ignore[assignment]
def _get_test_report_path():
# allow users to override the test file location. We need this
# because the distributed tests run the same test file multiple
# times with different configurations.
override = os.environ.get('TEST_REPORT_SOURCE_OVERRIDE')
test_source = override if override is not None else 'python-unittest'
return os.path.join('test-reports', test_source)
is_running_via_run_test = "run_test.py" in getattr(__main__, "__file__", "")
parser = argparse.ArgumentParser(add_help=not is_running_via_run_test, allow_abbrev=False)
parser.add_argument('--subprocess', action='store_true',
help='whether to run each test in a subprocess')
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--accept', action='store_true')
parser.add_argument('--jit_executor', type=str)
parser.add_argument('--repeat', type=int, default=1)
parser.add_argument('--test_bailouts', action='store_true')
parser.add_argument('--use-pytest', action='store_true')
parser.add_argument('--save-xml', nargs='?', type=str,
const=_get_test_report_path(),
default=_get_test_report_path() if IS_CI else None)
parser.add_argument('--discover-tests', action='store_true')
parser.add_argument('--log-suffix', type=str, default="")
parser.add_argument('--run-parallel', type=int, default=1)
parser.add_argument('--import-slow-tests', type=str, nargs='?', const=DEFAULT_SLOW_TESTS_FILE)
parser.add_argument('--import-disabled-tests', type=str, nargs='?', const=DEFAULT_DISABLED_TESTS_FILE)
# Only run when -h or --help flag is active to display both unittest and parser help messages.
def run_unittest_help(argv):
unittest.main(argv=argv)
if '-h' in sys.argv or '--help' in sys.argv:
help_thread = threading.Thread(target=run_unittest_help, args=(sys.argv,))
help_thread.start()
help_thread.join()
args, remaining = parser.parse_known_args()
if args.jit_executor == 'legacy':
GRAPH_EXECUTOR = ProfilingMode.LEGACY
elif args.jit_executor == 'profiling':
GRAPH_EXECUTOR = ProfilingMode.PROFILING
elif args.jit_executor == 'simple':
GRAPH_EXECUTOR = ProfilingMode.SIMPLE
else:
# infer flags based on the default settings
GRAPH_EXECUTOR = cppProfilingFlagsToProfilingMode()
SLOW_TESTS_FILE = args.import_slow_tests
DISABLED_TESTS_FILE = args.import_disabled_tests
LOG_SUFFIX = args.log_suffix
RUN_PARALLEL = args.run_parallel
TEST_BAILOUTS = args.test_bailouts
USE_PYTEST = args.use_pytest
TEST_DISCOVER = args.discover_tests
TEST_IN_SUBPROCESS = args.subprocess
TEST_SAVE_XML = args.save_xml
REPEAT_COUNT = args.repeat
SEED = args.seed
if not expecttest.ACCEPT:
expecttest.ACCEPT = args.accept
UNITTEST_ARGS = [sys.argv[0]] + remaining
torch.manual_seed(SEED)
# CI Prefix path used only on CI environment
CI_TEST_PREFIX = str(Path(os.getcwd()))
CI_PT_ROOT = str(Path(os.getcwd()).parent)
CI_FUNCTORCH_ROOT = str(os.path.join(Path(os.getcwd()).parent, "functorch"))
def wait_for_process(p):
try:
return p.wait()
except KeyboardInterrupt:
# Give `p` a chance to handle KeyboardInterrupt. Without this,
# `pytest` can't print errors it collected so far upon KeyboardInterrupt.
exit_status = p.wait(timeout=5)
if exit_status is not None:
return exit_status
else:
p.kill()
raise
except: # noqa: B001,E722, copied from python core library
p.kill()
raise
finally:
# Always call p.wait() to ensure exit
p.wait()
def shell(command, cwd=None, env=None, stdout=None, stderr=None):
sys.stdout.flush()
sys.stderr.flush()
# The following cool snippet is copied from Py3 core library subprocess.call
# only the with
# 1. `except KeyboardInterrupt` block added for SIGINT handling.
# 2. In Py2, subprocess.Popen doesn't return a context manager, so we do
# `p.wait()` in a `final` block for the code to be portable.
#
# https://github.com/python/cpython/blob/71b6c1af727fbe13525fb734568057d78cea33f3/Lib/subprocess.py#L309-L323
assert not isinstance(command, torch._six.string_classes), "Command to shell should be a list or tuple of tokens"
p = subprocess.Popen(command, universal_newlines=True, cwd=cwd, env=env, stdout=stdout, stderr=stderr)
return wait_for_process(p)
def discover_test_cases_recursively(suite_or_case):
if isinstance(suite_or_case, unittest.TestCase):
return [suite_or_case]
rc = []
for element in suite_or_case:
print(element)
rc.extend(discover_test_cases_recursively(element))
return rc
def get_test_names(test_cases):
return ['.'.join(case.id().split('.')[-2:]) for case in test_cases]
def _print_test_names():
suite = unittest.TestLoader().loadTestsFromModule(__main__)
test_cases = discover_test_cases_recursively(suite)
for name in get_test_names(test_cases):
print(name)
def chunk_list(lst, nchunks):
return [lst[i::nchunks] for i in range(nchunks)]
# sanitize filename e.g., distributed/pipeline/sync/skip/test_api.py -> distributed.pipeline.sync.skip.test_api
def sanitize_test_filename(filename):
# inspect.getfile returns absolute path in some CI jobs, converting it to relative path if needed
if filename.startswith(CI_TEST_PREFIX):
filename = filename[len(CI_TEST_PREFIX) + 1:]
strip_py = re.sub(r'.py$', '', filename)
return re.sub('/', r'.', strip_py)
# hack until https://github.com/pytorch/pytorch/issues/82109 is resolved
def sanitize_if_functorch_test_filename(filename):
# absolute filenames must be converted to relative paths, otherwise,
# we cannot prepend test-reports/ to it
# (e.g. test-reports\\C:\\... on windows is nonsense)
if filename.startswith(CI_FUNCTORCH_ROOT):
filename = filename[len(CI_PT_ROOT) + 1:]
return filename
def lint_test_case_extension(suite):
succeed = True
for test_case_or_suite in suite:
test_case = test_case_or_suite
if isinstance(test_case_or_suite, unittest.TestSuite):
first_test = test_case_or_suite._tests[0] if len(test_case_or_suite._tests) > 0 else None
if first_test is not None and isinstance(first_test, unittest.TestSuite):
return succeed and lint_test_case_extension(test_case_or_suite)
test_case = first_test
if test_case is not None:
test_class = test_case.id().split('.', 1)[1].split('.')[0]
if not isinstance(test_case, TestCase):
err = "This test class should extend from torch.testing._internal.common_utils.TestCase but it doesn't."
print(f"{test_class} - failed. {err}")
succeed = False
return succeed
def get_report_path(pytest=False):
test_filename = inspect.getfile(sys._getframe(2))
test_filename = sanitize_if_functorch_test_filename(test_filename)
test_filename = sanitize_test_filename(test_filename)
test_report_path = TEST_SAVE_XML + LOG_SUFFIX
test_report_path = os.path.join(test_report_path, test_filename)
if pytest:
test_report_path = test_report_path.replace('python-unittest', 'python-pytest')
os.makedirs(test_report_path, exist_ok=True)
test_report_path = os.path.join(test_report_path, f"{test_filename}-{os.urandom(8).hex()}.xml")
return test_report_path
os.makedirs(test_report_path, exist_ok=True)
return test_report_path
def sanitize_pytest_xml(xml_file: str):
# pytext xml is different from unittext xml, this function makes pytest xml more similar to unittest xml
# consider somehow modifying the XML logger in conftest to do this instead
import xml.etree.ElementTree as ET
tree = ET.parse(xml_file)
for testcase in tree.iter('testcase'):
full_classname = testcase.attrib['classname']
# The test prefix is optional
regex_result = re.search(r"^(test\.)?(?P<file>.*)\.(?P<classname>[^\.]*)$", full_classname)
classname = regex_result.group("classname")
file = regex_result.group("file").replace(".", "/")
testcase.set("classname", classname)
testcase.set("file", f"{file}.py")
tree.write(xml_file)
def run_tests(argv=UNITTEST_ARGS):
# import test files.
if SLOW_TESTS_FILE:
if os.path.exists(SLOW_TESTS_FILE):
with open(SLOW_TESTS_FILE, 'r') as fp:
global slow_tests_dict
slow_tests_dict = json.load(fp)
# use env vars so pytest-xdist subprocesses can still access them
os.environ['SLOW_TESTS_FILE'] = SLOW_TESTS_FILE
else:
warnings.warn(f'slow test file provided but not found: {SLOW_TESTS_FILE}')
if DISABLED_TESTS_FILE:
if os.path.exists(DISABLED_TESTS_FILE):
with open(DISABLED_TESTS_FILE, 'r') as fp:
global disabled_tests_dict
disabled_tests_dict = json.load(fp)
os.environ['DISABLED_TESTS_FILE'] = DISABLED_TESTS_FILE
else:
warnings.warn(f'disabled test file provided but not found: {DISABLED_TESTS_FILE}')
# Determine the test launch mechanism
if TEST_DISCOVER:
_print_test_names()
return
# Before running the tests, lint to check that every test class extends from TestCase
suite = unittest.TestLoader().loadTestsFromModule(__main__)
if not lint_test_case_extension(suite):
sys.exit(1)
if TEST_IN_SUBPROCESS:
failed_tests = []
test_cases = discover_test_cases_recursively(suite)
for case in test_cases:
test_case_full_name = case.id().split('.', 1)[1]
other_args = []
if DISABLED_TESTS_FILE:
other_args.append('--import-disabled-tests')
if SLOW_TESTS_FILE:
other_args.append('--import-slow-tests')
cmd = [sys.executable] + [argv[0]] + other_args + argv[1:] + [test_case_full_name]
string_cmd = " ".join(cmd)
exitcode = shell(cmd)
if exitcode != 0:
# This is sort of hacky, but add on relevant env variables for distributed tests.
if 'TestDistBackendWithSpawn' in test_case_full_name:
backend = os.environ.get("BACKEND", "")
world_size = os.environ.get("WORLD_SIZE", "")
env_prefix = f"BACKEND={backend} WORLD_SIZE={world_size}"
string_cmd = env_prefix + " " + string_cmd
# Log the command to reproduce the failure.
print(f"Test exited with non-zero exitcode {exitcode}. Command to reproduce: {string_cmd}")
failed_tests.append(test_case_full_name)
assert len(failed_tests) == 0, "{} unit test(s) failed:\n\t{}".format(
len(failed_tests), '\n\t'.join(failed_tests))
elif RUN_PARALLEL > 1:
test_cases = discover_test_cases_recursively(suite)
test_batches = chunk_list(get_test_names(test_cases), RUN_PARALLEL)
processes = []
for i in range(RUN_PARALLEL):
command = [sys.executable] + argv + ['--log-suffix=-shard-{}'.format(i + 1)] + test_batches[i]
processes.append(subprocess.Popen(command, universal_newlines=True))
failed = False
for p in processes:
failed |= wait_for_process(p) != 0
assert not failed, "Some test shards have failed"
elif USE_PYTEST:
if TEST_SAVE_XML:
test_report_path = get_report_path(pytest=True)
print(f'Test results will be stored in {test_report_path}')
import pytest
os.environ["NO_COLOR"] = "1"
os.environ["USING_PYTEST"] = "1"
exit_code = pytest.main(args=argv + [f'--junit-xml-reruns={test_report_path}'] if TEST_SAVE_XML else [])
del os.environ["USING_PYTEST"]
if TEST_SAVE_XML:
sanitize_pytest_xml(test_report_path)
print("If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them")
# exitcode of 5 means no tests were found, which happens since some test configs don't
# run tests from certain files
exit(0 if exit_code == 5 else exit_code)
elif TEST_SAVE_XML is not None:
# import here so that non-CI doesn't need xmlrunner installed
import xmlrunner # type: ignore[import]
from xmlrunner.result import _XMLTestResult # type: ignore[import]
class XMLTestResultVerbose(_XMLTestResult):
"""
Adding verbosity to test outputs:
by default test summary prints 'skip',
but we want to also print the skip reason.
GH issue: https://github.com/pytorch/pytorch/issues/69014
This works with unittest_xml_reporting<=3.2.0,>=2.0.0
(3.2.0 is latest at the moment)
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def addSkip(self, test, reason):
super().addSkip(test, reason)
for c in self.callback.__closure__:
if isinstance(c.cell_contents, str) and c.cell_contents == 'skip':
# this message is printed in test summary;
# it stands for `verbose_str` captured in the closure
c.cell_contents = f"skip: {reason}"
test_report_path = get_report_path()
verbose = '--verbose' in argv or '-v' in argv
if verbose:
print(f'Test results will be stored in {test_report_path}')
unittest.main(argv=argv, testRunner=xmlrunner.XMLTestRunner(
output=test_report_path,
verbosity=2 if verbose else 1,
resultclass=XMLTestResultVerbose))
elif REPEAT_COUNT > 1:
for _ in range(REPEAT_COUNT):
if not unittest.main(exit=False, argv=argv).result.wasSuccessful():
sys.exit(-1)
else:
unittest.main(argv=argv)
IS_LINUX = sys.platform == "linux"
IS_WINDOWS = sys.platform == "win32"
IS_MACOS = sys.platform == "darwin"
IS_PPC = platform.machine() == "ppc64le"
IS_X86 = platform.machine() in ('x86_64', 'i386')
IS_ARM64 = platform.machine() == 'arm64'
def is_avx512_vnni_supported():
if sys.platform != 'linux':
return False
with open("/proc/cpuinfo", encoding="ascii") as f:
lines = f.read()
return "vnni" in lines
IS_AVX512_VNNI_SUPPORTED = is_avx512_vnni_supported()
if IS_WINDOWS:
@contextmanager
def TemporaryFileName(*args, **kwargs):
# Ideally we would like to not have to manually delete the file, but NamedTemporaryFile
# opens the file, and it cannot be opened multiple times in Windows. To support Windows,
# close the file after creation and try to remove it manually
if 'delete' in kwargs:
if kwargs['delete'] is not False:
raise UserWarning("only TemporaryFileName with delete=False is supported on Windows.")
else:
kwargs['delete'] = False
f = tempfile.NamedTemporaryFile(*args, **kwargs)
try:
f.close()
yield f.name
finally:
os.unlink(f.name)
else:
@contextmanager # noqa: T484
def TemporaryFileName(*args, **kwargs):
with tempfile.NamedTemporaryFile(*args, **kwargs) as f:
yield f.name
if IS_WINDOWS:
@contextmanager
def TemporaryDirectoryName(suffix=None):
# On Windows the directory created by TemporaryDirectory is likely to be removed prematurely,
# so we first create the directory using mkdtemp and then remove it manually
try:
dir_name = tempfile.mkdtemp(suffix=suffix)
yield dir_name
finally:
shutil.rmtree(dir_name)
else:
@contextmanager # noqa: T484
def TemporaryDirectoryName(suffix=None):
with tempfile.TemporaryDirectory(suffix=suffix) as d:
yield d
IS_FILESYSTEM_UTF8_ENCODING = sys.getfilesystemencoding() == 'utf-8'
def _check_module_exists(name: str) -> bool:
r"""Returns if a top-level module with :attr:`name` exists *without**
importing it. This is generally safer than try-catch block around a
`import X`. It avoids third party libraries breaking assumptions of some of
our tests, e.g., setting multiprocessing start method when imported
(see librosa/#747, torchvision/#544).
"""
try:
import importlib.util
spec = importlib.util.find_spec(name)
return spec is not None
except ImportError:
return False
TEST_NUMPY = _check_module_exists('numpy')
TEST_FAIRSEQ = _check_module_exists('fairseq')
TEST_SCIPY = _check_module_exists('scipy')
TEST_MKL = torch.backends.mkl.is_available()
TEST_CUDA = torch.cuda.is_available()
TEST_NUMBA = _check_module_exists('numba')
TEST_DILL = _check_module_exists('dill')
TEST_LIBROSA = _check_module_exists('librosa') and not IS_ARM64
TEST_OPT_EINSUM = _check_module_exists('opt_einsum')
BUILD_WITH_CAFFE2 = torch.onnx._CAFFE2_ATEN_FALLBACK
# Python 2.7 doesn't have spawn
NO_MULTIPROCESSING_SPAWN = os.environ.get('NO_MULTIPROCESSING_SPAWN', '0') == '1'
TEST_WITH_ASAN = os.getenv('PYTORCH_TEST_WITH_ASAN', '0') == '1'
TEST_WITH_DEV_DBG_ASAN = os.getenv('PYTORCH_TEST_WITH_DEV_DBG_ASAN', '0') == '1'
TEST_WITH_TSAN = os.getenv('PYTORCH_TEST_WITH_TSAN', '0') == '1'
TEST_WITH_UBSAN = os.getenv('PYTORCH_TEST_WITH_UBSAN', '0') == '1'
TEST_WITH_ROCM = os.getenv('PYTORCH_TEST_WITH_ROCM', '0') == '1'
# TODO: Remove PYTORCH_MIOPEN_SUGGEST_NHWC once ROCm officially supports NHWC in MIOpen
# See #64427
TEST_WITH_MIOPEN_SUGGEST_NHWC = os.getenv('PYTORCH_MIOPEN_SUGGEST_NHWC', '0') == '1'
# Enables tests that are slow to run (disabled by default)
TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1'
# Disables non-slow tests (these tests enabled by default)
# This is usually used in conjunction with TEST_WITH_SLOW to
# run *only* slow tests. (I could have done an enum, but
# it felt a little awkward.
TEST_SKIP_FAST = os.getenv('PYTORCH_TEST_SKIP_FAST', '0') == '1'
# Enables crossref tests, in addition to standard tests which
# are being run. crossref tests work by installing a torch
# function mode that runs extra compute alongside the regular
# computation that happens with the test. After both computations
# are done, we cross-reference them (thus the name) to check for
# correction, before throwing out the extra compute and proceeding
# as we had before. By default, we don't run these tests.
TEST_WITH_CROSSREF = os.getenv('PYTORCH_TEST_WITH_CROSSREF', '0') == '1'
if TEST_CUDA and 'NUM_PARALLEL_PROCS' in os.environ:
num_procs = int(os.getenv("NUM_PARALLEL_PROCS", "2"))
# other libraries take up about 11% of space per process
torch.cuda.set_per_process_memory_fraction(round(1 / num_procs - .11, 2))
def skipIfCrossRef(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if TEST_WITH_CROSSREF:
raise unittest.SkipTest("test doesn't currently with crossref")
else:
fn(*args, **kwargs)
return wrapper
class CrossRefMode(torch.overrides.TorchFunctionMode):
def __torch_function__(self, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
r = func(*args, **kwargs)
return r
# Run PyTorch tests with TorchDynamo
TEST_WITH_TORCHINDUCTOR = os.getenv('PYTORCH_TEST_WITH_INDUCTOR') == '1'
TEST_WITH_TORCHDYNAMO = os.getenv('PYTORCH_TEST_WITH_DYNAMO') == '1' or TEST_WITH_TORCHINDUCTOR
if TEST_WITH_TORCHDYNAMO:
import torchdynamo
import logging
torchdynamo.config.log_level = logging.ERROR
# Do not spend time on helper functions that are called with different inputs
torchdynamo.config.cache_size_limit = 8
def skipIfTorchDynamo(msg="test doesn't currently work with torchdynamo"):
def decorator(fn):
if not isinstance(fn, type):
@wraps(fn)
def wrapper(*args, **kwargs):
if TEST_WITH_TORCHDYNAMO:
raise unittest.SkipTest(msg)
else:
fn(*args, **kwargs)
return wrapper
assert(isinstance(fn, type))
if TEST_WITH_TORCHDYNAMO:
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = msg
return fn
return decorator
def skipIfTorchInductor(msg="test doesn't currently work with torchinductor"):
def decorator(fn):
if not isinstance(fn, type):
@wraps(fn)
def wrapper(*args, **kwargs):
if TEST_WITH_TORCHINDUCTOR:
raise unittest.SkipTest(msg)
else:
fn(*args, **kwargs)
return wrapper
assert(isinstance(fn, type))
if TEST_WITH_TORCHINDUCTOR:
fn.__unittest_skip__ = True
fn.__unittest_skip_why__ = msg
return fn
return decorator
# Determine whether to enable cuda memory leak check.
# CUDA mem leak check is expensive and thus we don't want to execute it on every
# test case / configuration.
# If this is True then CUDA memory leak checks are skipped. If this is false
# then CUDA memory leak checks are performed.
# See: https://github.com/pytorch/pytorch/pull/59402#issuecomment-858811135
TEST_SKIP_CUDA_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_SKIP_CUDA_MEM_LEAK_CHECK', '0') == '1'
# True if CI is running TBB-enabled Pytorch
IS_TBB = "tbb" in os.getenv("BUILD_ENVIRONMENT", "")
# Dict of NumPy dtype -> torch dtype (when the correspondence exists)
numpy_to_torch_dtype_dict = {
np.bool_ : torch.bool,
np.uint8 : torch.uint8,
np.int8 : torch.int8,
np.int16 : torch.int16,
np.int32 : torch.int32,
np.int64 : torch.int64,
np.float16 : torch.float16,
np.float32 : torch.float32,
np.float64 : torch.float64,
np.complex64 : torch.complex64,
np.complex128 : torch.complex128
}
# numpy dtypes like np.float64 are not instances, but rather classes. This leads to rather absurd cases like
# np.float64 != np.dtype("float64") but np.float64 == np.dtype("float64").type.
# Especially when checking against a reference we can't be sure which variant we get, so we simply try both.
def numpy_to_torch_dtype(np_dtype):
try:
return numpy_to_torch_dtype_dict[np_dtype]
except KeyError:
return numpy_to_torch_dtype_dict[np_dtype.type]
def has_corresponding_torch_dtype(np_dtype):
try:
numpy_to_torch_dtype(np_dtype)
return True
except KeyError:
return False
if IS_WINDOWS:
# Size of `np.intc` is platform defined.
# It is returned by functions like `bitwise_not`.
# On Windows `int` is 32-bit
# https://docs.microsoft.com/en-us/cpp/cpp/data-type-ranges?view=msvc-160
numpy_to_torch_dtype_dict[np.intc] = torch.int
# Dict of torch dtype -> NumPy dtype
torch_to_numpy_dtype_dict = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()}
torch_to_numpy_dtype_dict.update({
torch.bfloat16: np.float32,
torch.complex32: np.complex64
})
def skipIfRocm(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if TEST_WITH_ROCM:
raise unittest.SkipTest("test doesn't currently work on the ROCm stack")
else:
fn(*args, **kwargs)
return wrapper
def skipIfMps(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if torch.backends.mps.is_available():
raise unittest.SkipTest("test doesn't currently work with MPS")
else:
fn(*args, **kwargs)
return wrapper
# Skips a test on CUDA if ROCm is available and its version is lower than requested.
def skipIfRocmVersionLessThan(version=None):
def dec_fn(fn):
@wraps(fn)
def wrap_fn(self, *args, **kwargs):
if TEST_WITH_ROCM:
rocm_version = str(torch.version.hip)
rocm_version = rocm_version.split("-")[0] # ignore git sha
rocm_version_tuple = tuple(int(x) for x in rocm_version.split("."))
if rocm_version_tuple is None or version is None or rocm_version_tuple < tuple(version):
reason = "ROCm {0} is available but {1} required".format(rocm_version_tuple, version)
raise unittest.SkipTest(reason)
return fn(self, *args, **kwargs)
return wrap_fn
return dec_fn
def skipIfNotMiopenSuggestNHWC(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not TEST_WITH_MIOPEN_SUGGEST_NHWC:
raise unittest.SkipTest("test doesn't currently work without MIOpen NHWC activation")
else:
fn(*args, **kwargs)
return wrapper
# Context manager for setting deterministic flag and automatically
# resetting it to its original value
class DeterministicGuard:
def __init__(self, deterministic, *, warn_only=False):
self.deterministic = deterministic
self.warn_only = warn_only
def __enter__(self):
self.deterministic_restore = torch.are_deterministic_algorithms_enabled()
self.warn_only_restore = torch.is_deterministic_algorithms_warn_only_enabled()
torch.use_deterministic_algorithms(
self.deterministic,
warn_only=self.warn_only)
def __exit__(self, exception_type, exception_value, traceback):
torch.use_deterministic_algorithms(
self.deterministic_restore,
warn_only=self.warn_only_restore)
# Context manager for setting cuda sync debug mode and reset it
# to original value
# we are not exposing it to the core because sync debug mode is
# global and thus not thread safe
class CudaSyncGuard:
def __init__(self, sync_debug_mode):
self.mode = sync_debug_mode
def __enter__(self):
self.debug_mode_restore = torch.cuda.get_sync_debug_mode()
torch.cuda.set_sync_debug_mode(self.mode)
def __exit__(self, exception_type, exception_value, traceback):
torch.cuda.set_sync_debug_mode(self.debug_mode_restore)
# This decorator can be used for API tests that call
# torch.use_deterministic_algorithms(). When the test is finished, it will
# restore the previous deterministic flag setting.
#
# If CUDA >= 10.2, this will set the environment variable
# CUBLAS_WORKSPACE_CONFIG=:4096:8 so that the error associated with that
# setting is not thrown during the test unless the test changes that variable
# on purpose. The previous CUBLAS_WORKSPACE_CONFIG setting will also be
# restored once the test is finished.
#
# Note that if a test requires CUDA to actually register the changed
# CUBLAS_WORKSPACE_CONFIG variable, a new subprocess must be created, because
# CUDA only checks the variable when the runtime initializes. Tests can be
# run inside a subprocess like so:
#
# import subprocess, sys, os
# script = '''
# # Test code should go here
# '''
# try:
# subprocess.check_output(
# [sys.executable, '-c', script],
# stderr=subprocess.STDOUT,
# cwd=os.path.dirname(os.path.realpath(__file__)),
# env=os.environ.copy())
# except subprocess.CalledProcessError as e:
# error_message = e.output.decode('utf-8')
# # Handle exceptions raised by the subprocess here
#
def wrapDeterministicFlagAPITest(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
with DeterministicGuard(
torch.are_deterministic_algorithms_enabled(),
warn_only=torch.is_deterministic_algorithms_warn_only_enabled()):
class CuBLASConfigGuard:
cublas_var_name = 'CUBLAS_WORKSPACE_CONFIG'
def __enter__(self):
self.is_cuda10_2_or_higher = (
(torch.version.cuda is not None)
and ([int(x) for x in torch.version.cuda.split(".")] >= [10, 2]))
if self.is_cuda10_2_or_higher:
self.cublas_config_restore = os.environ.get(self.cublas_var_name)
os.environ[self.cublas_var_name] = ':4096:8'
def __exit__(self, exception_type, exception_value, traceback):
if self.is_cuda10_2_or_higher:
cur_cublas_config = os.environ.get(self.cublas_var_name)
if self.cublas_config_restore is None:
if cur_cublas_config is not None:
del os.environ[self.cublas_var_name]
else:
os.environ[self.cublas_var_name] = self.cublas_config_restore
with CuBLASConfigGuard():
fn(*args, **kwargs)
return wrapper
def skipIfCompiledWithoutNumpy(fn):
# Even if the numpy module is present, if `USE_NUMPY=0` is used during the
# build, numpy tests will fail
numpy_support = TEST_NUMPY
if numpy_support:
try:
# The numpy module is present, verify that PyTorch is compiled with
# numpy support
torch.from_numpy(np.array([2, 2]))
except RuntimeError:
numpy_support = False
@wraps(fn)
def wrapper(*args, **kwargs):
if not numpy_support:
raise unittest.SkipTest("PyTorch was compiled without numpy support")
else:
fn(*args, **kwargs)
return wrapper
def _test_function(fn, device):
def run_test_function(self):
return fn(self, device)
return run_test_function
def skipIfNoXNNPACK(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not torch.backends.xnnpack.enabled:
raise unittest.SkipTest('XNNPACK must be enabled for these tests. Please build with USE_XNNPACK=1.')
else:
fn(*args, **kwargs)
return wrapper
def skipIfNoLapack(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not torch._C.has_lapack:
raise unittest.SkipTest('PyTorch compiled without Lapack')
else:
fn(*args, **kwargs)
return wrapper
def skipIfNotRegistered(op_name, message):
"""Wraps the decorator to hide the import of the `core`.
Args:
op_name: Check if this op is registered in `core._REGISTERED_OPERATORS`.
message: message to fail with.
Usage:
@skipIfNotRegistered('MyOp', 'MyOp is not linked!')
This will check if 'MyOp' is in the caffe2.python.core
"""
if not BUILD_WITH_CAFFE2:
return unittest.skip("Pytorch is compiled without Caffe2")
try:
from caffe2.python import core
skipper = unittest.skipIf(op_name not in core._REGISTERED_OPERATORS,
message)
except ImportError:
skipper = unittest.skip("Cannot import `caffe2.python.core`")
return skipper
def _decide_skip_caffe2(expect_caffe2, reason):
def skip_dec(func):
@wraps(func)
def wrapper(self):
if torch.onnx._CAFFE2_ATEN_FALLBACK != expect_caffe2:
raise unittest.SkipTest(reason)
return func(self)
return wrapper
return skip_dec
skipIfCaffe2 = _decide_skip_caffe2(False, "Not compatible with Caffe2")
skipIfNoCaffe2 = _decide_skip_caffe2(True, "Caffe2 is not available")
def skipIfNoSciPy(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not TEST_SCIPY:
raise unittest.SkipTest("test require SciPy, but SciPy not found")
else:
fn(*args, **kwargs)
return wrapper
def skipIfTBB(message="This test makes TBB sad"):
def dec_fn(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if IS_TBB:
raise unittest.SkipTest(message)
else:
fn(*args, **kwargs)
return wrapper
return dec_fn
def slowTest(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
if not TEST_WITH_SLOW:
raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test")
else:
fn(*args, **kwargs)
wrapper.__dict__['slow_test'] = True
return wrapper
def slowAwareTest(fn):
fn.__dict__['slow_test'] = True
return fn
def skipCUDAMemoryLeakCheckIf(condition):
def dec(fn):
if getattr(fn, '_do_cuda_memory_leak_check', True): # if current True
fn._do_cuda_memory_leak_check = not condition
return fn
return dec
def skipCUDANonDefaultStreamIf(condition):
def dec(fn):
if getattr(fn, '_do_cuda_non_default_stream', True): # if current True
fn._do_cuda_non_default_stream = not condition
return fn
return dec
def suppress_warnings(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
fn(*args, **kwargs)
return wrapper
def to_gpu(obj, type_map=None):
if type_map is None:
type_map = {}
if isinstance(obj, torch.Tensor):
assert obj.is_leaf
t = type_map.get(obj.dtype, obj.dtype)
with torch.no_grad():
res = obj.clone().to(dtype=t, device="cuda")
res.requires_grad = obj.requires_grad
return res
elif torch.is_storage(obj):
return obj.new().resize_(obj.size()).copy_(obj)
elif isinstance(obj, list):
return [to_gpu(o, type_map) for o in obj]
elif isinstance(obj, tuple):
return tuple(to_gpu(o, type_map) for o in obj)
else:
return deepcopy(obj)
def get_function_arglist(func):
return inspect.getfullargspec(func).args
def set_rng_seed(seed):
torch.manual_seed(seed)
random.seed(seed)
if TEST_NUMPY:
np.random.seed(seed)
@contextmanager
def disable_functorch():
guard = torch._C._DisableFuncTorch() # type: ignore[attr-defined]
try:
yield
finally:
del guard
@contextlib.contextmanager
def freeze_rng_state():
# no_dispatch needed for test_composite_compliance
# Some OpInfos use freeze_rng_state for rng determinism, but
# test_composite_compliance overrides dispatch for all torch functions
# which we need to disable to get and set rng state
with no_dispatch(), disable_functorch():
rng_state = torch.get_rng_state()
if torch.cuda.is_available():
cuda_rng_state = torch.cuda.get_rng_state()
try:
yield
finally:
# Modes are not happy with torch.cuda.set_rng_state
# because it clones the state (which could produce a Tensor Subclass)
# and then grabs the new tensor's data pointer in generator.set_state.
#
# In the long run torch.cuda.set_rng_state should probably be
# an operator.
with no_dispatch(), disable_functorch():
if torch.cuda.is_available():
torch.cuda.set_rng_state(cuda_rng_state)
torch.set_rng_state(rng_state)
@contextlib.contextmanager
def set_default_dtype(dtype):
saved_dtype = torch.get_default_dtype()
torch.set_default_dtype(dtype)
try:
yield
finally:
torch.set_default_dtype(saved_dtype)
def iter_indices(tensor):
if tensor.dim() == 0:
return range(0)
if tensor.dim() == 1:
return range(tensor.size(0))
return product(*(range(s) for s in tensor.size()))
def is_iterable(obj):
try:
iter(obj)
return True
except TypeError:
return False
def is_iterable_of_tensors(iterable, include_empty=False):
""" Returns True if iterable is an iterable of tensors and False o.w.
If the iterable is empty, the return value is :attr:`include_empty`
"""
# Tensor itself is iterable so we check this first
if isinstance(iterable, torch.Tensor):
return False
try:
if len(iterable) == 0:
return include_empty
for t in iter(iterable):
if not isinstance(t, torch.Tensor):
return False
except TypeError as te:
return False
return True
class CudaNonDefaultStream():
def __enter__(self):
# Before starting CUDA test save currently active streams on all
# CUDA devices and set new non default streams to all CUDA devices
# to ensure CUDA tests do not use default stream by mistake.
beforeDevice = torch.cuda.current_device()
self.beforeStreams = []
for d in range(torch.cuda.device_count()):
self.beforeStreams.append(torch.cuda.current_stream(d))
deviceStream = torch.cuda.Stream(device=d)
torch._C._cuda_setStream(deviceStream._cdata)
torch._C._cuda_setDevice(beforeDevice)
def __exit__(self, exec_type, exec_value, traceback):
# After completing CUDA test load previously active streams on all
# CUDA devices.
beforeDevice = torch.cuda.current_device()
for d in range(torch.cuda.device_count()):
torch._C._cuda_setStream(self.beforeStreams[d]._cdata)
torch._C._cuda_setDevice(beforeDevice)
class CudaMemoryLeakCheck():
def __init__(self, testcase, name=None):
self.name = testcase.id() if name is None else name
self.testcase = testcase
# initialize context & RNG to prevent false positive detections
# when the test is the first to initialize those
from torch.testing._internal.common_cuda import initialize_cuda_context_rng
initialize_cuda_context_rng()
# Stores CUDA memory data provided by PyTorch's caching allocator and
# the CUDA driver.
#
# NOTE: The undocumented torch.cuda.mem_get_info() returns
# (#free bytes, #total bytes available) on the GPU
def __enter__(self):
self.caching_allocator_befores = []
self.driver_befores = []
# Performs a gc if required (required if any CUDA memory is held)
num_devices = torch.cuda.device_count()
for i in range(num_devices):
caching_allocator_mem_allocated = torch.cuda.memory_allocated(i)
# NOTE: gc is based exclusively on caching allocator memory
# because the driver will always have some bytes in use (context size?)
if caching_allocator_mem_allocated > 0:
gc.collect()
torch.cuda.empty_cache()
break
# Acquires caching allocator and driver statistics before the test is run
for i in range(num_devices):
self.caching_allocator_befores.append(torch.cuda.memory_allocated(i))
bytes_free, bytes_total = torch.cuda.mem_get_info(i)
driver_mem_allocated = bytes_total - bytes_free
self.driver_befores.append(driver_mem_allocated)
def __exit__(self, exec_type, exec_value, traceback):
# Don't check for leaks if an exception was thrown
if exec_type is not None:
return
# Compares caching allocator before/after statistics
# An increase in allocated memory is a discrepancy indicating a possible
# memory leak
discrepancy_detected = False
num_devices = torch.cuda.device_count()
for i in range(num_devices):
caching_allocator_mem_allocated = torch.cuda.memory_allocated(i)
if caching_allocator_mem_allocated > self.caching_allocator_befores[i]:
discrepancy_detected = True
break
# Short-circuits if no discrepancy detected
if not discrepancy_detected:
return
# Validates the discrepancy persists after garbage collection and
# is confirmed by the driver API
# NOTE: driver API iscrepancies alone are ignored because with the jiterator
# some tests may permanently increase the CUDA context size and
# that will appear as a driver memory leak but is the expected behavior.
# GCs and clears the cache
gc.collect()
torch.cuda.empty_cache()
for i in range(num_devices):
discrepancy_detected = True
# Query memory multiple tiems to ensure leak was not transient
for n in range(3):
caching_allocator_mem_allocated = torch.cuda.memory_allocated(i)
bytes_free, bytes_total = torch.cuda.mem_get_info(i)
driver_mem_allocated = bytes_total - bytes_free
caching_allocator_discrepancy = False
driver_discrepancy = False
if caching_allocator_mem_allocated > self.caching_allocator_befores[i]:
caching_allocator_discrepancy = True
if driver_mem_allocated > self.driver_befores[i]:
driver_discrepancy = True
if not(caching_allocator_discrepancy or driver_discrepancy):
# Leak was false positive, exit loop
discrepancy_detected = False
break
if not discrepancy_detected:
continue
if caching_allocator_discrepancy and not driver_discrepancy:
# Just raises a warning if the leak is not validated by the
# driver API
# NOTE: this may be a problem with how the caching allocator collects its
# statistics or a leak too small to trigger the allocation of an
# additional block of memory by the CUDA driver
msg = ("CUDA caching allocator reports a memory leak not "
"verified by the driver API in {}! "
"Caching allocator allocated memory was {} and is now reported as {} "
"on device {}. "
"CUDA driver allocated memory was {} and is now {}.").format(
self.name,
self.caching_allocator_befores[i],
caching_allocator_mem_allocated,
i,
self.driver_befores[i],
driver_mem_allocated)
warnings.warn(msg)
elif caching_allocator_discrepancy and driver_discrepancy:
# A caching allocator discrepancy validated by the driver API is a
# failure (except on ROCm, see below)
msg = ("CUDA driver API confirmed a leak in {}! "
"Caching allocator allocated memory was {} and is now reported as {} "
"on device {}. "
"CUDA driver allocated memory was {} and is now {}.").format(
self.name,
self.caching_allocator_befores[i],
caching_allocator_mem_allocated,
i,
self.driver_befores[i],
driver_mem_allocated)
raise RuntimeError(msg)
@contextmanager
def skip_exception_type(exc_type):
try:
yield
except exc_type as e:
raise unittest.SkipTest(f"not implemented: {e}") from e
# "min_satisfying_examples" setting has been deprecated in hypythesis
# 3.56.0 and removed in hypothesis 4.x
try:
import hypothesis
def settings(*args, **kwargs):
if 'min_satisfying_examples' in kwargs and hypothesis.version.__version_info__ >= (3, 56, 0):
kwargs.pop('min_satisfying_examples')
return hypothesis.settings(*args, **kwargs)
hypothesis.settings.register_profile(
"pytorch_ci",
settings(
derandomize=True,
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
max_examples=50,
verbosity=hypothesis.Verbosity.normal))
hypothesis.settings.register_profile(
"dev",
settings(
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
max_examples=10,
verbosity=hypothesis.Verbosity.normal))
hypothesis.settings.register_profile(
"debug",
settings(
suppress_health_check=[hypothesis.HealthCheck.too_slow],
database=None,
max_examples=1000,
verbosity=hypothesis.Verbosity.verbose))
hypothesis.settings.load_profile(
"pytorch_ci" if IS_CI else os.getenv('PYTORCH_HYPOTHESIS_PROFILE', 'dev')
)
except ImportError:
print('Fail to import hypothesis in common_utils, tests are not derandomized')
# Used in check_if_enable to see if a test method should be disabled by an issue,
# sanitizes a test method name from appended suffixes by @dtypes parametrization.
# e.g., an issue with title "DISABLED test_bitwise_ops (__main__.TestBinaryUfuncs)" should
# disabled ALL parametrized test_bitwise_ops tests, such test_bitwise_ops_cuda_int32
def remove_device_and_dtype_suffixes(test_name: str) -> str:
# import statement is localized to avoid circular dependency issues with common_device_type.py
from torch.testing._internal.common_device_type import get_device_type_test_bases
device_suffixes = [x.device_type for x in get_device_type_test_bases()]
dtype_suffixes = [str(dt)[len("torch."):] for dt in get_all_dtypes()]
test_name_chunks = test_name.split("_")
if len(test_name_chunks) > 0 and test_name_chunks[-1] in dtype_suffixes:
if len(test_name_chunks) > 1 and test_name_chunks[-2] in device_suffixes:
return "_".join(test_name_chunks[0:-2])
return "_".join(test_name_chunks[0:-1])
return test_name
def check_if_enable(test: unittest.TestCase):
test_suite = str(test.__class__).split('\'')[1]
if "USING_PYTEST" in os.environ:
test_suite = f"__main__.{test_suite.split('.')[1]}"
raw_test_name = f'{test._testMethodName} ({test_suite})'
if raw_test_name in slow_tests_dict:
getattr(test, test._testMethodName).__dict__['slow_test'] = True
if not TEST_WITH_SLOW:
raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test")
sanitized_test_method_name = remove_device_and_dtype_suffixes(test._testMethodName)
if not IS_SANDCASTLE:
for disabled_test, (issue_url, platforms) in disabled_tests_dict.items():
disable_test_parts = disabled_test.split()
if len(disable_test_parts) > 1:
disabled_test_name = disable_test_parts[0]
disabled_test_suite = disable_test_parts[1][1:-1]
# if test method name or its sanitized version exactly matches the disabled test method name
# AND allow non-parametrized suite names to disable parametrized ones (TestSuite disables TestSuiteCPU)
if (test._testMethodName == disabled_test_name or sanitized_test_method_name == disabled_test_name) \
and disabled_test_suite in test_suite:
platform_to_conditional: Dict = {
"mac": IS_MACOS,
"macos": IS_MACOS,
"win": IS_WINDOWS,
"windows": IS_WINDOWS,
"linux": IS_LINUX,
"rocm": TEST_WITH_ROCM,
"asan": TEST_WITH_ASAN
}
invalid_platforms = list(filter(lambda p: p not in platform_to_conditional, platforms))
if len(invalid_platforms) > 0:
invalid_plats_str = ", ".join(invalid_platforms)
valid_plats = ", ".join(platform_to_conditional.keys())
print(f"Test {disabled_test} is disabled for some unrecognized ",
f"platforms: [{invalid_plats_str}]. Please edit issue {issue_url} to fix the platforms ",
"assigned to this flaky test, changing \"Platforms: ...\" to a comma separated ",
f"subset of the following (or leave it blank to match all platforms): {valid_plats}")
# Sanitize the platforms list so that we continue to disable the test for any valid platforms given
platforms = list(filter(lambda p: p in platform_to_conditional, platforms))
if platforms == [] or any([platform_to_conditional[platform] for platform in platforms]):
skip_msg = f"Test is disabled because an issue exists disabling it: {issue_url}" \
f" for {'all' if platforms == [] else ''}platform(s) {', '.join(platforms)}. " \
"If you're seeing this on your local machine and would like to enable this test, " \
"please make sure CI is not set and you are not using the flag --import-disabled-tests."
raise unittest.SkipTest(skip_msg)
if TEST_SKIP_FAST:
if not getattr(test, test._testMethodName).__dict__.get('slow_test', False):
raise unittest.SkipTest("test is fast; we disabled it with PYTORCH_TEST_SKIP_FAST")
# `TestCase.assertEqual` is very permissive and coerced the inputs into a format that could be compared. This is very
# convenient when writing tests, but not so much while reviewing them. By default, the comparison `Pair` framework of
# `torch.testing._comparison.assert_equal`, used for example by the public testing function
# `torch.testing.assert_close`, is more strict. In order to use the same framework and thus reduce the divergence
# between internal and external comparison logic as much as possible, we define some "relaxed" pairs here. They only
# change the supported inputs, but the comparison logic is the same.
# TODO: Revisit the relaxed pairs and check how much work it is to fix the tests that would fail without the relaxation.
class RelaxedBooleanPair(BooleanPair):
"""Pair for boolean-like inputs.
In contrast to the builtin :class:`BooleanPair`, this class also supports one input being a number or a single
element tensor-like.
"""
_supported_number_types = NumberPair(0, 0)._supported_types
def _process_inputs(self, actual, expected, *, id):
# We require only one of the inputs of the inputs to be a boolean and the other can also be a boolean, a
# number, or a single element tensor or array, whereas in default BooleanPair both inputs have to be booleans.
tensor_or_array_types: Tuple[Type, ...] = (torch.Tensor, np.ndarray)
other_supported_types = (*self._supported_types, *self._supported_number_types, *tensor_or_array_types)
if not (
(isinstance(actual, self._supported_types) and isinstance(expected, other_supported_types))
or (isinstance(expected, self._supported_types) and isinstance(actual, other_supported_types))
):
raise UnsupportedInputs()
return [self._to_bool(input, id=id) for input in (actual, expected)]
def _to_bool(self, bool_like, *, id):
if isinstance(bool_like, np.number):
return bool(bool_like.item())
elif type(bool_like) in self._supported_number_types:
return bool(bool_like)
elif isinstance(bool_like, (torch.Tensor, np.ndarray)):
numel = bool_like.numel() if isinstance(bool_like, torch.Tensor) else bool_like.size
if numel > 1:
raise ErrorMeta(
ValueError,
f"Only single element tensor-likes can be compared against a boolean. "
f"Got {numel} elements instead.",
id=id,
)
return bool(bool_like.item())
else:
return super()._to_bool(bool_like, id=id)
class RelaxedNumberPair(NumberPair):
"""Pair for number-like inputs.
In contrast to the builtin :class:`NumberPair`, this class also supports one input being a single element
tensor-like or a :class:`enum.Enum`. (D)Type checks are disabled, meaning comparing 1 to 1.0 succeeds even when
``check_dtype=True`` is passed.
In addition, this class uses looser default tolerances for :class:`float` and :class:`complex` inputs. Also
supports overriding the absolute and relative tolerance through the ``@precisionOverride`` and
``@toleranceOverride`` decorators.
"""
_TYPE_TO_DTYPE = {
int: torch.int64,
float: torch.float32,
complex: torch.complex64,
}
def __init__(
self, actual, expected, *, rtol_override=0.0, atol_override=0.0, check_dtype=None, **other_parameters
) -> None:
super().__init__(actual, expected, check_dtype=False, **other_parameters)
self.rtol = max(self.rtol, rtol_override)
self.atol = max(self.atol, atol_override)
def _process_inputs(self, actual, expected, *, id):
# We require only one of the inputs of the inputs to be a number and the other can also be a number or a single
# element tensor or array, whereas in default NumberPair both inputs have to be numbers.
tensor_or_array_types: Tuple[Type, ...] = (torch.Tensor, np.ndarray)
other_supported_types = (*self._supported_types, *tensor_or_array_types)
if not (
(isinstance(actual, self._supported_types) and isinstance(expected, other_supported_types))
or (isinstance(expected, self._supported_types) and isinstance(actual, other_supported_types))
):
raise UnsupportedInputs()
return [self._to_number(input, id=id) for input in (actual, expected)]
def _to_number(self, number_like, *, id):
if isinstance(number_like, (torch.Tensor, np.ndarray)):
numel = number_like.numel() if isinstance(number_like, torch.Tensor) else number_like.size
if numel > 1:
raise ErrorMeta(
ValueError,
f"Only single element tensor-likes can be compared against a number. "
f"Got {numel} elements instead.",
id=id,
)
number = number_like.item()
if isinstance(number, bool):
number = int(number)
return number
elif isinstance(number_like, Enum):
return int(number_like) # type: ignore[call-overload]
else:
return super()._to_number(number_like, id=id)
class TensorOrArrayPair(TensorLikePair):
"""Pair for tensor-like inputs.
On the one hand this class is stricter than the builtin :class:`TensorLikePair` since it only allows instances of
:class:`torch.Tensor` and :class:`numpy.ndarray` rather than allowing any tensor-like than can be converted into a
tensor. On the other hand this class is looser since it converts all inputs into tensors with no regard of their
relationship, e.g. comparing a :class:`torch.Tensor` to :class:`numpy.ndarray` is fine.
In addition, this class supports overriding the absolute and relative tolerance through the ``@precisionOverride``
and ``@toleranceOverride`` decorators.
"""
def __init__(self, actual, expected, *, rtol_override=0.0, atol_override=0.0, **other_parameters):
super().__init__(actual, expected, **other_parameters)
self.rtol = max(self.rtol, rtol_override)
self.atol = max(self.atol, atol_override)
def _process_inputs(self, actual, expected, *, id, allow_subclasses):
self._check_inputs_isinstance(actual, expected, cls=(torch.Tensor, np.ndarray))
actual, expected = [self._to_tensor(input) for input in (actual, expected)]
for tensor in (actual, expected):
self._check_supported(tensor, id=id)
return actual, expected
class UnittestPair(Pair):
"""Fallback ABC pair that handles non-numeric inputs.
To avoid recreating the mismatch messages of :meth:`unittest.TestCase.assertEqual`, this pair simply wraps it in
order to use it with the :class:`Pair` "framework" from :func:`assert_equal`.
Define the :attr:`UnittestPair.CLS` in a subclass to indicate which class(es) of the inputs the pair should support.
"""
CLS: Union[Type, Tuple[Type, ...]]
TYPE_NAME: Optional[str] = None
def __init__(self, actual, expected, **other_parameters):
self._check_inputs_isinstance(actual, expected, cls=self.CLS)
super().__init__(actual, expected, **other_parameters)
def compare(self):
test_case = unittest.TestCase()
try:
return test_case.assertEqual(self.actual, self.expected)
except test_case.failureException as error:
msg = str(error)
type_name = self.TYPE_NAME or (self.CLS if isinstance(self.CLS, type) else self.CLS[0]).__name__
raise self._make_error_meta(AssertionError, f"{type_name.title()} comparison failed: {msg}")
class StringPair(UnittestPair):
CLS = string_classes
TYPE_NAME = "string"
class SetPair(UnittestPair):
CLS = set
class TypePair(UnittestPair):
CLS = type
class ObjectPair(UnittestPair):
CLS = object
# This implements a variant of assertRaises/assertRaisesRegex where we first test
# if the exception is NotImplementedError, and if so just skip the test instead
# of failing it.
#
# This is implemented by inheriting from the (private) implementation of
# assertRaises from unittest.case, and slightly tweaking it for this new
# behavior. The year is 2021: this private class hierarchy hasn't changed since
# 2010, seems low risk to inherit from.
class AssertRaisesContextIgnoreNotImplementedError(unittest.case._AssertRaisesContext):
def __exit__(self, exc_type, exc_value, tb):
if exc_type is not None and issubclass(exc_type, NotImplementedError):
self.test_case.skipTest(f"not_implemented: {exc_value}") # type: ignore[attr-defined]
return super().__exit__(exc_type, exc_value, tb)
@contextmanager
def set_warn_always_context(new_val: bool):
old_val = torch.is_warn_always_enabled()
torch.set_warn_always(new_val)
try:
yield
finally:
torch.set_warn_always(old_val)
class TestCase(expecttest.TestCase):
# NOTE: "precision" lets classes and generated tests set minimum
# atol values when comparing tensors. Used by @precisionOverride and @toleranceOverride, for
# example.
# NOTE: "rel_tol" lets classes and generated tests set minimum
# rtol values when comparing tensors. Used by @toleranceOverride, for example.
_precision: float = 0
_rel_tol: float = 0
# checker to early terminate test suite if unrecoverable failure occurs.
def _should_stop_test_suite(self):
if torch.cuda.is_initialized():
# CUDA device side error will cause subsequence test cases to fail.
# stop entire test suite if catches RuntimeError during torch.cuda.synchronize().
try:
torch.cuda.synchronize()
except RuntimeError as rte:
print("TEST SUITE EARLY TERMINATION due to torch.cuda.synchronize() failure", file=sys.stderr)
return True
return False
else:
return False
@property
def precision(self) -> float:
return self._precision
@precision.setter
def precision(self, prec: float) -> None:
self._precision = prec
@property
def rel_tol(self) -> float:
return self._rel_tol
@rel_tol.setter
def rel_tol(self, prec: float) -> None:
self._rel_tol = prec
_do_cuda_memory_leak_check = False
_do_cuda_non_default_stream = False
# When True, if a test case raises a NotImplementedError, instead of failing
# the test, skip it instead.
_ignore_not_implemented_error = False
def __init__(self, method_name='runTest'):
super().__init__(method_name)
test_method = getattr(self, method_name, None)
if test_method is not None:
# Wraps the tested method if we should do CUDA memory check.
if not TEST_SKIP_CUDA_MEM_LEAK_CHECK:
self._do_cuda_memory_leak_check &= getattr(test_method, '_do_cuda_memory_leak_check', True)
# FIXME: figure out the flaky -1024 anti-leaks on windows. See #8044
if self._do_cuda_memory_leak_check and not IS_WINDOWS:
self.wrap_with_cuda_policy(method_name, self.assertLeaksNoCudaTensors)
# Wraps the tested method if we should enforce non default CUDA stream.
self._do_cuda_non_default_stream &= getattr(test_method, '_do_cuda_non_default_stream', True)
if self._do_cuda_non_default_stream and not IS_WINDOWS:
self.wrap_with_cuda_policy(method_name, self.enforceNonDefaultStream)
if self._ignore_not_implemented_error:
self.wrap_with_policy(method_name, lambda: skip_exception_type(NotImplementedError))
def assertLeaksNoCudaTensors(self, name=None):
name = self.id() if name is None else name
return CudaMemoryLeakCheck(self, name)
def enforceNonDefaultStream(self):
return CudaNonDefaultStream()
def wrap_with_cuda_policy(self, method_name, policy):
test_method = getattr(self, method_name)
# the import below may initialize CUDA context, so we do it only if
# self._do_cuda_memory_leak_check or self._do_cuda_non_default_stream
# is True.
# TODO: sure looks like we unconditionally initialize the context here
# -- ezyang
from torch.testing._internal.common_cuda import TEST_CUDA
fullname = self.id().lower() # class_name.method_name
if TEST_CUDA and ('gpu' in fullname or 'cuda' in fullname):
setattr(self, method_name, self.wrap_method_with_policy(test_method, policy))
def wrap_with_policy(self, method_name, policy):
test_method = getattr(self, method_name)
setattr(self, method_name, self.wrap_method_with_policy(test_method, policy))
# A policy is a zero-argument function that returns a context manager.
# We don't take the context manager directly as it may be necessary to
# construct it once per test method
def wrap_method_with_policy(self, method, policy):
# Assumes that `method` is the tested function in `self`.
# NOTE: Python Exceptions (e.g., unittest.Skip) keeps objects in scope
# alive, so this cannot be done in setUp and tearDown because
# tearDown is run unconditionally no matter whether the test
# passes or not. For the same reason, we can't wrap the `method`
# call in try-finally and always do the check.
@wraps(method)
def wrapper(self, *args, **kwargs):
with policy():
method(*args, **kwargs)
return types.MethodType(wrapper, self)
def wrap_with_cuda_memory_check(self, method):
return self.wrap_method_with_policy(method, self.assertLeaksNoCudaTensors)
# Recursive function that incorporates retry logic when PYTORCH_RETRY_TEST_CASES=1 and enables early test
# termination. [DISCLAIMER: ONLY WORKS WITH UNITTEST]
# When report_only is True, flaky tests are only reported, but the signal remains the same (the test will still
# show up red).
# Otherwise, the flaky test will show up green while its stats are captured by test reports.
def _run_with_retry(self, result=None, num_runs_left=0, report_only=True, num_red=0, num_green=0):
using_unittest = isinstance(result, unittest.TestResult)
if num_runs_left == 0:
if num_green > 0 and num_red > 0 and using_unittest:
result.addSkip(self, f'{{"flaky": {True}, "num_red": {num_red}, "num_green": {num_green},' +
f'"max_num_retries": {MAX_NUM_RETRIES}}}')
return
if using_unittest:
failures_before = 0 if result is None else len(result.failures) # num tests marked as failed before starting
errors_before = 0 if result is None else len(result.errors) # num tests marked as errored before starting
if TEST_WITH_TORCHDYNAMO:
# TorchDynamo optimize annotation
if TEST_WITH_TORCHINDUCTOR:
super_run = torchdynamo.optimize("inductor")(super().run)
else:
super_run = torchdynamo.optimize("eager")(super().run)
super_run(result=result)
# TODO - Reset for each test slows down testing significantly.
# torchdynamo.reset()
else:
super().run(result=result)
# Early terminate test if necessary.
if self._should_stop_test_suite():
if result.wasSuccessful():
case = TestCase()
if TEST_SAVE_XML is not None:
# This is a big hacky, XMLRunner modifies expected type from TestCase to TestInfo
# Create dummy TestInfo to record results correctly
from xmlrunner.result import _TestInfo # type: ignore[import]
case = _TestInfo(result, case)
case.output = _TestInfo.ERROR
case.elapsed_time = 0.0
case.test_description = "TestSuiteEarlyFailure"
# This shouldn't really happen, but if does add fake failure
# For more details see https://github.com/pytorch/pytorch/issues/71973
result.failures.append((case, "TestSuite execution was aborted early"))
assert result.wasSuccessful() is False
result.stop()
if not RETRY_TEST_CASES or not using_unittest:
return
err = sys.exc_info()
num_retries_left = num_runs_left - 1
if failures_before < len(result.failures):
print(f" {self._testMethodName} failed - num_retries_left: {num_retries_left}")
if (report_only and num_retries_left < MAX_NUM_RETRIES) or (not report_only and num_retries_left > 0):
_, traceback_str = result.failures.pop(-1)
print(traceback_str)
result.addExpectedFailure(self, err)
self._run_with_retry(result=result, num_runs_left=num_retries_left, report_only=report_only,
num_red=num_red + 1, num_green=num_green)
elif errors_before < len(result.errors):
print(f" {self._testMethodName} errored - num_retries_left: {num_retries_left}")
if (report_only and num_retries_left < MAX_NUM_RETRIES) or (not report_only and num_retries_left > 0):
_, traceback_str = result.errors.pop(-1)
print(traceback_str)
result.addExpectedFailure(self, err)
self._run_with_retry(result=result, num_runs_left=num_retries_left, report_only=report_only,
num_red=num_red + 1, num_green=num_green)
elif report_only and num_retries_left < MAX_NUM_RETRIES:
print(f" {self._testMethodName} succeeded - num_retries_left: {num_retries_left}")
result.addUnexpectedSuccess(self)
self._run_with_retry(result=result, num_runs_left=num_retries_left, report_only=report_only,
num_red=num_red, num_green=num_green + 1)
elif not report_only and num_retries_left < MAX_NUM_RETRIES:
# in this case, our test was rerun (as a retry has been used) and it just passed.
# we incur one more recursive call with num_runs_left = 0 to allow for accurate flaky reporting
self._run_with_retry(result=result, num_runs_left=0, report_only=report_only,
num_red=num_red, num_green=num_green + 1)
def run(self, result=None):
with contextlib.ExitStack() as stack:
if TEST_WITH_CROSSREF:
stack.enter_context(CrossRefMode())
num_runs = MAX_NUM_RETRIES + 1 if RETRY_TEST_CASES else 1
self._run_with_retry(
result=result,
num_runs_left=num_runs,
report_only=not OVERRIDE_FLAKY_SIGNAL,
num_red=0,
num_green=0)
def setUp(self):
check_if_enable(self)
set_rng_seed(SEED)
@staticmethod
def _make_crow_indices(n_rows, n_cols, nnz,
*, device, dtype, random=True):
"""Return crow_indices of a CSR tensor with size (n_rows, n_cols) and
the number of specified elements nnz.
If random is True, the column counts of rows are in random
order. Otherwise, the column counts of rows are defined by the
used sampling method.
Sampling method
---------------
The used sampling method was introduced in
https://pearu.github.io/csr_sampling.html, and here we give
only an overall description of the method.
Notice that crow_indices can be defined as cumsum(counts)
where counts is a sequence of non-negative integers satisfying
the following conditions:
len(counts) == n_rows + 1
counts.max() <= n_cols
while counts[i + 1] is interpreted as the number of specified
elements in the i-th row.
The used sampling method aims at increasing the diversity of
CSR samples, that is, a CSR sample should contain (i) rows
that are all filled, (ii) rows with no elements at all, and
(iii) rows that are partially filled. At the same time and for
the given total number of specified elements (nnz), there
should be minimal preference to rows with a given number of
elements. To achieve this, the sampling method is built-up on
using a sawteeth model for counts. In the simplest case, we
would have
counts = arange(n_rows + 1) % (n_cols + 1)
that has equal number of all possible column counts per row.
This formula can be used only for specific input values of
n_rows, n_cols, and nnz. To generalize this model to any
combinations of inputs, the counts model above is extended
with an incomplete sawtooth, and the right and lower
rectangular parts that will guarantee that
counts.sum() == nnz
for any combination of n_rows, n_cols, and nnz. Basically,
we'll find a maximal window in (n_rows + 1, n_cols + 1)-grid
that is able to hold a sequence of sawteeth and so-called
final correction, while the external part of the window is
filled with counts to meet the nnz contraint exactly.
"""
assert 0 <= nnz <= n_rows * n_cols, (nnz, n_rows, n_cols)
def sawteeth(n, m):
# return the total number of counts in the sequence of
# sawteeth where n and m define a window in (n_rows+1,
# n_cols+1) rectangle where the sequence of sawteeth
# perfectly fit.
M = (n_cols - m) * (n_cols - m + 1) // 2
K = (n_rows - n) % (n_cols - m + 1)
return M * ((n_rows - n) // (n_cols - m + 1)) + K * (K - 1) // 2
# Different from the original method description, here counts
# has leading 0 required by crow_indices:
counts = torch.zeros(n_rows + 1, dtype=dtype, device=torch.device('cpu'))
n = m = 0
N = sawteeth(n, m)
if N and nnz >= max(N, n_cols):
# determine the width of the sawteeth window. We use bisection to solve
# N(n, 0) == 0 or nnz - n * n_cols < max(N(n, 0), n_cols)
# for n
n_left = n
n_right = n_rows - 1
N_right = sawteeth(n_right, m)
while n_right - n_left > 1:
n_middle = (n_left + n_right) // 2
N_middle = sawteeth(n_middle, m)
if N_middle == 0 or nnz - n_middle * n_cols < max(N_middle, n_cols):
n_right, N_right = n_middle, N_middle
else:
n_left = n_middle
n, N = n_right, N_right
# fill the right rectangle with counts:
assert n
counts[-n:].fill_(n_cols)
if N and nnz - n * n_cols >= max(N, n_rows - n):
# determine the height of the sawteeth window. We use bisection to solve
# N(n, m) == 0 or nnz - n * n_cols - m * (n_rows - n) < max(N(n, m), n_rows - n)
# for m.
m_left = m
m_right = n_cols - 1
N_right = sawteeth(n, m_right)
while m_right - m_left > 1:
m_middle = (m_left + m_right) // 2
N_middle = sawteeth(n, m_middle)
if N_middle == 0 or nnz - n * n_cols - m_middle * (n_rows - n) < max(N_middle, n_rows - n):
m_right, N_right = m_middle, N_middle
else:
m_left = m_middle
m, N = m_right, N_right
# fill the bottom rectangle with counts:
assert m
counts[1:n_rows - n + 1].fill_(m)
if N:
# fill the sawteeth window with counts
q, r = divmod(nnz - n * n_cols - m * (n_rows - n),
(n_cols - m) * (n_cols - m + 1) // 2)
p = 1 + q * (n_cols - m + 1)
if sys.version_info >= (3, 8):
k = math.isqrt(2 * r)
else:
# math.isqrt(x) is available starting from Python 3.8.
# Here we use int(math.sqrt(x)) as an approximation
# that appers to give exaxt result for all x values
# less than 2**35, at least, the upper limit of x is
# TBD.
k = int(math.sqrt(2 * r))
if k * (k + 1) > 2 * r:
k -= 1
corr = r - k * (k + 1) // 2
assert not ((p > 1) and (m > 0)) # full sawteeth are never on top of a bottom rectangle
# sequence of full sawteeth:
counts[1:p] = torch.arange(p - 1, dtype=dtype, device=counts.device) % (n_cols - m + 1)
# incomplete sawtooth:
counts[p:p + k + 1] += torch.arange(k + 1, dtype=dtype, device=counts.device)
else:
# given input does not support sawteeth
p = 1
corr = nnz - n * n_cols - m * (n_rows - n)
# correction that will guarantee counts.sum() == nnz:
counts[p] += corr
if random:
# randomize crow_indices by shuffling the sawteeth
# sequence:
perm = torch.randperm(n_rows, device=counts.device)
counts[1:] = counts[1:][perm]
# compute crow_indices:
crow_indices = counts
crow_indices.cumsum_(dim=0)
return crow_indices.to(device=device)
def genSparseCompressedTensor(self, size, nnz, *, layout, device, dtype, index_dtype, blocksize=(), dense_dims=0):
from operator import mul
from functools import reduce
sparse_dim = 2
assert all(size[d] > 0 for d in range(len(size))) or nnz == 0, 'invalid arguments'
assert len(size) >= sparse_dim
if blocksize:
assert len(blocksize) == 2, (size, blocksize)
assert size[-2 - dense_dims] % blocksize[0] == 0, (size, blocksize)
assert size[-1 - dense_dims] % blocksize[1] == 0, (size, blocksize)
blocksize0, blocksize1 = blocksize
else:
blocksize0 = blocksize1 = 1
size = tuple(size)
dense_size = size[(len(size) - dense_dims):]
def random_sparse_compressed(n_compressed_dims, n_plain_dims, nnz):
compressed_indices = self._make_crow_indices(n_compressed_dims, n_plain_dims, nnz, device=device, dtype=index_dtype)
plain_indices = torch.zeros(nnz, dtype=index_dtype, device=device)
for i in range(n_compressed_dims):
count = compressed_indices[i + 1] - compressed_indices[i]
plain_indices[compressed_indices[i]:compressed_indices[i + 1]], _ = torch.sort(
torch.randperm(n_plain_dims, dtype=index_dtype, device=device)[:count])
low = -1 if dtype != torch.uint8 else 0
high = 1 if dtype != torch.uint8 else 2
values = make_tensor((nnz,) + blocksize + dense_size, device=device, dtype=dtype, low=low, high=high)
return values, compressed_indices, plain_indices
batch_shape = size[:-2 - dense_dims]
n_batch = reduce(mul, batch_shape, 1)
if layout in {torch.sparse_csr, torch.sparse_bsr}:
n_compressed_dims, n_plain_dims = size[-2 - dense_dims] // blocksize0, size[-1 - dense_dims] // blocksize1
else:
n_compressed_dims, n_plain_dims = size[-1 - dense_dims] // blocksize1, size[-2 - dense_dims] // blocksize0
blocknnz = nnz // (blocksize0 * blocksize1)
sparse_tensors = [random_sparse_compressed(n_compressed_dims, n_plain_dims, blocknnz) for _ in range(n_batch)]
sparse_tensors_it = map(list, zip(*sparse_tensors))
values = torch.stack(next(sparse_tensors_it)).reshape(*batch_shape, blocknnz, *blocksize, *dense_size)
compressed_indices = torch.stack(next(sparse_tensors_it)).reshape(*batch_shape, -1)
plain_indices = torch.stack(next(sparse_tensors_it)).reshape(*batch_shape, -1)
return torch.sparse_compressed_tensor(compressed_indices, plain_indices,
values, size=size, dtype=dtype, layout=layout, device=device)
def genSparseCSRTensor(self, size, nnz, *, device, dtype, index_dtype, dense_dims=0):
return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_csr, device=device,
dtype=dtype, index_dtype=index_dtype, blocksize=(), dense_dims=dense_dims)
def genSparseCSCTensor(self, size, nnz, *, device, dtype, index_dtype, dense_dims=0):
return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_csc, device=device,
dtype=dtype, index_dtype=index_dtype, blocksize=(), dense_dims=0)
def genSparseBSRTensor(self, size, blocksize, nnz, *, device, dtype, index_dtype, dense_dims=0):
assert len(blocksize) == 2
return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_bsr, device=device,
dtype=dtype, index_dtype=index_dtype, blocksize=blocksize, dense_dims=dense_dims)
def genSparseBSCTensor(self, size, blocksize, nnz, *, device, dtype, index_dtype, dense_dims=0):
assert len(blocksize) == 2
return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_bsc, device=device,
dtype=dtype, index_dtype=index_dtype, blocksize=blocksize, dense_dims=dense_dims)
def genSparseTensor(self, size, sparse_dim, nnz, is_uncoalesced, device, dtype):
# Assert not given impossible combination, where the sparse dims have
# empty numel, but nnz > 0 makes the indices containing values.
assert all(size[d] > 0 for d in range(sparse_dim)) or nnz == 0, 'invalid arguments'
v_size = [nnz] + list(size[sparse_dim:])
v = make_tensor(v_size, device=device, dtype=dtype, low=-1, high=1)
i = torch.rand(sparse_dim, nnz, device=device)
i.mul_(torch.tensor(size[:sparse_dim]).unsqueeze(1).to(i))
i = i.to(torch.long)
if is_uncoalesced:
i1 = i[:, :(nnz // 2), ...]
i2 = i[:, :((nnz + 1) // 2), ...]
i = torch.cat([i1, i2], 1)
x = torch.sparse_coo_tensor(i, v, torch.Size(size), dtype=dtype, device=device)
if not is_uncoalesced:
x = x.coalesce()
else:
# FIXME: `x` is a sparse view of `v`. Currently rebase_history for
# sparse views is not implemented, so this workaround is
# needed for inplace operations done on `x`, e.g., copy_().
# Remove after implementing something equivalent to CopySlice
# for sparse views.
# NOTE: We do clone() after detach() here because we need to be able to change size/storage of x afterwards
x = x.detach().clone()._coalesced_(False)
return x, x._indices().clone(), x._values().clone()
def safeToDense(self, t):
# coalesce is only implemented for COO
if t.layout == torch.sparse_coo:
t = t.coalesce()
return t.to_dense()
# Compares a torch function with a reference function for a given sample input (object of SampleInput)
# Note: only values are compared, type comparison is not done here
def compare_with_reference(self, torch_fn, ref_fn, sample_input, **kwargs):
numpy_sample = sample_input.numpy()
n_inp, n_args, n_kwargs = numpy_sample.input, numpy_sample.args, numpy_sample.kwargs
t_inp, t_args, t_kwargs = sample_input.input, sample_input.args, sample_input.kwargs
actual = torch_fn(t_inp, *t_args, **t_kwargs)
expected = ref_fn(n_inp, *n_args, **n_kwargs)
self.assertEqual(actual, expected, exact_device=False, **kwargs)
# Compares the given Torch and NumPy functions on the given tensor-like object.
# NOTE: both torch_fn and np_fn should be functions that take a single
# tensor (array). If the torch and/or NumPy function require additional
# arguments then wrap the function in a lambda or pass a partial function.
# TODO: add args/kwargs for passing to assertEqual (e.g. rtol, atol)
def compare_with_numpy(self, torch_fn, np_fn, tensor_like,
device=None, dtype=None, **kwargs):
assert TEST_NUMPY
if isinstance(tensor_like, torch.Tensor):
assert device is None
assert dtype is None
t_cpu = tensor_like.detach().cpu()
if t_cpu.dtype is torch.bfloat16:
t_cpu = t_cpu.float()
a = t_cpu.numpy()
t = tensor_like
else:
d = copy.copy(torch_to_numpy_dtype_dict)
d[torch.bfloat16] = np.float32
a = np.array(tensor_like, dtype=d[dtype])
t = torch.tensor(tensor_like, device=device, dtype=dtype)
np_result = np_fn(a)
torch_result = torch_fn(t).cpu()
# Converts arrays to tensors
if isinstance(np_result, np.ndarray):
try:
np_result = torch.from_numpy(np_result)
except Exception:
# NOTE: copying an array before conversion is necessary when,
# for example, the array has negative strides.
np_result = torch.from_numpy(np_result.copy())
if t.dtype is torch.bfloat16 and torch_result.dtype is torch.bfloat16 and np_result.dtype is torch.float:
torch_result = torch_result.to(torch.float)
self.assertEqual(np_result, torch_result, **kwargs)
def assertEqualIgnoreType(self, *args, **kwargs) -> None:
# If you are seeing this function used, that means test is written wrongly
# and deserves detailed investigation
return self.assertEqual(*args, exact_dtype=False, **kwargs)
def assertEqualBroadcasting(self, x, y, *args, **kwargs) -> None:
r"""Tests if tensor x equals to y, if y to be broadcast to x.shape.
"""
if not isinstance(y, Iterable):
# int, float, etc. or different shape tensors
y = torch.ones_like(x) * y
if not isinstance(y, torch.Tensor):
# iterable, but not a tensor
y = torch.ones_like(x) * torch.tensor(y)
return self.assertEqual(x, y, *args, **kwargs)
def assertEqual(
self,
x,
y,
msg: Optional[Union[str, Callable[[str], str]]] = None,
*,
atol: Optional[float] = None,
rtol: Optional[float] = None,
equal_nan=True,
exact_dtype=True,
# TODO: default this to True
exact_device=False,
exact_layout=False,
exact_stride=False,
exact_is_coalesced=False
):
# Hide this function from `pytest`'s traceback
__tracebackhide__ = True
# numpy's dtypes are a superset of what PyTorch supports. In case we encounter an unsupported dtype, we fall
# back to an elementwise comparison. Note that this has to happen here and not for example in
# `TensorOrArrayPair`, since at that stage we can no longer split the array into its elements and perform
# multiple comparisons.
if any(
isinstance(input, np.ndarray) and not has_corresponding_torch_dtype(input.dtype) for input in (x, y)
):
def to_list(input):
return input.tolist() if isinstance(input, (torch.Tensor, np.ndarray)) else list(input)
x = to_list(x)
y = to_list(y)
# When comparing a sequence of numbers to a tensor, we need to convert the sequence to a tensor here.
# Otherwise, the pair origination of `assert_equal` will fail, because the sequence is recognized as container
# that should be checked elementwise while the tensor is not.
elif isinstance(x, torch.Tensor) and isinstance(y, Sequence):
y = torch.as_tensor(y, dtype=x.dtype, device=x.device)
elif isinstance(x, Sequence) and isinstance(y, torch.Tensor):
x = torch.as_tensor(x, dtype=y.dtype, device=y.device)
# If x or y are tensors and nested then we unbind them to a list of tensors this should allow us to compare
# a nested tensor to a nested tensor and a nested tensor to a list of expected tensors
if isinstance(x, torch.Tensor) and x.is_nested:
x = x.unbind()
if isinstance(y, torch.Tensor) and y.is_nested:
y = y.unbind()
assert_equal(
x,
y,
pair_types=(
NonePair,
RelaxedBooleanPair,
RelaxedNumberPair,
TensorOrArrayPair,
StringPair,
SetPair,
TypePair,
ObjectPair,
),
sequence_types=(
Sequence,
torch.storage.TypedStorage,
Sequential,
ModuleList,
ParameterList,
ScriptList,
torch.utils.data.dataset.Subset,
),
mapping_types=(Mapping, ModuleDict, ParameterDict, ScriptDict),
rtol=rtol,
rtol_override=self.rel_tol,
atol=atol,
atol_override=self.precision,
equal_nan=equal_nan,
check_device=exact_device,
check_dtype=exact_dtype,
check_layout=exact_layout,
check_stride=exact_stride,
check_is_coalesced=exact_is_coalesced,
# This emulates unittest.TestCase's behavior if a custom message passed and
# TestCase.longMessage (https://docs.python.org/3/library/unittest.html#unittest.TestCase.longMessage)
# is True (default)
msg=(lambda generated_msg: f"{generated_msg} : {msg}") if isinstance(msg, str) and self.longMessage else msg,
)
def assertNotEqual(self, x, y, msg: Optional[str] = None, *, # type: ignore[override]
atol: Optional[float] = None, rtol: Optional[float] = None, **kwargs) -> None:
with self.assertRaises(AssertionError, msg=msg):
self.assertEqual(x, y, msg, atol=atol, rtol=rtol, **kwargs)
def assertEqualTypeString(self, x, y) -> None:
# This API is used simulate deprecated x.type() == y.type()
self.assertEqual(x.device, y.device)
self.assertEqual(x.dtype, y.dtype)
self.assertEqual(x.is_sparse, y.is_sparse)
def assertObjectIn(self, obj: Any, iterable: Iterable[Any]) -> None:
for elem in iterable:
if id(obj) == id(elem):
return
raise AssertionError("object not found in iterable")
# Reimplemented to provide special behavior when
# _ignore_not_implemented_error is True
def assertRaises(self, expected_exception, *args, **kwargs):
if self._ignore_not_implemented_error:
context: Optional[AssertRaisesContextIgnoreNotImplementedError] = \
AssertRaisesContextIgnoreNotImplementedError(expected_exception, self) # type: ignore[call-arg]
try:
return context.handle('assertRaises', args, kwargs) # type: ignore[union-attr]
finally:
# see https://bugs.python.org/issue23890
context = None
else:
return super().assertRaises(expected_exception, *args, **kwargs)
# Reimplemented to provide special behavior when
# _ignore_not_implemented_error is True
def assertRaisesRegex(self, expected_exception, expected_regex, *args, **kwargs):
# Verifies that an exception with the type expected_exception and message
# matching the regular expression defined by expected_regex is thrown.
# If the test is instantiated for a non-native device type (like XLA)
# then the message is not validated.
# Checks whether the test is instantiated for a device type by testing
# if the test class has defined the device_type attribute and,
# if so, tests whether the instantiated device type is native or not
if hasattr(self, 'device_type') and self.device_type not in NATIVE_DEVICES: # type: ignore[attr-defined]
# empty string matches any string
expected_regex = ''
if self._ignore_not_implemented_error:
context = AssertRaisesContextIgnoreNotImplementedError( # type: ignore[call-arg]
expected_exception, self, expected_regex)
return context.handle('assertRaisesRegex', args, kwargs) # type: ignore[attr-defined]
else:
return super().assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
# TODO: Support context manager interface
# NB: The kwargs forwarding to callable robs the 'subname' parameter.
# If you need it, manually apply your callable in a lambda instead.
def assertExpectedRaises(self, exc_type, callable, *args, **kwargs):
subname = None
if 'subname' in kwargs:
subname = kwargs['subname']
del kwargs['subname']
try:
callable(*args, **kwargs)
except exc_type as e:
self.assertExpected(str(e), subname)
return
# Don't put this in the try block; the AssertionError will catch it
self.fail(msg="Did not raise when expected to")
def assertNotWarn(self, callable, msg=''):
r"""
Test if :attr:`callable` does not raise a warning.
"""
with warnings.catch_warnings(record=True) as ws:
warnings.simplefilter("always") # allow any warning to be raised
with set_warn_always_context(True):
callable()
self.assertTrue(len(ws) == 0, msg)
@contextmanager
def assertWarnsOnceRegex(self, category, regex=''):
"""Context manager for code that *must always* warn
This filters expected warnings from the test and fails if
the expected warning is not caught. It uses set_warn_always() to force
TORCH_WARN_ONCE to behave like TORCH_WARN
"""
pattern = re.compile(regex)
with warnings.catch_warnings(record=True) as ws:
warnings.simplefilter("always") # allow any warning to be raised
with set_warn_always_context(True):
yield
if len(ws) == 0:
self.fail('no warning caught')
self.assertTrue(any([type(w.message) is category for w in ws]))
self.assertTrue(
any([re.match(pattern, str(w.message)) for w in ws]),
f'{pattern}, {[w.message for w in ws if type(w.message) is category]}')
def assertExpected(self, s, subname=None):
r"""
Test that a string matches the recorded contents of a file
derived from the name of this test and subname. This file
is placed in the 'expect' directory in the same directory
as the test script. You can automatically update the recorded test
output using --accept.
If you call this multiple times in a single function, you must
give a unique subname each time.
"""
if not isinstance(s, str):
raise TypeError("assertExpected is strings only")
def remove_prefix(text, prefix):
if text.startswith(prefix):
return text[len(prefix):]
return text
# NB: we take __file__ from the module that defined the test
# class, so we place the expect directory where the test script
# lives, NOT where test/common_utils.py lives. This doesn't matter in
# PyTorch where all test scripts are in the same directory as
# test/common_utils.py, but it matters in onnx-pytorch
module_id = self.__class__.__module__
munged_id = remove_prefix(self.id(), module_id + ".")
test_file = os.path.realpath(sys.modules[module_id].__file__)
expected_file = os.path.join(os.path.dirname(test_file),
"expect",
munged_id)
subname_output = ""
if subname:
expected_file += "-" + subname
subname_output = " ({})".format(subname)
expected_file += ".expect"
expected = None
def accept_output(update_type):
print("Accepting {} for {}{}:\n\n{}".format(update_type, munged_id, subname_output, s))
with open(expected_file, 'w') as f:
# Adjust for producer_version, leave s unmodified
s_tag = re.sub(r'(producer_version): "[0-9.]*"',
r'\1: "CURRENT_VERSION"', s)
f.write(s_tag)
try:
with open(expected_file) as f:
expected = f.read()
except IOError as e:
if e.errno != errno.ENOENT:
raise
elif expecttest.ACCEPT:
return accept_output("output")
else:
raise RuntimeError(
("I got this output for {}{}:\n\n{}\n\n"
"No expect file exists; to accept the current output, run:\n"
"python {} {} --accept").format(munged_id, subname_output, s, __main__.__file__, munged_id)) from None
# a hack for JIT tests
if IS_WINDOWS:
expected = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', expected)
s = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', s)
# Adjust for producer_version
expected = expected.replace(
'producer_version: "CURRENT_VERSION"',
'producer_version: "{}"'.format(torch.onnx.producer_version)
)
if expecttest.ACCEPT:
if expected != s:
return accept_output("updated output")
else:
if hasattr(self, "assertMultiLineEqual"):
# Python 2.7 only
# NB: Python considers lhs "old" and rhs "new".
self.assertMultiLineEqual(expected, s)
else:
self.assertEqual(s, expected)
def assertExpectedStripMangled(self, s, subname=None):
s = re.sub(r'__torch__[^ ]+', '', s)
self.assertExpected(s, subname)
def assertGreaterAlmostEqual(self, first, second, places=None, msg=None, delta=None):
"""Assert that ``first`` is greater than or almost equal to ``second``.
The equality of ``first`` and ``second`` is determined in a similar way to
the ``assertAlmostEqual`` function of the standard library.
"""
if delta is not None and places is not None:
raise TypeError("specify delta or places not both")
if first >= second:
return
diff = second - first
if delta is not None:
if diff <= delta:
return
standardMsg = f"{first} not greater than or equal to {second} within {delta} delta"
else:
if places is None:
places = 7
if round(diff, places) == 0:
return
standardMsg = f"{first} not greater than or equal to {second} within {places} places"
msg = self._formatMessage(msg, standardMsg)
raise self.failureException(msg)
def assertAtenOp(self, onnx_model, operator, overload_name=""):
all_aten_nodes = [p for p in onnx_model.graph.node
if p.op_type == "ATen" and p.domain == "org.pytorch.aten"]
self.assertTrue(all_aten_nodes)
for op in all_aten_nodes:
attrs = {attr.name: attr.s.decode() for attr in op.attribute}
if attrs.get("operator") == operator:
break
self.assertEqual(attrs["operator"], operator)
self.assertEqual(attrs.get("overload_name", ""), overload_name)
def check_nondeterministic_alert(self, fn, caller_name, should_alert=True):
'''Checks that an operation produces a nondeterministic alert when
expected while `torch.use_deterministic_algorithms(True)` is set.
Args:
fn (callable): Function to check for a nondeterministic alert
caller_name (str): Name of the operation that produces the
nondeterministic alert. This name is expected to appear at the
beginning of the error/warning message.
should_alert (bool, optional): If True, then the check will only pass
if calling `fn` produces a nondeterministic error/warning with the
expected message. If False, then the check will only pass if
calling `fn` does not produce an error. Default: `True`.
'''
alert_message = '^' + caller_name + ' does not have a deterministic implementation, but you set'
# Check that errors are thrown correctly
with DeterministicGuard(True):
if should_alert:
with self.assertRaisesRegex(
RuntimeError,
alert_message,
msg='expected a non-deterministic error, but it was not raised'):
fn()
else:
# If a nondeterministic error is not expected, make sure
# that it is not raised
try:
fn()
except RuntimeError as e:
if 'does not have a deterministic implementation' in str(e):
self.fail(
'did not expect non-deterministic error message, '
+ 'but got one anyway: "' + str(e) + '"')
# Reraise exceptions unrelated to nondeterminism
raise
# Check that warnings are thrown correctly
with DeterministicGuard(True, warn_only=True):
if should_alert:
with self.assertWarnsRegex(
UserWarning,
alert_message):
fn()
else:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
fn()
for warning in w:
if isinstance(warning, UserWarning):
self.assertTrue(re.search(alert_message, str(warning)) is None)
# run code in subprocess and capture exceptions.
@staticmethod
def run_process_no_exception(code, env=None):
import subprocess
popen = subprocess.Popen(
[sys.executable, '-c', code],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
env=env)
(stdout, stderr) = popen.communicate()
return (stdout, stderr)
# returns captured stderr
@staticmethod
def runWithPytorchAPIUsageStderr(code):
env = os.environ.copy()
env["PYTORCH_API_USAGE_STDERR"] = "1"
# remove CI flag since this is a wrapped test process.
# CI flag should be set in the parent process only.
if "CI" in env.keys():
del env["CI"]
(stdout, stderr) = TestCase.run_process_no_exception(code, env=env)
return stderr.decode('ascii')
def download_file(url, binary=True):
from urllib.parse import urlsplit
from urllib import request, error
filename = os.path.basename(urlsplit(url)[2])
data_dir = get_writable_path(os.path.join(os.path.dirname(__file__), 'data'))
path = os.path.join(data_dir, filename)
if os.path.exists(path):
return path
try:
data = request.urlopen(url, timeout=15).read()
with open(path, 'wb' if binary else 'w') as f:
f.write(data)
return path
except error.URLError as e:
msg = "could not download test file '{}'".format(url)
warnings.warn(msg, RuntimeWarning)
raise unittest.SkipTest(msg) from e
def find_free_port():
"""
Finds an available port and returns that port number.
NOTE: If this function is being used to allocate a port to Store (or
indirectly via init_process_group or init_rpc), it should be used
in conjuction with the `retry_on_connect_failures` decorator as there is a potential
race condition where the allocated port may become unavailable before it can be used
"""
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(('localhost', 0))
_, port = sock.getsockname()
return port
# Errors that we can get in c10d initialization for which we should retry tests for.
ADDRESS_IN_USE = "Address already in use"
CONNECT_TIMEOUT = "connect() timed out."
def retry_on_connect_failures(func=None, connect_errors=(ADDRESS_IN_USE)):
"""Reruns a test if the test returns a RuntimeError and the exception
contains one of the strings in connect_errors."""
# This if block is executed when using this function as a decorator with arguments.
if func is None:
return partial(retry_on_connect_failures, connect_errors=connect_errors)
@wraps(func)
def wrapper(*args, **kwargs):
n_retries = 10
tries_remaining = n_retries
while True:
try:
return func(*args, **kwargs)
except RuntimeError as error:
if any(connect_error in str(error) for connect_error in connect_errors):
tries_remaining -= 1
if tries_remaining == 0:
raise RuntimeError(f"Failing after {n_retries} retries with error: {str(error)}")
time.sleep(random.random())
continue
raise
return wrapper
# Decorator to retry upon certain Exceptions.
def retry(ExceptionToCheck, tries=3, delay=3, skip_after_retries=False):
def deco_retry(f):
@wraps(f)
def f_retry(*args, **kwargs):
mtries, mdelay = tries, delay
while mtries > 1:
try:
return f(*args, **kwargs)
except ExceptionToCheck as e:
msg = "%s, Retrying in %d seconds..." % (str(e), mdelay)
print(msg)
time.sleep(mdelay)
mtries -= 1
try:
return f(*args, **kwargs)
except ExceptionToCheck as e:
raise unittest.SkipTest(f"Skipping after {tries} consecutive {str(e)}") from e if skip_after_retries else e
return f_retry # true decorator
return deco_retry
# FIXME: modernize these to be consistent with make_tensor
# and review including them in torch.testing
# Methods for matrix generation
def random_square_matrix_of_rank(l, rank, dtype=torch.double, device='cpu'):
assert rank <= l
A = torch.randn(l, l, dtype=dtype, device=device)
u, s, vh = torch.linalg.svd(A, full_matrices=False)
for i in range(l):
if i >= rank:
s[i] = 0
elif s[i] == 0:
s[i] = 1
return (u * s.to(dtype).unsqueeze(-2)) @ vh
def random_well_conditioned_matrix(*shape, dtype, device, mean=1.0, sigma=0.001):
"""
Returns a random rectangular matrix (batch of matrices)
with singular values sampled from a Gaussian with
mean `mean` and standard deviation `sigma`.
The smaller the `sigma`, the better conditioned
the output matrix is.
"""
primitive_dtype = {
torch.float: torch.float,
torch.double: torch.double,
torch.cfloat: torch.float,
torch.cdouble: torch.double
}
x = torch.rand(shape, dtype=dtype, device=device)
m = x.size(-2)
n = x.size(-1)
u, _, vh = torch.linalg.svd(x, full_matrices=False)
s = (torch.randn(*(shape[:-2] + (min(m, n),)), dtype=primitive_dtype[dtype], device=device) * sigma + mean) \
.sort(-1, descending=True).values.to(dtype)
return (u * s.unsqueeze(-2)) @ vh
# Returns a noncontiguous (tensor with the same shape and values as t
# The noncontiguous tensor is constructed such that elements in the innermost
# dimension are separated by zeros or (whenever possible) nans
# TODO: consider more complicated noncontiguity schemes
def noncontiguous_like(t):
# Short-circuits if t is already noncontiguous
if not t.is_contiguous():
return t
# Choose a "weird" value that won't be accessed
if t.dtype.is_floating_point or t.dtype.is_complex:
value = math.nan
elif t.dtype == torch.bool:
value = True
else:
value = 12
result = t.new_empty(t.shape + (2,))
result[..., 0] = value
result[..., 1] = t.detach()
result = result[..., 1]
result.requires_grad_(t.requires_grad)
return result
# TODO: remove this (prefer make_symmetric_matrices below)
def random_symmetric_matrix(l, *batches, **kwargs):
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
A = (A + A.mT).div_(2)
return A
# Creates a symmetric matrix or batch of symmetric matrices
# Shape must be a square matrix or batch of square matrices
def make_symmetric_matrices(*shape, device, dtype):
assert shape[-1] == shape[-2]
t = make_tensor(shape, device=device, dtype=dtype)
t = (t + t.mT).div_(2)
return t
def random_hermitian_matrix(l, *batches, **kwargs):
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
A = (A + A.mH).div_(2)
return A
def random_symmetric_psd_matrix(l, *batches, **kwargs):
"""
Returns a batch of random symmetric positive-semi-definite matrices.
The shape of the result is batch_dims + (matrix_size, matrix_size)
The following example creates a tensor of size 2 x 4 x 3 x 3
>>> # xdoctest: +SKIP("undefined variables")
>>> matrices = random_symmetric_psd_matrix(3, 2, 4, dtype=dtype, device=device)
"""
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
return A @ A.mT
def random_hermitian_psd_matrix(matrix_size, *batch_dims, dtype=torch.double, device='cpu'):
"""
Returns a batch of random Hermitian positive-semi-definite matrices.
The shape of the result is batch_dims + (matrix_size, matrix_size)
The following example creates a tensor of size 2 x 4 x 3 x 3
>>> # xdoctest: +SKIP("undefined variables")
>>> matrices = random_hermitian_psd_matrix(3, 2, 4, dtype=dtype, device=device)
"""
A = torch.randn(*(batch_dims + (matrix_size, matrix_size)), dtype=dtype, device=device)
return A @ A.mH
# TODO: remove this (prefer make_symmetric_pd_matrices below)
def random_symmetric_pd_matrix(matrix_size, *batch_dims, **kwargs):
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
A = torch.randn(*(batch_dims + (matrix_size, matrix_size)),
dtype=dtype, device=device)
return torch.matmul(A, A.mT) \
+ torch.eye(matrix_size, dtype=dtype, device=device) * 1e-5
# Creates a symmetric positive-definite matrix or batch of
# such matrices
def make_symmetric_pd_matrices(*shape, device, dtype):
assert shape[-1] == shape[-2]
t = make_tensor(shape, device=device, dtype=dtype)
i = torch.eye(shape[-1], device=device, dtype=dtype) * 1e-5
return t @ t.mT + i
def random_hermitian_pd_matrix(matrix_size, *batch_dims, dtype, device):
"""
Returns a batch of random Hermitian positive-definite matrices.
The shape of the result is batch_dims + (matrix_size, matrix_size)
The following example creates a tensor of size 2 x 4 x 3 x 3
>>> # xdoctest: +SKIP("undefined variables")
>>> matrices = random_hermitian_pd_matrix(3, 2, 4, dtype=dtype, device=device)
"""
A = torch.randn(*(batch_dims + (matrix_size, matrix_size)),
dtype=dtype, device=device)
return A @ A.mH + torch.eye(matrix_size, dtype=dtype, device=device)
# Creates a full rank matrix with distinct singular values or
# a batch of such matrices
def make_fullrank_matrices_with_distinct_singular_values(*shape, device, dtype, requires_grad=False):
with torch.no_grad():
t = make_tensor(shape, device=device, dtype=dtype)
u, _, vh = torch.linalg.svd(t, full_matrices=False)
real_dtype = t.real.dtype if t.dtype.is_complex else t.dtype
k = min(shape[-1], shape[-2])
# We choose the singular values to be "around one"
# This is to make the matrix well conditioned
# s = [2, 3, ..., k+1]
s = torch.arange(2, k + 2, dtype=real_dtype, device=device)
# s = [2, -3, 4, ..., (-1)^k k+1]
s[1::2] *= -1.
# 1 + 1/s so that the singular values are in the range [2/3, 3/2]
# This gives a condition number of 9/4, which should be good enough
s.reciprocal_().add_(1.)
# Note that the singular values need not be ordered in an SVD so
# we don't need need to sort S
x = (u * s.to(u.dtype)) @ vh
x.requires_grad_(requires_grad)
return x
def random_matrix(rows, columns, *batch_dims, **kwargs):
"""Return rectangular matrix or batches of rectangular matrices.
Parameters:
dtype - the data type
device - the device kind
singular - when True, the output will be singular
"""
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
silent = kwargs.get("silent", False)
singular = kwargs.get("singular", False)
if silent and not torch._C.has_lapack:
return torch.ones(rows, columns, dtype=dtype, device=device)
A = torch.randn(batch_dims + (rows, columns), dtype=dtype, device=device)
if A.numel() == 0:
return A
u, _, vh = torch.linalg.svd(A, full_matrices=False)
k = min(rows, columns)
s = torch.linspace(1 / (k + 1), 1, k, dtype=dtype, device=device)
if singular:
# make matrix singular
s[k - 1] = 0
if k > 2:
# increase the order of singularity so that the pivoting
# in LU factorization will be non-trivial
s[0] = 0
return (u * s.unsqueeze(-2)) @ vh
def random_lowrank_matrix(rank, rows, columns, *batch_dims, **kwargs):
"""Return rectangular matrix or batches of rectangular matrices with
given rank.
"""
B = random_matrix(rows, rank, *batch_dims, **kwargs)
C = random_matrix(rank, columns, *batch_dims, **kwargs)
return B.matmul(C)
def random_sparse_matrix(rows, columns, density=0.01, **kwargs):
"""Return rectangular random sparse matrix within given density.
The density of the result approaches to given density as the size
of the matrix is increased and a relatively small value of density
is specified but higher than min(rows, columns)/(rows * columns)
for non-singular matrices.
"""
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
singular = kwargs.get("singular", False)
k = min(rows, columns)
nonzero_elements = max(min(rows, columns), int(rows * columns * density))
row_indices = [i % rows for i in range(nonzero_elements)]
column_indices = [i % columns for i in range(nonzero_elements)]
random.shuffle(column_indices)
indices = [row_indices, column_indices]
values = torch.randn(nonzero_elements, dtype=dtype, device=device)
# ensure that the diagonal dominates
values *= torch.tensor([-float(i - j)**2 for i, j in zip(*indices)], dtype=dtype, device=device).exp()
indices_tensor = torch.tensor(indices)
A = torch.sparse_coo_tensor(indices_tensor, values, (rows, columns), device=device)
return A.coalesce()
def random_sparse_pd_matrix(matrix_size, density=0.01, **kwargs):
"""Return random sparse positive-definite matrix with given density.
The eigenvalues of the matrix are defined as::
arange(1, matrix_size+1)/matrix_size
Algorithm:
A = diag(arange(1, matrix_size+1)/matrix_size)
while <A density is smaller than required>:
<choose random i, j in range(matrix_size), theta in [0, 2*pi]>
R = <rotation matrix (i,j,theta)>
A = R^T A R
"""
import math
torch = kwargs.get('torch', globals()['torch'])
dtype = kwargs.get('dtype', torch.double)
device = kwargs.get('device', 'cpu')
data = dict([((i, i), float(i + 1) / matrix_size)
for i in range(matrix_size)])
def multiply(data, N, i, j, cs, sn, left=True):
for k in range(N):
if left:
ik, jk = (k, i), (k, j)
else:
ik, jk = (i, k), (j, k)
aik, ajk = data.get(ik, 0), data.get(jk, 0)
aik, ajk = cs * aik + sn * ajk, -sn * aik + cs * ajk
if aik:
data[ik] = aik
else:
data.pop(ik, None)
if ajk:
data[jk] = ajk
else:
data.pop(jk, None)
target_nnz = density * matrix_size * matrix_size
while len(data) < target_nnz:
i = random.randint(0, matrix_size - 1)
j = random.randint(0, matrix_size - 1)
if i != j:
theta = random.uniform(0, 2 * math.pi)
cs = math.cos(theta)
sn = math.sin(theta)
multiply(data, matrix_size, i, j, cs, sn, left=True)
multiply(data, matrix_size, i, j, cs, sn, left=False)
icoords, jcoords, values = [], [], []
for (i, j), v in sorted(data.items()):
icoords.append(i)
jcoords.append(j)
values.append(v)
indices_tensor = torch.tensor([icoords, jcoords])
return torch.sparse_coo_tensor(indices_tensor, values, (matrix_size, matrix_size), dtype=dtype, device=device)
# FIXME: remove this by updating test suites using it
def do_test_dtypes(self, dtypes, layout, device):
for dtype in dtypes:
if dtype != torch.float16:
out = torch.zeros((2, 3), dtype=dtype, layout=layout, device=device)
self.assertIs(dtype, out.dtype)
self.assertIs(layout, out.layout)
self.assertEqual(device, out.device)
# FIXME: remove this by updating test suites using it
def do_test_empty_full(self, dtypes, layout, device):
shape = torch.Size([2, 3])
def check_value(tensor, dtype, layout, device, value, requires_grad):
self.assertEqual(shape, tensor.shape)
self.assertIs(dtype, tensor.dtype)
self.assertIs(layout, tensor.layout)
self.assertEqual(tensor.requires_grad, requires_grad)
if tensor.is_cuda and device is not None:
self.assertEqual(device, tensor.device)
if value is not None:
fill = tensor.new(shape).fill_(value)
self.assertEqual(tensor, fill)
def get_int64_dtype(dtype):
module = '.'.join(str(dtype).split('.')[1:-1])
if not module:
return torch.int64
return operator.attrgetter(module)(torch).int64
default_dtype = torch.get_default_dtype()
check_value(torch.empty(shape), default_dtype, torch.strided, -1, None, False)
check_value(torch.full(shape, -5.), default_dtype, torch.strided, -1, None, False)
for dtype in dtypes:
for rg in {dtype.is_floating_point, False}:
int64_dtype = get_int64_dtype(dtype)
v = torch.empty(shape, dtype=dtype, device=device, layout=layout, requires_grad=rg)
check_value(v, dtype, layout, device, None, rg)
out = v.new()
check_value(torch.empty(shape, out=out, device=device, layout=layout, requires_grad=rg),
dtype, layout, device, None, rg)
check_value(v.new_empty(shape), dtype, layout, device, None, False)
check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=False),
int64_dtype, layout, device, None, False)
check_value(torch.empty_like(v), dtype, layout, device, None, False)
check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=False),
int64_dtype, layout, device, None, False)
if dtype is not torch.float16 and layout != torch.sparse_coo:
fv = 3
v = torch.full(shape, fv, dtype=dtype, layout=layout, device=device, requires_grad=rg)
check_value(v, dtype, layout, device, fv, rg)
check_value(v.new_full(shape, fv + 1), dtype, layout, device, fv + 1, False)
out = v.new()
check_value(torch.full(shape, fv + 2, out=out, device=device, layout=layout, requires_grad=rg),
dtype, layout, device, fv + 2, rg)
check_value(v.new_full(shape, fv + 3, dtype=int64_dtype, device=device, requires_grad=False),
int64_dtype, layout, device, fv + 3, False)
check_value(torch.full_like(v, fv + 4), dtype, layout, device, fv + 4, False)
check_value(torch.full_like(v, fv + 5,
dtype=int64_dtype, layout=layout, device=device, requires_grad=False),
int64_dtype, layout, device, fv + 5, False)
# FIXME: improve load_tests() documentation here
running_script_path = None
def set_running_script_path():
global running_script_path
try:
running_file = os.path.abspath(os.path.realpath(sys.argv[0]))
if running_file.endswith('.py'): # skip if the running file is not a script
running_script_path = running_file
except Exception:
pass
def check_test_defined_in_running_script(test_case):
if running_script_path is None:
return
test_case_class_file = os.path.abspath(os.path.realpath(inspect.getfile(test_case.__class__)))
assert test_case_class_file == running_script_path, "Class of loaded TestCase \"{}\" " \
"is not defined in the running script \"{}\", but in \"{}\". Did you " \
"accidentally import a unittest.TestCase from another file?".format(
test_case.id(), running_script_path, test_case_class_file)
def load_tests(loader, tests, pattern):
set_running_script_path()
test_suite = unittest.TestSuite()
for test_group in tests:
if not DISABLE_RUNNING_SCRIPT_CHK:
for test in test_group:
check_test_defined_in_running_script(test)
if test_group._tests:
test_suite.addTest(test_group)
return test_suite
# FIXME: document this and move it to test_serialization
class BytesIOContext(io.BytesIO):
def __enter__(self):
return self
def __exit__(self, *args):
pass
# Tentative value for nondet_tol for gradcheck when backward implementation
# relies on nondeterministic operations, i.e., those listed here:
# https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
#
# For more information see https://github.com/pytorch/pytorch/issues/56202
GRADCHECK_NONDET_TOL = 1e-12
def is_slow_gradcheck_env() -> bool:
return os.environ.get('PYTORCH_TEST_WITH_SLOW_GRADCHECK', "0") == "1"
skipIfSlowGradcheckEnv = unittest.skipIf(
is_slow_gradcheck_env(),
"Tests that don't use gradcheck don't need to run on slow_gradcheck CI"
)
def gradcheck(fn, inputs, **kwargs):
# Wrapper around gradcheck that enables certain keys by default.
# Use this testing-internal gradcheck instead of autograd.gradcheck so that new features like vmap and
# forward-mode AD are tested by default. We create this wrapper because we'd like to keep new checks
# to be disabled to default for the public-facing api to avoid breaking user code.
#
# All PyTorch devs doing testing should use this wrapper instead of autograd.gradcheck.
default_values = {
"check_batched_grad": True,
"fast_mode": True,
}
if is_slow_gradcheck_env():
default_values["fast_mode"] = False
for key, value in default_values.items():
# default value override values explicitly set to None
k = kwargs.get(key, None)
kwargs[key] = k if k is not None else value
return torch.autograd.gradcheck(fn, inputs, **kwargs)
def gradgradcheck(fn, inputs, grad_outputs=None, **kwargs):
# Wrapper around gradgradcheck that enables certain keys by default
# See gradcheck above for an explanation of why we need something like this.
#
# All PyTorch devs doing testing should use this wrapper instead of autograd.gradgradcheck
default_values = {
"check_batched_grad": True,
"fast_mode": True,
}
if is_slow_gradcheck_env():
default_values["fast_mode"] = False
for key, value in default_values.items():
# default value override values explicitly set to None
k = kwargs.get(key, None)
kwargs[key] = k if k is not None else value
return torch.autograd.gradgradcheck(fn, inputs, grad_outputs, **kwargs)
def _assertGradAndGradgradChecks(test_case, apply_fn, inputs, **kwargs):
# call assert function rather than returning a bool since it's nicer
# if we get whether this failed on the gradcheck or the gradgradcheck.
test_case.assertTrue(gradcheck(apply_fn, inputs, **kwargs))
test_case.assertTrue(gradgradcheck(apply_fn, inputs, **kwargs))
@contextmanager
def set_cwd(path: str) -> Iterator[None]:
old_cwd = os.getcwd()
try:
os.chdir(path)
yield
finally:
os.chdir(old_cwd)
# FIXME: delete this
# Using @toleranceOverride specific to your test is the recommended way
# of doing this. These are just some values that worked for test_nn.
dtype2prec_DONTUSE = {torch.float: 1e-5,
torch.double: 1e-5,
torch.half: 1e-2,
torch.bfloat16: 1e-1}
# FIXME: move to test_sparse or sparse utils
# This is a wrapper that wraps a test to run this test twice, one with
# coalesced=True, another with coalesced=False for coalesced/uncoalesced sparse tensors.
def coalescedonoff(f):
@wraps(f)
def wrapped(self, *args, **kwargs):
f(self, *args, **kwargs, coalesced=True)
f(self, *args, **kwargs, coalesced=False)
return wrapped
@contextlib.contextmanager
def disable_gc():
if gc.isenabled():
try:
gc.disable()
yield
finally:
gc.enable()
else:
yield
def find_library_location(lib_name: str) -> Path:
# return the shared library file in the installed folder if exist,
# else the file in the build folder
torch_root = Path(torch.__file__).resolve().parent
path = torch_root / 'lib' / lib_name
if os.path.exists(path):
return path
torch_root = Path(__file__).resolve().parent.parent.parent
return torch_root / 'build' / 'lib' / lib_name
def sandcastle_skip(reason):
"""
Similar to unittest.skip, however in the sandcastle environment it just
"passes" the test instead to avoid creating tasks complaining about tests
skipping continuously.
"""
def decorator(func):
if not IS_SANDCASTLE:
func.__unittest_skip__ = True
func.__unittest_skip_why__ = reason
return func
@wraps(func)
def wrapper(*args, **kwargs):
print(f'Skipping {func.__name__} on sandcastle for following reason: {reason}', file=sys.stderr)
return
return wrapper
return decorator
def mock_wrapper(method):
"""
Returns a function that calls the real implementation of a method
in addition to passing args to a mock object.
"""
mock = MagicMock()
@wraps(method)
def wrapper(self, *args, **kwargs):
mock(*args, **kwargs)
return method(self, *args, **kwargs)
wrapper.mock = mock # type: ignore[attr-defined]
return wrapper
def get_tensors_from(args, kwargs):
""" Returns a set of all Tensor objects in the given args and kwargs. """
return set([arg for arg in args if isinstance(arg, Tensor)] +
[v for v in kwargs.values() if isinstance(v, Tensor)])
# Returns scalar tensor representation of a list of integer byte values
def bytes_to_scalar(byte_list: List[int], dtype: torch.dtype, device: torch.device):
dtype_to_ctype: Dict[torch.dtype, Any] = {
torch.int8: ctypes.c_int8,
torch.uint8: ctypes.c_uint8,
torch.int16: ctypes.c_int16,
torch.int32: ctypes.c_int32,
torch.int64: ctypes.c_int64,
torch.bool: ctypes.c_bool,
torch.float32: ctypes.c_float,
torch.complex64: ctypes.c_float,
torch.float64: ctypes.c_double,
torch.complex128: ctypes.c_double,
}
ctype = dtype_to_ctype[dtype]
num_bytes = ctypes.sizeof(ctype)
def check_bytes(byte_list):
for byte in byte_list:
assert 0 <= byte <= 255
if dtype.is_complex:
assert len(byte_list) == (num_bytes * 2)
check_bytes(byte_list)
real = ctype.from_buffer((ctypes.c_byte * num_bytes)(
*byte_list[:num_bytes])).value
imag = ctype.from_buffer((ctypes.c_byte * num_bytes)(
*byte_list[num_bytes:])).value
res = real + 1j * imag
else:
assert len(byte_list) == num_bytes
check_bytes(byte_list)
res = ctype.from_buffer((ctypes.c_byte * num_bytes)(
*byte_list)).value
return torch.tensor(res, device=device, dtype=dtype)
def sandcastle_skip_if(condition, reason):
"""
Similar to unittest.skipIf, however in the sandcastle environment it just
"passes" the test instead to avoid creating tasks complaining about tests
skipping continuously.
"""
def decorator(func):
if condition:
if IS_SANDCASTLE:
@wraps(func)
def wrapper(*args, **kwargs):
print(f'Skipping {func.__name__} on sandcastle for following reason: {reason}', file=sys.stderr)
return wrapper
else:
func.__unittest_skip__ = True
func.__unittest_skip_why__ = reason
return func
return decorator
def dtype_name(dtype):
""" Returns the pretty name of the dtype (e.g. torch.int64 -> int64). """
return str(dtype).split('.')[1]
dtype_abbrs = {
torch.bfloat16: 'bf16',
torch.float64: 'f64',
torch.float32: 'f32',
torch.float16: 'f16',
torch.complex32: 'c32',
torch.complex64: 'c64',
torch.complex128: 'c128',
torch.int8: 'i8',
torch.int16: 'i16',
torch.int32: 'i32',
torch.int64: 'i64',
torch.bool: 'b8',
torch.uint8: 'u8',
}
def set_single_threaded_if_parallel_tbb(fn):
"""Set test to be single threaded for parallel tbb.
See https://github.com/pytorch/pytorch/issues/64571#issuecomment-914691883
"""
if not IS_TBB:
return fn
@wraps(fn)
def wrap_fn(*args, **kwargs):
num_threads = torch.get_num_threads()
torch.set_num_threads(1)
try:
return fn(*args, **kwargs)
finally:
torch.set_num_threads(num_threads)
return wrap_fn
@functools.lru_cache()
def get_cycles_per_ms() -> float:
"""Measure and return approximate number of cycles per millisecond for torch.cuda._sleep
"""
def measure() -> float:
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
torch.cuda._sleep(1000000)
end.record()
end.synchronize()
cycles_per_ms = 1000000 / start.elapsed_time(end)
return cycles_per_ms
# Get 10 values and remove the 2 max and 2 min and return the avg.
# This is to avoid system disturbance that skew the results, e.g.
# the very first cuda call likely does a bunch of init, which takes
# much longer than subsequent calls.
#
# Tested on both Tesla V100, Quadro GP100, Titan RTX, RTX 3090 GPUs
# and seems to return stable values. Therefore, we enable caching
# using lru_cache decorator above.
num = 10
vals = []
for _ in range(num):
vals.append(measure())
vals = sorted(vals)
return mean(vals[2 : num - 2])
# OpInfo utils
T = TypeVar('T')
def first_sample(self: unittest.TestCase, samples: Iterable[T]) -> T:
"""
Returns the first sample from an iterable of samples, like those returned by OpInfo.
The test will be skipped if no samples are available.
"""
try:
return next(iter(samples))
except StopIteration:
raise unittest.SkipTest('Skipped! Need at least 1 sample input')
# this helper method is to recursively
# clone the tensor-type input of operators tested by OpInfo
def clone_input_helper(input):
if isinstance(input, torch.Tensor):
return torch.clone(input)
if isinstance(input, Sequence):
return tuple(map(clone_input_helper, input))
return input
@contextmanager
def custom_op(opname, symbolic_fn, opset_version):
"""Context manager/decorator to test ONNX export with custom oeprator"""
try:
register_custom_op_symbolic(opname, symbolic_fn, opset_version)
yield
finally:
unregister_custom_op_symbolic(opname, opset_version)
|