File: common_utils.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (3608 lines) | stat: -rw-r--r-- 150,163 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
r"""Importing this file must **not** initialize CUDA context. test_distributed
relies on this assumption to properly run. This means that when this is imported
no CUDA calls shall be made, including torch.cuda.device_count(), etc.

torch.testing._internal.common_cuda.py can freely initialize CUDA context when imported.
"""

import argparse
import contextlib
import copy
import ctypes
import errno
import functools
import gc
import inspect
import io
import json
import math
import operator
import os
import platform
import random
import re
import shutil
import socket
import subprocess
import sys
import tempfile
import threading
import time
import types
import unittest
import warnings
from collections.abc import Mapping, Sequence
from contextlib import closing, contextmanager
from copy import deepcopy
from enum import Enum
from functools import partial, wraps
from itertools import product
from pathlib import Path
from statistics import mean
from typing import (
    Any,
    Callable,
    Dict,
    Iterable,
    Iterator,
    List,
    Optional,
    Tuple,
    Type,
    TypeVar,
    Union,
)
from unittest.mock import MagicMock

import expecttest
import numpy as np

import __main__  # type: ignore[import]
import torch
import torch.backends.cudnn
import torch.backends.mkl
import torch.backends.xnnpack
import torch.cuda
from torch import Tensor
from torch._C import ScriptDict, ScriptList  # type: ignore[attr-defined]
from torch._six import string_classes
from torch._utils_internal import get_writable_path
from torch.nn import (
    ModuleDict,
    ModuleList,
    ParameterDict,
    ParameterList,
    Sequential,
)
from torch.onnx import (
    register_custom_op_symbolic,
    unregister_custom_op_symbolic,
)
from torch.testing import make_tensor
from torch.testing._comparison import (
    BooleanPair,
    ErrorMeta,
    NonePair,
    NumberPair,
    Pair,
    TensorLikePair,
    UnsupportedInputs,
)
from torch.testing._comparison import assert_equal as assert_equal
from torch.testing._internal.common_dtype import get_all_dtypes

from .composite_compliance import no_dispatch

torch.backends.disable_global_flags()

FILE_SCHEMA = "file://"
if sys.platform == 'win32':
    FILE_SCHEMA = "file:///"

IS_CI = bool(os.getenv('CI'))
IS_SANDCASTLE = os.getenv('SANDCASTLE') == '1' or os.getenv('TW_JOB_USER') == 'sandcastle'
IS_FBCODE = os.getenv('PYTORCH_TEST_FBCODE') == '1'
IS_REMOTE_GPU = os.getenv('PYTORCH_TEST_REMOTE_GPU') == '1'

RETRY_TEST_CASES = os.getenv('PYTORCH_RETRY_TEST_CASES') == '1'
OVERRIDE_FLAKY_SIGNAL = os.getenv('PYTORCH_OVERRIDE_FLAKY_SIGNAL') == '1'
DISABLE_RUNNING_SCRIPT_CHK = os.getenv('PYTORCH_DISABLE_RUNNING_SCRIPT_CHK') == '1'
MAX_NUM_RETRIES = 3

DEFAULT_DISABLED_TESTS_FILE = '.pytorch-disabled-tests.json'
DEFAULT_SLOW_TESTS_FILE = '.pytorch-slow-tests.json'

disabled_tests_dict = {}
slow_tests_dict = {}

# set them here in case the tests are running in a subprocess that doesn't call run_tests
if os.getenv("SLOW_TESTS_FILE", ""):
    with open(os.getenv("SLOW_TESTS_FILE"), 'r') as fp:
        slow_tests_dict = json.load(fp)
        warnings.warn(f"loaded {len(slow_tests_dict)} slow tests")
if os.getenv("DISABLED_TESTS_FILE", ""):
    with open(os.getenv("DISABLED_TESTS_FILE"), 'r') as fp:
        disabled_tests_dict = json.load(fp)
        warnings.warn(f"loaded {len(disabled_tests_dict)} disabled tests")

NATIVE_DEVICES = ('cpu', 'cuda', 'meta')


class _TestParametrizer(object):
    """
    Decorator class for parametrizing a test function, yielding a set of new tests spawned
    from the original generic test, each specialized for a specific set of test inputs. For
    example, parametrizing a test across the set of ops will result in a test function per op.

    The decision of how to parametrize / what to parametrize over is intended to be implemented
    by each derived class.

    In the details, the decorator adds a 'parametrize_fn' property to the test function that is called
    during device-specific test instantiation performed in instantiate_device_type_tests(). Because of this,
    there is no need to parametrize over device type, as that is already handled separately.

    If the decorator is applied to a test function that already has a 'parametrize_fn' property, a new
    composite 'parametrize_fn' will be created that generates tests with the product of the parameters
    generated by the old and new parametrize_fns. This allows for convenient composability of decorators.
    """
    def _parametrize_test(self, test, generic_cls, device_cls):
        """
        Parametrizes the given test function across whatever dimension is specified by the derived class.
        Tests can be parametrized over any arbitrary dimension or combination of dimensions, such as all
        ops, all modules, or all ops + their associated dtypes.

        Args:
            test (fn): Test function to parametrize over
            generic_cls (class): Generic test class object containing tests (e.g. TestFoo)
            device_cls (class): Device-specialized test class object (e.g. TestFooCPU); set to None
                if the tests are not part of a device-specific set

        Returns:
            Generator object returning 3-tuples of:
                test (fn): Parametrized test function; must support a device arg and args for any params
                test_name (str): Parametrized suffix for the test (e.g. opname_int64); will be appended to
                    the base name of the test
                param_kwargs (dict): Param kwargs to pass to the test (e.g. {'op': 'add', 'dtype': torch.int64})
        """
        raise NotImplementedError

    def __call__(self, fn):
        if hasattr(fn, 'parametrize_fn'):
            # Do composition with the product of args.
            old_parametrize_fn = fn.parametrize_fn
            new_parametrize_fn = self._parametrize_test
            fn.parametrize_fn = compose_parametrize_fns(old_parametrize_fn, new_parametrize_fn)
        else:
            fn.parametrize_fn = self._parametrize_test
        return fn


def compose_parametrize_fns(old_parametrize_fn, new_parametrize_fn):
    """
    Returns a parametrize_fn that parametrizes over the product of the parameters handled
    by the given parametrize_fns. Each given parametrize_fn should each have the signature
    f(test, generic_cls, device_cls).

    The test names will be a combination of the names produced by the parametrize_fns in
    "<new_name>_<old_name>" order. This order is done to match intuition for constructed names
    when composing multiple decorators; the names will be built in top to bottom order when stacking
    parametrization decorators.

    Args:
        old_parametrize_fn (callable) - First parametrize_fn to compose.
        new_parametrize_fn (callable) - Second parametrize_fn to compose.
    """

    def composite_fn(test, generic_cls, device_cls,
                     old_parametrize_fn=old_parametrize_fn,
                     new_parametrize_fn=new_parametrize_fn):
        old_tests = [(test, test_name, param_kwargs) for (test, test_name, param_kwargs) in
                     old_parametrize_fn(test, generic_cls, device_cls)]
        for (old_test, old_test_name, old_param_kwargs) in old_tests:
            for (new_test, new_test_name, new_param_kwargs) in \
                    new_parametrize_fn(old_test, generic_cls, device_cls):
                redundant_params = set(old_param_kwargs.keys()).intersection(new_param_kwargs.keys())
                if redundant_params:
                    raise RuntimeError('Parametrization over the same parameter by multiple parametrization '
                                       'decorators is not supported. For test "{}", the following parameters '
                                       'are handled multiple times: {}'.format(
                                           test.__name__, redundant_params))
                full_param_kwargs = {**old_param_kwargs, **new_param_kwargs}
                merged_test_name = '{}{}{}'.format(new_test_name,
                                                   '_' if old_test_name != '' and new_test_name != '' else '',
                                                   old_test_name)
                yield (new_test, merged_test_name, full_param_kwargs)

    return composite_fn


def instantiate_parametrized_tests(generic_cls):
    """
    Instantiates tests that have been decorated with a parametrize_fn. This is generally performed by a
    decorator subclass of _TestParametrizer. The generic test will be replaced on the test class by
    parametrized tests with specialized names.

    You can also use it as a class decorator. E.g.

    ```
    @instantiate_parametrized_tests
    class TestFoo(TestCase):
        ...
    ```

    Args:
        generic_cls (class): Generic test class object containing tests (e.g. TestFoo)
    """
    for attr_name in tuple(dir(generic_cls)):
        class_attr = getattr(generic_cls, attr_name)
        if not hasattr(class_attr, 'parametrize_fn'):
            continue

        # Remove the generic test from the test class.
        delattr(generic_cls, attr_name)

        # Add parametrized tests to the test class.
        def instantiate_test_helper(cls, name, test, param_kwargs):
            @wraps(test)
            def instantiated_test(self, param_kwargs=param_kwargs):
                test(self, **param_kwargs)

            assert not hasattr(generic_cls, name), "Redefinition of test {0}".format(name)
            setattr(generic_cls, name, instantiated_test)

        for (test, test_suffix, param_kwargs) in class_attr.parametrize_fn(
                class_attr, generic_cls=generic_cls, device_cls=None):
            full_name = '{}_{}'.format(test.__name__, test_suffix)
            instantiate_test_helper(cls=generic_cls, name=full_name, test=test, param_kwargs=param_kwargs)
    return generic_cls


class subtest(object):
    """
    Explicit subtest case for use with test parametrization.
    Allows for explicit naming of individual subtest cases as well as applying
    decorators to the parametrized test.

    Args:
        arg_values (iterable): Iterable of arg values (e.g. range(10)) or
            tuples of arg values (e.g. [(1, 2), (3, 4)]).
        name (str): Optional name to use for the test.
        decorators (iterable): Iterable of decorators to apply to the generated test.
    """
    __slots__ = ['arg_values', 'name', 'decorators']

    def __init__(self, arg_values, name=None, decorators=None):
        self.arg_values = arg_values
        self.name = name
        self.decorators = decorators if decorators else []


class parametrize(_TestParametrizer):
    """
    Decorator for applying generic test parametrizations.

    The interface for this decorator is modeled after `@pytest.mark.parametrize`.
    Basic usage between this decorator and pytest's is identical. The first argument
    should be a string containing comma-separated names of parameters for the test, and
    the second argument should be an iterable returning values or tuples of values for
    the case of multiple parameters.

    Beyond this basic usage, the decorator provides some additional functionality that
    pytest does not.

    1. Parametrized tests end up as generated test functions on unittest test classes.
    Since this differs from how pytest works, this decorator takes on the additional
    responsibility of naming these test functions. The default test names consists of
    the test's base name followed by each parameter name + value (e.g. "test_bar_x_1_y_foo"),
    but custom names can be defined using `name_fn` or the `subtest` structure (see below).

    2. The decorator specially handles parameter values of type `subtest`, which allows for
    more fine-grained control over both test naming and test execution. In particular, it can
    be used to tag subtests with explicit test names or apply arbitrary decorators (see examples
    below).

    Examples::

        @parametrize("x", range(5))
        def test_foo(self, x):
            ...

        @parametrize("x,y", [(1, 'foo'), (2, 'bar'), (3, 'baz')])
        def test_bar(self, x, y):
            ...

        @parametrize("x,y", [(1, 'foo'), (2, 'bar'), (3, 'baz')],
                     name_fn=lambda x, y: '{}_{}'.format(x, y))
        def test_bar_custom_names(self, x, y):
            ...

        @parametrize("x, y", [subtest((1, 2), name='double'),
                              subtest((1, 3), name='triple', decorators=[unittest.expectedFailure]),
                              subtest((1, 4), name='quadruple')])
        def test_baz(self, x, y):
            ...

    Args:
        arg_str (str): String of arg names separate by commas (e.g. "x,y").
        arg_values (iterable): Iterable of arg values (e.g. range(10)) or
            tuples of arg values (e.g. [(1, 2), (3, 4)]).
        name_fn (Callable): Optional function that takes in parameters and returns subtest name.
    """
    def __init__(self, arg_str, arg_values, name_fn=None):
        self.arg_names: List[str] = [s.strip() for s in arg_str.split(',')]
        self.arg_values = arg_values
        self.name_fn = name_fn

    def _formatted_str_repr(self, name, value):
        """ Returns a string representation for the given arg that is suitable for use in test function names. """
        if isinstance(value, torch.dtype):
            return dtype_name(value)
        elif isinstance(value, torch.device):
            return str(value)
        # Can't use isinstance as it would cause a circular import
        elif value.__class__.__name__ == 'OpInfo' or value.__class__.__name__ == 'ModuleInfo':
            return value.formatted_name
        else:
            # Include name and value separated by underscore.
            return '{}_{}'.format(name, str(value).replace('.', '_'))

    def _default_subtest_name(self, values):
        return '_'.join([self._formatted_str_repr(a, v) for a, v in zip(self.arg_names, values)])

    def _get_subtest_name(self, values, explicit_name=None):
        if explicit_name:
            subtest_name = explicit_name
        elif self.name_fn:
            subtest_name = self.name_fn(*values)
        else:
            subtest_name = self._default_subtest_name(values)
        return subtest_name

    def _parametrize_test(self, test, generic_cls, device_cls):
        if len(self.arg_names) == 0:
            # No additional parameters needed for the test.
            test_name = ''
            yield (test, test_name, {})
        else:
            # Each "values" item is expected to be either:
            # * A tuple of values with one for each arg. For a single arg, a single item is expected.
            # * A subtest instance with arg_values matching the previous.
            values = check_exhausted_iterator = object()
            for values in self.arg_values:
                maybe_name = None
                if isinstance(values, subtest):
                    sub = values
                    values = sub.arg_values
                    maybe_name = sub.name

                    # Apply decorators.
                    @wraps(test)
                    def test_wrapper(*args, **kwargs):
                        return test(*args, **kwargs)

                    for decorator in sub.decorators:
                        test_wrapper = decorator(test_wrapper)

                    gen_test = test_wrapper
                else:
                    gen_test = test

                values = list(values) if len(self.arg_names) > 1 else [values]
                if len(values) != len(self.arg_names):
                    raise RuntimeError('Expected # values == # arg names, but got: {} '
                                       'values and {} names for test "{}"'.format(
                                           len(values), len(self.arg_names), test.__name__))

                param_kwargs = {
                    name: value for name, value in zip(self.arg_names, values)
                }

                test_name = self._get_subtest_name(values, explicit_name=maybe_name)
                if '.' in test_name:
                    raise RuntimeError('Test name cannot contain periods, but got: {}'.format(test_name))

                yield (gen_test, test_name, param_kwargs)

            if values is check_exhausted_iterator:
                raise ValueError('An empty arg_values was passed to @parametrize. '
                                 'Note that this may result from reuse of a generator.')


class ProfilingMode(Enum):
    LEGACY = 1
    SIMPLE = 2
    PROFILING = 3

def cppProfilingFlagsToProfilingMode():
    old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
    old_prof_mode_state = torch._C._get_graph_executor_optimize(True)
    torch._C._jit_set_profiling_executor(old_prof_exec_state)
    torch._C._get_graph_executor_optimize(old_prof_mode_state)

    if old_prof_exec_state:
        if old_prof_mode_state:
            return ProfilingMode.PROFILING
        else:
            return ProfilingMode.SIMPLE
    else:
        return ProfilingMode.LEGACY

@contextmanager
def enable_profiling_mode_for_profiling_tests():
    if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
        old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
        old_prof_mode_state = torch._C._get_graph_executor_optimize(True)
    try:
        yield
    finally:
        if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
            torch._C._jit_set_profiling_executor(old_prof_exec_state)
            torch._C._get_graph_executor_optimize(old_prof_mode_state)

@contextmanager
def enable_profiling_mode():
    old_prof_exec_state = torch._C._jit_set_profiling_executor(True)
    old_prof_mode_state = torch._C._get_graph_executor_optimize(True)
    try:
        yield
    finally:
        torch._C._jit_set_profiling_executor(old_prof_exec_state)
        torch._C._get_graph_executor_optimize(old_prof_mode_state)

@contextmanager
def num_profiled_runs(num_runs):
    old_num_runs = torch._C._jit_set_num_profiled_runs(num_runs)
    try:
        yield
    finally:
        torch._C._jit_set_num_profiled_runs(old_num_runs)

func_call = torch._C.ScriptFunction.__call__
meth_call = torch._C.ScriptMethod.__call__

def prof_callable(callable, *args, **kwargs):
    if 'profile_and_replay' in kwargs:
        del kwargs['profile_and_replay']
        if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
            with enable_profiling_mode_for_profiling_tests():
                callable(*args, **kwargs)
                return callable(*args, **kwargs)

    return callable(*args, **kwargs)

def prof_func_call(*args, **kwargs):
    return prof_callable(func_call, *args, **kwargs)

def prof_meth_call(*args, **kwargs):
    return prof_callable(meth_call, *args, **kwargs)

# TODO fix when https://github.com/python/mypy/issues/2427 is address
torch._C.ScriptFunction.__call__ = prof_func_call  # type: ignore[assignment]
torch._C.ScriptMethod.__call__ = prof_meth_call  # type: ignore[assignment]

def _get_test_report_path():
    # allow users to override the test file location. We need this
    # because the distributed tests run the same test file multiple
    # times with different configurations.
    override = os.environ.get('TEST_REPORT_SOURCE_OVERRIDE')
    test_source = override if override is not None else 'python-unittest'
    return os.path.join('test-reports', test_source)

is_running_via_run_test = "run_test.py" in getattr(__main__, "__file__", "")
parser = argparse.ArgumentParser(add_help=not is_running_via_run_test, allow_abbrev=False)
parser.add_argument('--subprocess', action='store_true',
                    help='whether to run each test in a subprocess')
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--accept', action='store_true')
parser.add_argument('--jit_executor', type=str)
parser.add_argument('--repeat', type=int, default=1)
parser.add_argument('--test_bailouts', action='store_true')
parser.add_argument('--use-pytest', action='store_true')
parser.add_argument('--save-xml', nargs='?', type=str,
                    const=_get_test_report_path(),
                    default=_get_test_report_path() if IS_CI else None)
parser.add_argument('--discover-tests', action='store_true')
parser.add_argument('--log-suffix', type=str, default="")
parser.add_argument('--run-parallel', type=int, default=1)
parser.add_argument('--import-slow-tests', type=str, nargs='?', const=DEFAULT_SLOW_TESTS_FILE)
parser.add_argument('--import-disabled-tests', type=str, nargs='?', const=DEFAULT_DISABLED_TESTS_FILE)

# Only run when -h or --help flag is active to display both unittest and parser help messages.
def run_unittest_help(argv):
    unittest.main(argv=argv)

if '-h' in sys.argv or '--help' in sys.argv:
    help_thread = threading.Thread(target=run_unittest_help, args=(sys.argv,))
    help_thread.start()
    help_thread.join()

args, remaining = parser.parse_known_args()
if args.jit_executor == 'legacy':
    GRAPH_EXECUTOR = ProfilingMode.LEGACY
elif args.jit_executor == 'profiling':
    GRAPH_EXECUTOR = ProfilingMode.PROFILING
elif args.jit_executor == 'simple':
    GRAPH_EXECUTOR = ProfilingMode.SIMPLE
else:
    # infer flags based on the default settings
    GRAPH_EXECUTOR = cppProfilingFlagsToProfilingMode()


SLOW_TESTS_FILE = args.import_slow_tests
DISABLED_TESTS_FILE = args.import_disabled_tests
LOG_SUFFIX = args.log_suffix
RUN_PARALLEL = args.run_parallel
TEST_BAILOUTS = args.test_bailouts
USE_PYTEST = args.use_pytest
TEST_DISCOVER = args.discover_tests
TEST_IN_SUBPROCESS = args.subprocess
TEST_SAVE_XML = args.save_xml
REPEAT_COUNT = args.repeat
SEED = args.seed
if not expecttest.ACCEPT:
    expecttest.ACCEPT = args.accept
UNITTEST_ARGS = [sys.argv[0]] + remaining
torch.manual_seed(SEED)

# CI Prefix path used only on CI environment
CI_TEST_PREFIX = str(Path(os.getcwd()))
CI_PT_ROOT = str(Path(os.getcwd()).parent)
CI_FUNCTORCH_ROOT = str(os.path.join(Path(os.getcwd()).parent, "functorch"))

def wait_for_process(p):
    try:
        return p.wait()
    except KeyboardInterrupt:
        # Give `p` a chance to handle KeyboardInterrupt. Without this,
        # `pytest` can't print errors it collected so far upon KeyboardInterrupt.
        exit_status = p.wait(timeout=5)
        if exit_status is not None:
            return exit_status
        else:
            p.kill()
            raise
    except:  # noqa: B001,E722, copied from python core library
        p.kill()
        raise
    finally:
        # Always call p.wait() to ensure exit
        p.wait()

def shell(command, cwd=None, env=None, stdout=None, stderr=None):
    sys.stdout.flush()
    sys.stderr.flush()
    # The following cool snippet is copied from Py3 core library subprocess.call
    # only the with
    #   1. `except KeyboardInterrupt` block added for SIGINT handling.
    #   2. In Py2, subprocess.Popen doesn't return a context manager, so we do
    #      `p.wait()` in a `final` block for the code to be portable.
    #
    # https://github.com/python/cpython/blob/71b6c1af727fbe13525fb734568057d78cea33f3/Lib/subprocess.py#L309-L323
    assert not isinstance(command, torch._six.string_classes), "Command to shell should be a list or tuple of tokens"
    p = subprocess.Popen(command, universal_newlines=True, cwd=cwd, env=env, stdout=stdout, stderr=stderr)
    return wait_for_process(p)


def discover_test_cases_recursively(suite_or_case):
    if isinstance(suite_or_case, unittest.TestCase):
        return [suite_or_case]
    rc = []
    for element in suite_or_case:
        print(element)
        rc.extend(discover_test_cases_recursively(element))
    return rc

def get_test_names(test_cases):
    return ['.'.join(case.id().split('.')[-2:]) for case in test_cases]

def _print_test_names():
    suite = unittest.TestLoader().loadTestsFromModule(__main__)
    test_cases = discover_test_cases_recursively(suite)
    for name in get_test_names(test_cases):
        print(name)

def chunk_list(lst, nchunks):
    return [lst[i::nchunks] for i in range(nchunks)]

# sanitize filename e.g., distributed/pipeline/sync/skip/test_api.py -> distributed.pipeline.sync.skip.test_api
def sanitize_test_filename(filename):
    # inspect.getfile returns absolute path in some CI jobs, converting it to relative path if needed
    if filename.startswith(CI_TEST_PREFIX):
        filename = filename[len(CI_TEST_PREFIX) + 1:]
    strip_py = re.sub(r'.py$', '', filename)
    return re.sub('/', r'.', strip_py)

# hack until https://github.com/pytorch/pytorch/issues/82109 is resolved
def sanitize_if_functorch_test_filename(filename):
    # absolute filenames must be converted to relative paths, otherwise,
    # we cannot prepend test-reports/ to it
    # (e.g. test-reports\\C:\\... on windows is nonsense)
    if filename.startswith(CI_FUNCTORCH_ROOT):
        filename = filename[len(CI_PT_ROOT) + 1:]
    return filename

def lint_test_case_extension(suite):
    succeed = True
    for test_case_or_suite in suite:
        test_case = test_case_or_suite
        if isinstance(test_case_or_suite, unittest.TestSuite):
            first_test = test_case_or_suite._tests[0] if len(test_case_or_suite._tests) > 0 else None
            if first_test is not None and isinstance(first_test, unittest.TestSuite):
                return succeed and lint_test_case_extension(test_case_or_suite)
            test_case = first_test

        if test_case is not None:
            test_class = test_case.id().split('.', 1)[1].split('.')[0]
            if not isinstance(test_case, TestCase):
                err = "This test class should extend from torch.testing._internal.common_utils.TestCase but it doesn't."
                print(f"{test_class} - failed. {err}")
                succeed = False
    return succeed


def get_report_path(pytest=False):
    test_filename = inspect.getfile(sys._getframe(2))
    test_filename = sanitize_if_functorch_test_filename(test_filename)
    test_filename = sanitize_test_filename(test_filename)
    test_report_path = TEST_SAVE_XML + LOG_SUFFIX
    test_report_path = os.path.join(test_report_path, test_filename)
    if pytest:
        test_report_path = test_report_path.replace('python-unittest', 'python-pytest')
        os.makedirs(test_report_path, exist_ok=True)
        test_report_path = os.path.join(test_report_path, f"{test_filename}-{os.urandom(8).hex()}.xml")
        return test_report_path
    os.makedirs(test_report_path, exist_ok=True)
    return test_report_path


def sanitize_pytest_xml(xml_file: str):
    # pytext xml is different from unittext xml, this function makes pytest xml more similar to unittest xml
    # consider somehow modifying the XML logger in conftest to do this instead
    import xml.etree.ElementTree as ET
    tree = ET.parse(xml_file)
    for testcase in tree.iter('testcase'):
        full_classname = testcase.attrib['classname']
        # The test prefix is optional
        regex_result = re.search(r"^(test\.)?(?P<file>.*)\.(?P<classname>[^\.]*)$", full_classname)
        classname = regex_result.group("classname")
        file = regex_result.group("file").replace(".", "/")
        testcase.set("classname", classname)
        testcase.set("file", f"{file}.py")
    tree.write(xml_file)

def run_tests(argv=UNITTEST_ARGS):
    # import test files.
    if SLOW_TESTS_FILE:
        if os.path.exists(SLOW_TESTS_FILE):
            with open(SLOW_TESTS_FILE, 'r') as fp:
                global slow_tests_dict
                slow_tests_dict = json.load(fp)
                # use env vars so pytest-xdist subprocesses can still access them
                os.environ['SLOW_TESTS_FILE'] = SLOW_TESTS_FILE
        else:
            warnings.warn(f'slow test file provided but not found: {SLOW_TESTS_FILE}')
    if DISABLED_TESTS_FILE:
        if os.path.exists(DISABLED_TESTS_FILE):
            with open(DISABLED_TESTS_FILE, 'r') as fp:
                global disabled_tests_dict
                disabled_tests_dict = json.load(fp)
                os.environ['DISABLED_TESTS_FILE'] = DISABLED_TESTS_FILE
        else:
            warnings.warn(f'disabled test file provided but not found: {DISABLED_TESTS_FILE}')
    # Determine the test launch mechanism
    if TEST_DISCOVER:
        _print_test_names()
        return

    # Before running the tests, lint to check that every test class extends from TestCase
    suite = unittest.TestLoader().loadTestsFromModule(__main__)
    if not lint_test_case_extension(suite):
        sys.exit(1)

    if TEST_IN_SUBPROCESS:
        failed_tests = []
        test_cases = discover_test_cases_recursively(suite)
        for case in test_cases:
            test_case_full_name = case.id().split('.', 1)[1]
            other_args = []
            if DISABLED_TESTS_FILE:
                other_args.append('--import-disabled-tests')
            if SLOW_TESTS_FILE:
                other_args.append('--import-slow-tests')
            cmd = [sys.executable] + [argv[0]] + other_args + argv[1:] + [test_case_full_name]
            string_cmd = " ".join(cmd)
            exitcode = shell(cmd)
            if exitcode != 0:
                # This is sort of hacky, but add on relevant env variables for distributed tests.
                if 'TestDistBackendWithSpawn' in test_case_full_name:
                    backend = os.environ.get("BACKEND", "")
                    world_size = os.environ.get("WORLD_SIZE", "")
                    env_prefix = f"BACKEND={backend} WORLD_SIZE={world_size}"
                    string_cmd = env_prefix + " " + string_cmd
                # Log the command to reproduce the failure.
                print(f"Test exited with non-zero exitcode {exitcode}. Command to reproduce: {string_cmd}")
                failed_tests.append(test_case_full_name)

        assert len(failed_tests) == 0, "{} unit test(s) failed:\n\t{}".format(
            len(failed_tests), '\n\t'.join(failed_tests))
    elif RUN_PARALLEL > 1:
        test_cases = discover_test_cases_recursively(suite)
        test_batches = chunk_list(get_test_names(test_cases), RUN_PARALLEL)
        processes = []
        for i in range(RUN_PARALLEL):
            command = [sys.executable] + argv + ['--log-suffix=-shard-{}'.format(i + 1)] + test_batches[i]
            processes.append(subprocess.Popen(command, universal_newlines=True))
        failed = False
        for p in processes:
            failed |= wait_for_process(p) != 0
        assert not failed, "Some test shards have failed"
    elif USE_PYTEST:
        if TEST_SAVE_XML:
            test_report_path = get_report_path(pytest=True)
            print(f'Test results will be stored in {test_report_path}')

        import pytest
        os.environ["NO_COLOR"] = "1"
        os.environ["USING_PYTEST"] = "1"
        exit_code = pytest.main(args=argv + [f'--junit-xml-reruns={test_report_path}'] if TEST_SAVE_XML else [])
        del os.environ["USING_PYTEST"]
        if TEST_SAVE_XML:
            sanitize_pytest_xml(test_report_path)
        print("If in CI, skip info is located in the xml test reports, please either go to s3 or the hud to download them")
        # exitcode of 5 means no tests were found, which happens since some test configs don't
        # run tests from certain files
        exit(0 if exit_code == 5 else exit_code)
    elif TEST_SAVE_XML is not None:
        # import here so that non-CI doesn't need xmlrunner installed
        import xmlrunner  # type: ignore[import]
        from xmlrunner.result import _XMLTestResult  # type: ignore[import]

        class XMLTestResultVerbose(_XMLTestResult):
            """
            Adding verbosity to test outputs:
            by default test summary prints 'skip',
            but we want to also print the skip reason.
            GH issue: https://github.com/pytorch/pytorch/issues/69014

            This works with unittest_xml_reporting<=3.2.0,>=2.0.0
            (3.2.0 is latest at the moment)
            """
            def __init__(self, *args, **kwargs):
                super().__init__(*args, **kwargs)

            def addSkip(self, test, reason):
                super().addSkip(test, reason)
                for c in self.callback.__closure__:
                    if isinstance(c.cell_contents, str) and c.cell_contents == 'skip':
                        # this message is printed in test summary;
                        # it stands for `verbose_str` captured in the closure
                        c.cell_contents = f"skip: {reason}"

        test_report_path = get_report_path()
        verbose = '--verbose' in argv or '-v' in argv
        if verbose:
            print(f'Test results will be stored in {test_report_path}')
        unittest.main(argv=argv, testRunner=xmlrunner.XMLTestRunner(
            output=test_report_path,
            verbosity=2 if verbose else 1,
            resultclass=XMLTestResultVerbose))
    elif REPEAT_COUNT > 1:
        for _ in range(REPEAT_COUNT):
            if not unittest.main(exit=False, argv=argv).result.wasSuccessful():
                sys.exit(-1)
    else:
        unittest.main(argv=argv)

IS_LINUX = sys.platform == "linux"
IS_WINDOWS = sys.platform == "win32"
IS_MACOS = sys.platform == "darwin"
IS_PPC = platform.machine() == "ppc64le"
IS_X86 = platform.machine() in ('x86_64', 'i386')
IS_ARM64 = platform.machine() == 'arm64'

def is_avx512_vnni_supported():
    if sys.platform != 'linux':
        return False
    with open("/proc/cpuinfo", encoding="ascii") as f:
        lines = f.read()
    return "vnni" in lines

IS_AVX512_VNNI_SUPPORTED = is_avx512_vnni_supported()

if IS_WINDOWS:
    @contextmanager
    def TemporaryFileName(*args, **kwargs):
        # Ideally we would like to not have to manually delete the file, but NamedTemporaryFile
        # opens the file, and it cannot be opened multiple times in Windows. To support Windows,
        # close the file after creation and try to remove it manually
        if 'delete' in kwargs:
            if kwargs['delete'] is not False:
                raise UserWarning("only TemporaryFileName with delete=False is supported on Windows.")
        else:
            kwargs['delete'] = False
        f = tempfile.NamedTemporaryFile(*args, **kwargs)
        try:
            f.close()
            yield f.name
        finally:
            os.unlink(f.name)
else:
    @contextmanager  # noqa: T484
    def TemporaryFileName(*args, **kwargs):
        with tempfile.NamedTemporaryFile(*args, **kwargs) as f:
            yield f.name

if IS_WINDOWS:
    @contextmanager
    def TemporaryDirectoryName(suffix=None):
        # On Windows the directory created by TemporaryDirectory is likely to be removed prematurely,
        # so we first create the directory using mkdtemp and then remove it manually
        try:
            dir_name = tempfile.mkdtemp(suffix=suffix)
            yield dir_name
        finally:
            shutil.rmtree(dir_name)
else:
    @contextmanager  # noqa: T484
    def TemporaryDirectoryName(suffix=None):
        with tempfile.TemporaryDirectory(suffix=suffix) as d:
            yield d

IS_FILESYSTEM_UTF8_ENCODING = sys.getfilesystemencoding() == 'utf-8'

def _check_module_exists(name: str) -> bool:
    r"""Returns if a top-level module with :attr:`name` exists *without**
    importing it. This is generally safer than try-catch block around a
    `import X`. It avoids third party libraries breaking assumptions of some of
    our tests, e.g., setting multiprocessing start method when imported
    (see librosa/#747, torchvision/#544).
    """
    try:
        import importlib.util
        spec = importlib.util.find_spec(name)
        return spec is not None
    except ImportError:
        return False

TEST_NUMPY = _check_module_exists('numpy')
TEST_FAIRSEQ = _check_module_exists('fairseq')
TEST_SCIPY = _check_module_exists('scipy')
TEST_MKL = torch.backends.mkl.is_available()
TEST_CUDA = torch.cuda.is_available()
TEST_NUMBA = _check_module_exists('numba')

TEST_DILL = _check_module_exists('dill')

TEST_LIBROSA = _check_module_exists('librosa') and not IS_ARM64

TEST_OPT_EINSUM = _check_module_exists('opt_einsum')

BUILD_WITH_CAFFE2 = torch.onnx._CAFFE2_ATEN_FALLBACK

# Python 2.7 doesn't have spawn
NO_MULTIPROCESSING_SPAWN = os.environ.get('NO_MULTIPROCESSING_SPAWN', '0') == '1'
TEST_WITH_ASAN = os.getenv('PYTORCH_TEST_WITH_ASAN', '0') == '1'
TEST_WITH_DEV_DBG_ASAN = os.getenv('PYTORCH_TEST_WITH_DEV_DBG_ASAN', '0') == '1'
TEST_WITH_TSAN = os.getenv('PYTORCH_TEST_WITH_TSAN', '0') == '1'
TEST_WITH_UBSAN = os.getenv('PYTORCH_TEST_WITH_UBSAN', '0') == '1'
TEST_WITH_ROCM = os.getenv('PYTORCH_TEST_WITH_ROCM', '0') == '1'

# TODO: Remove PYTORCH_MIOPEN_SUGGEST_NHWC once ROCm officially supports NHWC in MIOpen
# See #64427
TEST_WITH_MIOPEN_SUGGEST_NHWC = os.getenv('PYTORCH_MIOPEN_SUGGEST_NHWC', '0') == '1'
# Enables tests that are slow to run (disabled by default)
TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1'

# Disables non-slow tests (these tests enabled by default)
# This is usually used in conjunction with TEST_WITH_SLOW to
# run *only* slow tests.  (I could have done an enum, but
# it felt a little awkward.
TEST_SKIP_FAST = os.getenv('PYTORCH_TEST_SKIP_FAST', '0') == '1'

# Enables crossref tests, in addition to standard tests which
# are being run.  crossref tests work by installing a torch
# function mode that runs extra compute alongside the regular
# computation that happens with the test.  After both computations
# are done, we cross-reference them (thus the name) to check for
# correction, before throwing out the extra compute and proceeding
# as we had before.  By default, we don't run these tests.
TEST_WITH_CROSSREF = os.getenv('PYTORCH_TEST_WITH_CROSSREF', '0') == '1'


if TEST_CUDA and 'NUM_PARALLEL_PROCS' in os.environ:
    num_procs = int(os.getenv("NUM_PARALLEL_PROCS", "2"))
    # other libraries take up about 11% of space per process
    torch.cuda.set_per_process_memory_fraction(round(1 / num_procs - .11, 2))


def skipIfCrossRef(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        if TEST_WITH_CROSSREF:
            raise unittest.SkipTest("test doesn't currently with crossref")
        else:
            fn(*args, **kwargs)
    return wrapper

class CrossRefMode(torch.overrides.TorchFunctionMode):
    def __torch_function__(self, func, types, args=(), kwargs=None):
        kwargs = kwargs or {}
        r = func(*args, **kwargs)
        return r

# Run PyTorch tests with TorchDynamo
TEST_WITH_TORCHINDUCTOR = os.getenv('PYTORCH_TEST_WITH_INDUCTOR') == '1'
TEST_WITH_TORCHDYNAMO = os.getenv('PYTORCH_TEST_WITH_DYNAMO') == '1' or TEST_WITH_TORCHINDUCTOR

if TEST_WITH_TORCHDYNAMO:
    import torchdynamo
    import logging
    torchdynamo.config.log_level = logging.ERROR
    # Do not spend time on helper functions that are called with different inputs
    torchdynamo.config.cache_size_limit = 8


def skipIfTorchDynamo(msg="test doesn't currently work with torchdynamo"):
    def decorator(fn):
        if not isinstance(fn, type):
            @wraps(fn)
            def wrapper(*args, **kwargs):
                if TEST_WITH_TORCHDYNAMO:
                    raise unittest.SkipTest(msg)
                else:
                    fn(*args, **kwargs)
            return wrapper

        assert(isinstance(fn, type))
        if TEST_WITH_TORCHDYNAMO:
            fn.__unittest_skip__ = True
            fn.__unittest_skip_why__ = msg

        return fn


    return decorator

def skipIfTorchInductor(msg="test doesn't currently work with torchinductor"):
    def decorator(fn):
        if not isinstance(fn, type):
            @wraps(fn)
            def wrapper(*args, **kwargs):
                if TEST_WITH_TORCHINDUCTOR:
                    raise unittest.SkipTest(msg)
                else:
                    fn(*args, **kwargs)
            return wrapper

        assert(isinstance(fn, type))
        if TEST_WITH_TORCHINDUCTOR:
            fn.__unittest_skip__ = True
            fn.__unittest_skip_why__ = msg

        return fn

    return decorator


# Determine whether to enable cuda memory leak check.
# CUDA mem leak check is expensive and thus we don't want to execute it on every
# test case / configuration.
# If this is True then CUDA memory leak checks are skipped. If this is false
#   then CUDA memory leak checks are performed.
# See: https://github.com/pytorch/pytorch/pull/59402#issuecomment-858811135
TEST_SKIP_CUDA_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_SKIP_CUDA_MEM_LEAK_CHECK', '0') == '1'

# True if CI is running TBB-enabled Pytorch
IS_TBB = "tbb" in os.getenv("BUILD_ENVIRONMENT", "")

# Dict of NumPy dtype -> torch dtype (when the correspondence exists)
numpy_to_torch_dtype_dict = {
    np.bool_      : torch.bool,
    np.uint8      : torch.uint8,
    np.int8       : torch.int8,
    np.int16      : torch.int16,
    np.int32      : torch.int32,
    np.int64      : torch.int64,
    np.float16    : torch.float16,
    np.float32    : torch.float32,
    np.float64    : torch.float64,
    np.complex64  : torch.complex64,
    np.complex128 : torch.complex128
}


# numpy dtypes like np.float64 are not instances, but rather classes. This leads to rather absurd cases like
# np.float64 != np.dtype("float64") but np.float64 == np.dtype("float64").type.
# Especially when checking against a reference we can't be sure which variant we get, so we simply try both.
def numpy_to_torch_dtype(np_dtype):
    try:
        return numpy_to_torch_dtype_dict[np_dtype]
    except KeyError:
        return numpy_to_torch_dtype_dict[np_dtype.type]


def has_corresponding_torch_dtype(np_dtype):
    try:
        numpy_to_torch_dtype(np_dtype)
        return True
    except KeyError:
        return False


if IS_WINDOWS:
    # Size of `np.intc` is platform defined.
    # It is returned by functions like `bitwise_not`.
    # On Windows `int` is 32-bit
    # https://docs.microsoft.com/en-us/cpp/cpp/data-type-ranges?view=msvc-160
    numpy_to_torch_dtype_dict[np.intc] = torch.int

# Dict of torch dtype -> NumPy dtype
torch_to_numpy_dtype_dict = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()}
torch_to_numpy_dtype_dict.update({
    torch.bfloat16: np.float32,
    torch.complex32: np.complex64
})

def skipIfRocm(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        if TEST_WITH_ROCM:
            raise unittest.SkipTest("test doesn't currently work on the ROCm stack")
        else:
            fn(*args, **kwargs)
    return wrapper

def skipIfMps(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        if torch.backends.mps.is_available():
            raise unittest.SkipTest("test doesn't currently work with MPS")
        else:
            fn(*args, **kwargs)
    return wrapper

# Skips a test on CUDA if ROCm is available and its version is lower than requested.
def skipIfRocmVersionLessThan(version=None):
    def dec_fn(fn):
        @wraps(fn)
        def wrap_fn(self, *args, **kwargs):
            if TEST_WITH_ROCM:
                rocm_version = str(torch.version.hip)
                rocm_version = rocm_version.split("-")[0]    # ignore git sha
                rocm_version_tuple = tuple(int(x) for x in rocm_version.split("."))
                if rocm_version_tuple is None or version is None or rocm_version_tuple < tuple(version):
                    reason = "ROCm {0} is available but {1} required".format(rocm_version_tuple, version)
                    raise unittest.SkipTest(reason)
            return fn(self, *args, **kwargs)
        return wrap_fn
    return dec_fn

def skipIfNotMiopenSuggestNHWC(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        if not TEST_WITH_MIOPEN_SUGGEST_NHWC:
            raise unittest.SkipTest("test doesn't currently work without MIOpen NHWC activation")
        else:
            fn(*args, **kwargs)
    return wrapper

# Context manager for setting deterministic flag and automatically
# resetting it to its original value
class DeterministicGuard:
    def __init__(self, deterministic, *, warn_only=False):
        self.deterministic = deterministic
        self.warn_only = warn_only

    def __enter__(self):
        self.deterministic_restore = torch.are_deterministic_algorithms_enabled()
        self.warn_only_restore = torch.is_deterministic_algorithms_warn_only_enabled()
        torch.use_deterministic_algorithms(
            self.deterministic,
            warn_only=self.warn_only)

    def __exit__(self, exception_type, exception_value, traceback):
        torch.use_deterministic_algorithms(
            self.deterministic_restore,
            warn_only=self.warn_only_restore)

# Context manager for setting cuda sync debug mode and reset it
# to original value
# we are not exposing it to the core because sync debug mode is
# global and thus not thread safe
class CudaSyncGuard:
    def __init__(self, sync_debug_mode):
        self.mode = sync_debug_mode

    def __enter__(self):
        self.debug_mode_restore = torch.cuda.get_sync_debug_mode()
        torch.cuda.set_sync_debug_mode(self.mode)

    def __exit__(self, exception_type, exception_value, traceback):
        torch.cuda.set_sync_debug_mode(self.debug_mode_restore)

# This decorator can be used for API tests that call
# torch.use_deterministic_algorithms().  When the test is finished, it will
# restore the previous deterministic flag setting.
#
# If CUDA >= 10.2, this will set the environment variable
# CUBLAS_WORKSPACE_CONFIG=:4096:8 so that the error associated with that
# setting is not thrown during the test unless the test changes that variable
# on purpose. The previous CUBLAS_WORKSPACE_CONFIG setting will also be
# restored once the test is finished.
#
# Note that if a test requires CUDA to actually register the changed
# CUBLAS_WORKSPACE_CONFIG variable, a new subprocess must be created, because
# CUDA only checks the variable when the runtime initializes. Tests can be
# run inside a subprocess like so:
#
#   import subprocess, sys, os
#   script = '''
#   # Test code should go here
#   '''
#   try:
#       subprocess.check_output(
#           [sys.executable, '-c', script],
#           stderr=subprocess.STDOUT,
#           cwd=os.path.dirname(os.path.realpath(__file__)),
#           env=os.environ.copy())
#   except subprocess.CalledProcessError as e:
#       error_message = e.output.decode('utf-8')
#       # Handle exceptions raised by the subprocess here
#
def wrapDeterministicFlagAPITest(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        with DeterministicGuard(
                torch.are_deterministic_algorithms_enabled(),
                warn_only=torch.is_deterministic_algorithms_warn_only_enabled()):
            class CuBLASConfigGuard:
                cublas_var_name = 'CUBLAS_WORKSPACE_CONFIG'

                def __enter__(self):
                    self.is_cuda10_2_or_higher = (
                        (torch.version.cuda is not None)
                        and ([int(x) for x in torch.version.cuda.split(".")] >= [10, 2]))
                    if self.is_cuda10_2_or_higher:
                        self.cublas_config_restore = os.environ.get(self.cublas_var_name)
                        os.environ[self.cublas_var_name] = ':4096:8'

                def __exit__(self, exception_type, exception_value, traceback):
                    if self.is_cuda10_2_or_higher:
                        cur_cublas_config = os.environ.get(self.cublas_var_name)
                        if self.cublas_config_restore is None:
                            if cur_cublas_config is not None:
                                del os.environ[self.cublas_var_name]
                        else:
                            os.environ[self.cublas_var_name] = self.cublas_config_restore
            with CuBLASConfigGuard():
                fn(*args, **kwargs)
    return wrapper

def skipIfCompiledWithoutNumpy(fn):
    # Even if the numpy module is present, if `USE_NUMPY=0` is used during the
    # build, numpy tests will fail
    numpy_support = TEST_NUMPY
    if numpy_support:
        try:
            # The numpy module is present, verify that PyTorch is compiled with
            # numpy support
            torch.from_numpy(np.array([2, 2]))
        except RuntimeError:
            numpy_support = False

    @wraps(fn)
    def wrapper(*args, **kwargs):
        if not numpy_support:
            raise unittest.SkipTest("PyTorch was compiled without numpy support")
        else:
            fn(*args, **kwargs)
    return wrapper

def _test_function(fn, device):
    def run_test_function(self):
        return fn(self, device)
    return run_test_function

def skipIfNoXNNPACK(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        if not torch.backends.xnnpack.enabled:
            raise unittest.SkipTest('XNNPACK must be enabled for these tests. Please build with USE_XNNPACK=1.')
        else:
            fn(*args, **kwargs)
    return wrapper

def skipIfNoLapack(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        if not torch._C.has_lapack:
            raise unittest.SkipTest('PyTorch compiled without Lapack')
        else:
            fn(*args, **kwargs)
    return wrapper

def skipIfNotRegistered(op_name, message):
    """Wraps the decorator to hide the import of the `core`.

    Args:
        op_name: Check if this op is registered in `core._REGISTERED_OPERATORS`.
        message: message to fail with.

    Usage:
        @skipIfNotRegistered('MyOp', 'MyOp is not linked!')
            This will check if 'MyOp' is in the caffe2.python.core
    """
    if not BUILD_WITH_CAFFE2:
        return unittest.skip("Pytorch is compiled without Caffe2")
    try:
        from caffe2.python import core
        skipper = unittest.skipIf(op_name not in core._REGISTERED_OPERATORS,
                                  message)
    except ImportError:
        skipper = unittest.skip("Cannot import `caffe2.python.core`")
    return skipper

def _decide_skip_caffe2(expect_caffe2, reason):
    def skip_dec(func):
        @wraps(func)
        def wrapper(self):
            if torch.onnx._CAFFE2_ATEN_FALLBACK != expect_caffe2:
                raise unittest.SkipTest(reason)
            return func(self)
        return wrapper
    return skip_dec

skipIfCaffe2 = _decide_skip_caffe2(False, "Not compatible with Caffe2")
skipIfNoCaffe2 = _decide_skip_caffe2(True, "Caffe2 is not available")

def skipIfNoSciPy(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        if not TEST_SCIPY:
            raise unittest.SkipTest("test require SciPy, but SciPy not found")
        else:
            fn(*args, **kwargs)
    return wrapper


def skipIfTBB(message="This test makes TBB sad"):
    def dec_fn(fn):
        @wraps(fn)
        def wrapper(*args, **kwargs):
            if IS_TBB:
                raise unittest.SkipTest(message)
            else:
                fn(*args, **kwargs)
        return wrapper
    return dec_fn


def slowTest(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        if not TEST_WITH_SLOW:
            raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test")
        else:
            fn(*args, **kwargs)
    wrapper.__dict__['slow_test'] = True
    return wrapper


def slowAwareTest(fn):
    fn.__dict__['slow_test'] = True
    return fn


def skipCUDAMemoryLeakCheckIf(condition):
    def dec(fn):
        if getattr(fn, '_do_cuda_memory_leak_check', True):  # if current True
            fn._do_cuda_memory_leak_check = not condition
        return fn
    return dec

def skipCUDANonDefaultStreamIf(condition):
    def dec(fn):
        if getattr(fn, '_do_cuda_non_default_stream', True):  # if current True
            fn._do_cuda_non_default_stream = not condition
        return fn
    return dec

def suppress_warnings(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            fn(*args, **kwargs)
    return wrapper


def to_gpu(obj, type_map=None):
    if type_map is None:
        type_map = {}
    if isinstance(obj, torch.Tensor):
        assert obj.is_leaf
        t = type_map.get(obj.dtype, obj.dtype)
        with torch.no_grad():
            res = obj.clone().to(dtype=t, device="cuda")
            res.requires_grad = obj.requires_grad
        return res
    elif torch.is_storage(obj):
        return obj.new().resize_(obj.size()).copy_(obj)
    elif isinstance(obj, list):
        return [to_gpu(o, type_map) for o in obj]
    elif isinstance(obj, tuple):
        return tuple(to_gpu(o, type_map) for o in obj)
    else:
        return deepcopy(obj)


def get_function_arglist(func):
    return inspect.getfullargspec(func).args


def set_rng_seed(seed):
    torch.manual_seed(seed)
    random.seed(seed)
    if TEST_NUMPY:
        np.random.seed(seed)


@contextmanager
def disable_functorch():
    guard = torch._C._DisableFuncTorch()  # type: ignore[attr-defined]
    try:
        yield
    finally:
        del guard


@contextlib.contextmanager
def freeze_rng_state():
    # no_dispatch needed for test_composite_compliance
    # Some OpInfos use freeze_rng_state for rng determinism, but
    # test_composite_compliance overrides dispatch for all torch functions
    # which we need to disable to get and set rng state
    with no_dispatch(), disable_functorch():
        rng_state = torch.get_rng_state()
        if torch.cuda.is_available():
            cuda_rng_state = torch.cuda.get_rng_state()
    try:
        yield
    finally:
        # Modes are not happy with torch.cuda.set_rng_state
        # because it clones the state (which could produce a Tensor Subclass)
        # and then grabs the new tensor's data pointer in generator.set_state.
        #
        # In the long run torch.cuda.set_rng_state should probably be
        # an operator.
        with no_dispatch(), disable_functorch():
            if torch.cuda.is_available():
                torch.cuda.set_rng_state(cuda_rng_state)
            torch.set_rng_state(rng_state)

@contextlib.contextmanager
def set_default_dtype(dtype):
    saved_dtype = torch.get_default_dtype()
    torch.set_default_dtype(dtype)
    try:
        yield
    finally:
        torch.set_default_dtype(saved_dtype)

def iter_indices(tensor):
    if tensor.dim() == 0:
        return range(0)
    if tensor.dim() == 1:
        return range(tensor.size(0))
    return product(*(range(s) for s in tensor.size()))


def is_iterable(obj):
    try:
        iter(obj)
        return True
    except TypeError:
        return False


def is_iterable_of_tensors(iterable, include_empty=False):
    """ Returns True if iterable is an iterable of tensors and False o.w.

        If the iterable is empty, the return value is :attr:`include_empty`
    """
    # Tensor itself is iterable so we check this first
    if isinstance(iterable, torch.Tensor):
        return False

    try:
        if len(iterable) == 0:
            return include_empty

        for t in iter(iterable):
            if not isinstance(t, torch.Tensor):
                return False

    except TypeError as te:
        return False

    return True


class CudaNonDefaultStream():
    def __enter__(self):
        # Before starting CUDA test save currently active streams on all
        # CUDA devices and set new non default streams to all CUDA devices
        # to ensure CUDA tests do not use default stream by mistake.
        beforeDevice = torch.cuda.current_device()
        self.beforeStreams = []
        for d in range(torch.cuda.device_count()):
            self.beforeStreams.append(torch.cuda.current_stream(d))
            deviceStream = torch.cuda.Stream(device=d)
            torch._C._cuda_setStream(deviceStream._cdata)
        torch._C._cuda_setDevice(beforeDevice)

    def __exit__(self, exec_type, exec_value, traceback):
        # After completing CUDA test load previously active streams on all
        # CUDA devices.
        beforeDevice = torch.cuda.current_device()
        for d in range(torch.cuda.device_count()):
            torch._C._cuda_setStream(self.beforeStreams[d]._cdata)
        torch._C._cuda_setDevice(beforeDevice)

class CudaMemoryLeakCheck():
    def __init__(self, testcase, name=None):
        self.name = testcase.id() if name is None else name
        self.testcase = testcase

        # initialize context & RNG to prevent false positive detections
        # when the test is the first to initialize those
        from torch.testing._internal.common_cuda import initialize_cuda_context_rng
        initialize_cuda_context_rng()

    # Stores CUDA memory data provided by PyTorch's caching allocator and
    #   the CUDA driver.
    #
    # NOTE: The undocumented torch.cuda.mem_get_info() returns
    #   (#free bytes, #total bytes available) on the GPU
    def __enter__(self):
        self.caching_allocator_befores = []
        self.driver_befores = []

        # Performs a gc if required (required if any CUDA memory is held)
        num_devices = torch.cuda.device_count()
        for i in range(num_devices):
            caching_allocator_mem_allocated = torch.cuda.memory_allocated(i)
            # NOTE: gc is based exclusively on caching allocator memory
            #   because the driver will always have some bytes in use (context size?)
            if caching_allocator_mem_allocated > 0:
                gc.collect()
                torch.cuda.empty_cache()
                break

        # Acquires caching allocator and driver statistics before the test is run
        for i in range(num_devices):
            self.caching_allocator_befores.append(torch.cuda.memory_allocated(i))
            bytes_free, bytes_total = torch.cuda.mem_get_info(i)
            driver_mem_allocated = bytes_total - bytes_free
            self.driver_befores.append(driver_mem_allocated)

    def __exit__(self, exec_type, exec_value, traceback):
        # Don't check for leaks if an exception was thrown
        if exec_type is not None:
            return

        # Compares caching allocator before/after statistics
        # An increase in allocated memory is a discrepancy indicating a possible
        #   memory leak
        discrepancy_detected = False
        num_devices = torch.cuda.device_count()
        for i in range(num_devices):
            caching_allocator_mem_allocated = torch.cuda.memory_allocated(i)

            if caching_allocator_mem_allocated > self.caching_allocator_befores[i]:
                discrepancy_detected = True
                break

        # Short-circuits if no discrepancy detected
        if not discrepancy_detected:
            return

        # Validates the discrepancy persists after garbage collection and
        #   is confirmed by the driver API

        # NOTE: driver API iscrepancies alone are ignored because with the jiterator
        #   some tests may permanently increase the CUDA context size and
        #   that will appear as a driver memory leak but is the expected behavior.

        # GCs and clears the cache
        gc.collect()
        torch.cuda.empty_cache()

        for i in range(num_devices):

            discrepancy_detected = True

            # Query memory multiple tiems to ensure leak was not transient
            for n in range(3):
                caching_allocator_mem_allocated = torch.cuda.memory_allocated(i)
                bytes_free, bytes_total = torch.cuda.mem_get_info(i)
                driver_mem_allocated = bytes_total - bytes_free

                caching_allocator_discrepancy = False
                driver_discrepancy = False

                if caching_allocator_mem_allocated > self.caching_allocator_befores[i]:
                    caching_allocator_discrepancy = True

                if driver_mem_allocated > self.driver_befores[i]:
                    driver_discrepancy = True

                if not(caching_allocator_discrepancy or driver_discrepancy):
                    # Leak was false positive, exit loop
                    discrepancy_detected = False
                    break

            if not discrepancy_detected:
                continue

            if caching_allocator_discrepancy and not driver_discrepancy:
                # Just raises a warning if the leak is not validated by the
                #   driver API
                # NOTE: this may be a problem with how the caching allocator collects its
                #   statistics or a leak too small to trigger the allocation of an
                #   additional block of memory by the CUDA driver
                msg = ("CUDA caching allocator reports a memory leak not "
                       "verified by the driver API in {}! "
                       "Caching allocator allocated memory was {} and is now reported as {} "
                       "on device {}. "
                       "CUDA driver allocated memory was {} and is now {}.").format(
                    self.name,
                    self.caching_allocator_befores[i],
                    caching_allocator_mem_allocated,
                    i,
                    self.driver_befores[i],
                    driver_mem_allocated)
                warnings.warn(msg)
            elif caching_allocator_discrepancy and driver_discrepancy:
                # A caching allocator discrepancy validated by the driver API is a
                #   failure (except on ROCm, see below)
                msg = ("CUDA driver API confirmed a leak in {}! "
                       "Caching allocator allocated memory was {} and is now reported as {} "
                       "on device {}. "
                       "CUDA driver allocated memory was {} and is now {}.").format(
                    self.name,
                    self.caching_allocator_befores[i],
                    caching_allocator_mem_allocated,
                    i,
                    self.driver_befores[i],
                    driver_mem_allocated)

                raise RuntimeError(msg)

@contextmanager
def skip_exception_type(exc_type):
    try:
        yield
    except exc_type as e:
        raise unittest.SkipTest(f"not implemented: {e}") from e

#  "min_satisfying_examples" setting has been deprecated in hypythesis
#  3.56.0 and removed in hypothesis 4.x
try:
    import hypothesis

    def settings(*args, **kwargs):
        if 'min_satisfying_examples' in kwargs and hypothesis.version.__version_info__ >= (3, 56, 0):
            kwargs.pop('min_satisfying_examples')
        return hypothesis.settings(*args, **kwargs)


    hypothesis.settings.register_profile(
        "pytorch_ci",
        settings(
            derandomize=True,
            suppress_health_check=[hypothesis.HealthCheck.too_slow],
            database=None,
            max_examples=50,
            verbosity=hypothesis.Verbosity.normal))
    hypothesis.settings.register_profile(
        "dev",
        settings(
            suppress_health_check=[hypothesis.HealthCheck.too_slow],
            database=None,
            max_examples=10,
            verbosity=hypothesis.Verbosity.normal))
    hypothesis.settings.register_profile(
        "debug",
        settings(
            suppress_health_check=[hypothesis.HealthCheck.too_slow],
            database=None,
            max_examples=1000,
            verbosity=hypothesis.Verbosity.verbose))

    hypothesis.settings.load_profile(
        "pytorch_ci" if IS_CI else os.getenv('PYTORCH_HYPOTHESIS_PROFILE', 'dev')
    )
except ImportError:
    print('Fail to import hypothesis in common_utils, tests are not derandomized')

# Used in check_if_enable to see if a test method should be disabled by an issue,
# sanitizes a test method name from appended suffixes by @dtypes parametrization.
# e.g., an issue with title "DISABLED test_bitwise_ops (__main__.TestBinaryUfuncs)" should
# disabled ALL parametrized test_bitwise_ops tests, such test_bitwise_ops_cuda_int32
def remove_device_and_dtype_suffixes(test_name: str) -> str:
    # import statement is localized to avoid circular dependency issues with common_device_type.py
    from torch.testing._internal.common_device_type import get_device_type_test_bases
    device_suffixes = [x.device_type for x in get_device_type_test_bases()]
    dtype_suffixes = [str(dt)[len("torch."):] for dt in get_all_dtypes()]

    test_name_chunks = test_name.split("_")
    if len(test_name_chunks) > 0 and test_name_chunks[-1] in dtype_suffixes:
        if len(test_name_chunks) > 1 and test_name_chunks[-2] in device_suffixes:
            return "_".join(test_name_chunks[0:-2])
        return "_".join(test_name_chunks[0:-1])
    return test_name


def check_if_enable(test: unittest.TestCase):
    test_suite = str(test.__class__).split('\'')[1]
    if "USING_PYTEST" in os.environ:
        test_suite = f"__main__.{test_suite.split('.')[1]}"
    raw_test_name = f'{test._testMethodName} ({test_suite})'
    if raw_test_name in slow_tests_dict:
        getattr(test, test._testMethodName).__dict__['slow_test'] = True
        if not TEST_WITH_SLOW:
            raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test")
    sanitized_test_method_name = remove_device_and_dtype_suffixes(test._testMethodName)
    if not IS_SANDCASTLE:
        for disabled_test, (issue_url, platforms) in disabled_tests_dict.items():
            disable_test_parts = disabled_test.split()
            if len(disable_test_parts) > 1:
                disabled_test_name = disable_test_parts[0]
                disabled_test_suite = disable_test_parts[1][1:-1]
                # if test method name or its sanitized version exactly matches the disabled test method name
                # AND allow non-parametrized suite names to disable parametrized ones (TestSuite disables TestSuiteCPU)
                if (test._testMethodName == disabled_test_name or sanitized_test_method_name == disabled_test_name) \
                   and disabled_test_suite in test_suite:
                    platform_to_conditional: Dict = {
                        "mac": IS_MACOS,
                        "macos": IS_MACOS,
                        "win": IS_WINDOWS,
                        "windows": IS_WINDOWS,
                        "linux": IS_LINUX,
                        "rocm": TEST_WITH_ROCM,
                        "asan": TEST_WITH_ASAN
                    }

                    invalid_platforms = list(filter(lambda p: p not in platform_to_conditional, platforms))
                    if len(invalid_platforms) > 0:
                        invalid_plats_str = ", ".join(invalid_platforms)
                        valid_plats = ", ".join(platform_to_conditional.keys())

                        print(f"Test {disabled_test} is disabled for some unrecognized ",
                              f"platforms: [{invalid_plats_str}]. Please edit issue {issue_url} to fix the platforms ",
                              "assigned to this flaky test, changing \"Platforms: ...\" to a comma separated ",
                              f"subset of the following (or leave it blank to match all platforms): {valid_plats}")

                        # Sanitize the platforms list so that we continue to disable the test for any valid platforms given
                        platforms = list(filter(lambda p: p in platform_to_conditional, platforms))

                    if platforms == [] or any([platform_to_conditional[platform] for platform in platforms]):
                        skip_msg = f"Test is disabled because an issue exists disabling it: {issue_url}" \
                            f" for {'all' if platforms == [] else ''}platform(s) {', '.join(platforms)}. " \
                            "If you're seeing this on your local machine and would like to enable this test, " \
                            "please make sure CI is not set and you are not using the flag --import-disabled-tests."
                        raise unittest.SkipTest(skip_msg)
    if TEST_SKIP_FAST:
        if not getattr(test, test._testMethodName).__dict__.get('slow_test', False):
            raise unittest.SkipTest("test is fast; we disabled it with PYTORCH_TEST_SKIP_FAST")


# `TestCase.assertEqual` is very permissive and coerced the inputs into a format that could be compared. This is very
# convenient when writing tests, but not so much while reviewing them. By default, the comparison `Pair` framework of
# `torch.testing._comparison.assert_equal`, used for example by the public testing function
# `torch.testing.assert_close`, is more strict. In order to use the same framework and thus reduce the divergence
# between internal and external comparison logic as much as possible, we define some "relaxed" pairs here. They only
# change the supported inputs, but the comparison logic is the same.
# TODO: Revisit the relaxed pairs and check how much work it is to fix the tests that would fail without the relaxation.

class RelaxedBooleanPair(BooleanPair):
    """Pair for boolean-like inputs.

    In contrast to the builtin :class:`BooleanPair`, this class also supports one input being a number or a single
    element tensor-like.
    """
    _supported_number_types = NumberPair(0, 0)._supported_types

    def _process_inputs(self, actual, expected, *, id):
        # We require only one of the inputs of the inputs to be a boolean and the other can also be a boolean, a
        # number, or a single element tensor or array, whereas in default BooleanPair both inputs have to be booleans.
        tensor_or_array_types: Tuple[Type, ...] = (torch.Tensor, np.ndarray)
        other_supported_types = (*self._supported_types, *self._supported_number_types, *tensor_or_array_types)
        if not (
            (isinstance(actual, self._supported_types) and isinstance(expected, other_supported_types))
            or (isinstance(expected, self._supported_types) and isinstance(actual, other_supported_types))
        ):
            raise UnsupportedInputs()

        return [self._to_bool(input, id=id) for input in (actual, expected)]

    def _to_bool(self, bool_like, *, id):
        if isinstance(bool_like, np.number):
            return bool(bool_like.item())
        elif type(bool_like) in self._supported_number_types:
            return bool(bool_like)
        elif isinstance(bool_like, (torch.Tensor, np.ndarray)):
            numel = bool_like.numel() if isinstance(bool_like, torch.Tensor) else bool_like.size
            if numel > 1:
                raise ErrorMeta(
                    ValueError,
                    f"Only single element tensor-likes can be compared against a boolean. "
                    f"Got {numel} elements instead.",
                    id=id,
                )

            return bool(bool_like.item())
        else:
            return super()._to_bool(bool_like, id=id)


class RelaxedNumberPair(NumberPair):
    """Pair for number-like inputs.

    In contrast to the builtin :class:`NumberPair`, this class also supports one input being a single element
    tensor-like or a :class:`enum.Enum`. (D)Type checks are disabled, meaning comparing 1 to 1.0 succeeds even when
    ``check_dtype=True`` is passed.

    In addition, this class uses looser default tolerances for :class:`float` and :class:`complex` inputs. Also
    supports overriding the absolute and relative tolerance through the ``@precisionOverride`` and
    ``@toleranceOverride`` decorators.
    """
    _TYPE_TO_DTYPE = {
        int: torch.int64,
        float: torch.float32,
        complex: torch.complex64,
    }

    def __init__(
            self, actual, expected, *, rtol_override=0.0, atol_override=0.0, check_dtype=None, **other_parameters
    ) -> None:
        super().__init__(actual, expected, check_dtype=False, **other_parameters)
        self.rtol = max(self.rtol, rtol_override)
        self.atol = max(self.atol, atol_override)

    def _process_inputs(self, actual, expected, *, id):
        # We require only one of the inputs of the inputs to be a number and the other can also be a number or a single
        # element tensor or array, whereas in default NumberPair both inputs have to be numbers.
        tensor_or_array_types: Tuple[Type, ...] = (torch.Tensor, np.ndarray)
        other_supported_types = (*self._supported_types, *tensor_or_array_types)
        if not (
                (isinstance(actual, self._supported_types) and isinstance(expected, other_supported_types))
                or (isinstance(expected, self._supported_types) and isinstance(actual, other_supported_types))
        ):
            raise UnsupportedInputs()

        return [self._to_number(input, id=id) for input in (actual, expected)]

    def _to_number(self, number_like, *, id):
        if isinstance(number_like, (torch.Tensor, np.ndarray)):
            numel = number_like.numel() if isinstance(number_like, torch.Tensor) else number_like.size
            if numel > 1:
                raise ErrorMeta(
                    ValueError,
                    f"Only single element tensor-likes can be compared against a number. "
                    f"Got {numel} elements instead.",
                    id=id,
                )
            number = number_like.item()
            if isinstance(number, bool):
                number = int(number)

            return number
        elif isinstance(number_like, Enum):
            return int(number_like)  # type: ignore[call-overload]
        else:
            return super()._to_number(number_like, id=id)


class TensorOrArrayPair(TensorLikePair):
    """Pair for tensor-like inputs.

    On the one hand this class is stricter than the builtin :class:`TensorLikePair` since it only allows instances of
    :class:`torch.Tensor` and :class:`numpy.ndarray` rather than allowing any tensor-like than can be converted into a
    tensor. On the other hand this class is looser since it converts all inputs into tensors with no regard of their
    relationship, e.g. comparing a :class:`torch.Tensor` to :class:`numpy.ndarray` is fine.

    In addition, this class supports overriding the absolute and relative tolerance through the ``@precisionOverride``
    and ``@toleranceOverride`` decorators.
    """
    def __init__(self, actual, expected, *, rtol_override=0.0, atol_override=0.0, **other_parameters):
        super().__init__(actual, expected, **other_parameters)
        self.rtol = max(self.rtol, rtol_override)
        self.atol = max(self.atol, atol_override)

    def _process_inputs(self, actual, expected, *, id, allow_subclasses):
        self._check_inputs_isinstance(actual, expected, cls=(torch.Tensor, np.ndarray))

        actual, expected = [self._to_tensor(input) for input in (actual, expected)]
        for tensor in (actual, expected):
            self._check_supported(tensor, id=id)
        return actual, expected


class UnittestPair(Pair):
    """Fallback ABC pair that handles non-numeric inputs.

    To avoid recreating the mismatch messages of :meth:`unittest.TestCase.assertEqual`, this pair simply wraps it in
    order to use it with the :class:`Pair` "framework" from :func:`assert_equal`.

    Define the :attr:`UnittestPair.CLS` in a subclass to indicate which class(es) of the inputs the pair should support.
    """
    CLS: Union[Type, Tuple[Type, ...]]
    TYPE_NAME: Optional[str] = None

    def __init__(self, actual, expected, **other_parameters):
        self._check_inputs_isinstance(actual, expected, cls=self.CLS)
        super().__init__(actual, expected, **other_parameters)

    def compare(self):
        test_case = unittest.TestCase()

        try:
            return test_case.assertEqual(self.actual, self.expected)
        except test_case.failureException as error:
            msg = str(error)

        type_name = self.TYPE_NAME or (self.CLS if isinstance(self.CLS, type) else self.CLS[0]).__name__
        raise self._make_error_meta(AssertionError, f"{type_name.title()} comparison failed: {msg}")


class StringPair(UnittestPair):
    CLS = string_classes
    TYPE_NAME = "string"


class SetPair(UnittestPair):
    CLS = set


class TypePair(UnittestPair):
    CLS = type


class ObjectPair(UnittestPair):
    CLS = object


# This implements a variant of assertRaises/assertRaisesRegex where we first test
# if the exception is NotImplementedError, and if so just skip the test instead
# of failing it.
#
# This is implemented by inheriting from the (private) implementation of
# assertRaises from unittest.case, and slightly tweaking it for this new
# behavior.  The year is 2021: this private class hierarchy hasn't changed since
# 2010, seems low risk to inherit from.
class AssertRaisesContextIgnoreNotImplementedError(unittest.case._AssertRaisesContext):
    def __exit__(self, exc_type, exc_value, tb):
        if exc_type is not None and issubclass(exc_type, NotImplementedError):
            self.test_case.skipTest(f"not_implemented: {exc_value}")  # type: ignore[attr-defined]
        return super().__exit__(exc_type, exc_value, tb)


@contextmanager
def set_warn_always_context(new_val: bool):
    old_val = torch.is_warn_always_enabled()
    torch.set_warn_always(new_val)
    try:
        yield
    finally:
        torch.set_warn_always(old_val)


class TestCase(expecttest.TestCase):
    # NOTE: "precision" lets classes and generated tests set minimum
    # atol values when comparing tensors. Used by @precisionOverride and @toleranceOverride, for
    # example.
    # NOTE: "rel_tol" lets classes and generated tests set minimum
    # rtol values when comparing tensors. Used by @toleranceOverride, for example.
    _precision: float = 0
    _rel_tol: float = 0

    # checker to early terminate test suite if unrecoverable failure occurs.
    def _should_stop_test_suite(self):
        if torch.cuda.is_initialized():
            # CUDA device side error will cause subsequence test cases to fail.
            # stop entire test suite if catches RuntimeError during torch.cuda.synchronize().
            try:
                torch.cuda.synchronize()
            except RuntimeError as rte:
                print("TEST SUITE EARLY TERMINATION due to torch.cuda.synchronize() failure", file=sys.stderr)
                return True
            return False
        else:
            return False

    @property
    def precision(self) -> float:
        return self._precision

    @precision.setter
    def precision(self, prec: float) -> None:
        self._precision = prec

    @property
    def rel_tol(self) -> float:
        return self._rel_tol

    @rel_tol.setter
    def rel_tol(self, prec: float) -> None:
        self._rel_tol = prec

    _do_cuda_memory_leak_check = False
    _do_cuda_non_default_stream = False

    # When True, if a test case raises a NotImplementedError, instead of failing
    # the test, skip it instead.
    _ignore_not_implemented_error = False

    def __init__(self, method_name='runTest'):
        super().__init__(method_name)

        test_method = getattr(self, method_name, None)
        if test_method is not None:
            # Wraps the tested method if we should do CUDA memory check.
            if not TEST_SKIP_CUDA_MEM_LEAK_CHECK:
                self._do_cuda_memory_leak_check &= getattr(test_method, '_do_cuda_memory_leak_check', True)
                # FIXME: figure out the flaky -1024 anti-leaks on windows. See #8044
                if self._do_cuda_memory_leak_check and not IS_WINDOWS:
                    self.wrap_with_cuda_policy(method_name, self.assertLeaksNoCudaTensors)

            # Wraps the tested method if we should enforce non default CUDA stream.
            self._do_cuda_non_default_stream &= getattr(test_method, '_do_cuda_non_default_stream', True)
            if self._do_cuda_non_default_stream and not IS_WINDOWS:
                self.wrap_with_cuda_policy(method_name, self.enforceNonDefaultStream)

            if self._ignore_not_implemented_error:
                self.wrap_with_policy(method_name, lambda: skip_exception_type(NotImplementedError))

    def assertLeaksNoCudaTensors(self, name=None):
        name = self.id() if name is None else name
        return CudaMemoryLeakCheck(self, name)

    def enforceNonDefaultStream(self):
        return CudaNonDefaultStream()

    def wrap_with_cuda_policy(self, method_name, policy):
        test_method = getattr(self, method_name)
        # the import below may initialize CUDA context, so we do it only if
        # self._do_cuda_memory_leak_check or self._do_cuda_non_default_stream
        # is True.
        # TODO: sure looks like we unconditionally initialize the context here
        # -- ezyang
        from torch.testing._internal.common_cuda import TEST_CUDA
        fullname = self.id().lower()  # class_name.method_name
        if TEST_CUDA and ('gpu' in fullname or 'cuda' in fullname):
            setattr(self, method_name, self.wrap_method_with_policy(test_method, policy))

    def wrap_with_policy(self, method_name, policy):
        test_method = getattr(self, method_name)
        setattr(self, method_name, self.wrap_method_with_policy(test_method, policy))

    # A policy is a zero-argument function that returns a context manager.
    # We don't take the context manager directly as it may be necessary to
    # construct it once per test method
    def wrap_method_with_policy(self, method, policy):
        # Assumes that `method` is the tested function in `self`.
        # NOTE: Python Exceptions (e.g., unittest.Skip) keeps objects in scope
        #       alive, so this cannot be done in setUp and tearDown because
        #       tearDown is run unconditionally no matter whether the test
        #       passes or not. For the same reason, we can't wrap the `method`
        #       call in try-finally and always do the check.
        @wraps(method)
        def wrapper(self, *args, **kwargs):
            with policy():
                method(*args, **kwargs)
        return types.MethodType(wrapper, self)

    def wrap_with_cuda_memory_check(self, method):
        return self.wrap_method_with_policy(method, self.assertLeaksNoCudaTensors)

    # Recursive function that incorporates retry logic when PYTORCH_RETRY_TEST_CASES=1 and enables early test
    # termination. [DISCLAIMER: ONLY WORKS WITH UNITTEST]
    # When report_only is True, flaky tests are only reported, but the signal remains the same (the test will still
    # show up red).
    # Otherwise, the flaky test will show up green while its stats are captured by test reports.
    def _run_with_retry(self, result=None, num_runs_left=0, report_only=True, num_red=0, num_green=0):
        using_unittest = isinstance(result, unittest.TestResult)
        if num_runs_left == 0:
            if num_green > 0 and num_red > 0 and using_unittest:
                result.addSkip(self, f'{{"flaky": {True}, "num_red": {num_red}, "num_green": {num_green},' +
                                     f'"max_num_retries": {MAX_NUM_RETRIES}}}')
            return

        if using_unittest:
            failures_before = 0 if result is None else len(result.failures)  # num tests marked as failed before starting
            errors_before = 0 if result is None else len(result.errors)  # num tests marked as errored before starting

        if TEST_WITH_TORCHDYNAMO:
            # TorchDynamo optimize annotation
            if TEST_WITH_TORCHINDUCTOR:
                super_run = torchdynamo.optimize("inductor")(super().run)
            else:
                super_run = torchdynamo.optimize("eager")(super().run)
            super_run(result=result)

            # TODO - Reset for each test slows down testing significantly.
            # torchdynamo.reset()
        else:
            super().run(result=result)

        # Early terminate test if necessary.
        if self._should_stop_test_suite():
            if result.wasSuccessful():
                case = TestCase()
                if TEST_SAVE_XML is not None:
                    # This is a big hacky, XMLRunner modifies expected type from TestCase to TestInfo
                    # Create dummy TestInfo to record results correctly
                    from xmlrunner.result import _TestInfo  # type: ignore[import]
                    case = _TestInfo(result, case)
                    case.output = _TestInfo.ERROR
                    case.elapsed_time = 0.0
                    case.test_description = "TestSuiteEarlyFailure"
                # This shouldn't really happen, but if does add fake failure
                # For more details see https://github.com/pytorch/pytorch/issues/71973
                result.failures.append((case, "TestSuite execution was aborted early"))
                assert result.wasSuccessful() is False
            result.stop()

        if not RETRY_TEST_CASES or not using_unittest:
            return

        err = sys.exc_info()
        num_retries_left = num_runs_left - 1
        if failures_before < len(result.failures):
            print(f"    {self._testMethodName} failed - num_retries_left: {num_retries_left}")
            if (report_only and num_retries_left < MAX_NUM_RETRIES) or (not report_only and num_retries_left > 0):
                _, traceback_str = result.failures.pop(-1)
                print(traceback_str)
                result.addExpectedFailure(self, err)
            self._run_with_retry(result=result, num_runs_left=num_retries_left, report_only=report_only,
                                 num_red=num_red + 1, num_green=num_green)
        elif errors_before < len(result.errors):
            print(f"    {self._testMethodName} errored - num_retries_left: {num_retries_left}")
            if (report_only and num_retries_left < MAX_NUM_RETRIES) or (not report_only and num_retries_left > 0):
                _, traceback_str = result.errors.pop(-1)
                print(traceback_str)
                result.addExpectedFailure(self, err)
            self._run_with_retry(result=result, num_runs_left=num_retries_left, report_only=report_only,
                                 num_red=num_red + 1, num_green=num_green)
        elif report_only and num_retries_left < MAX_NUM_RETRIES:
            print(f"    {self._testMethodName} succeeded - num_retries_left: {num_retries_left}")
            result.addUnexpectedSuccess(self)
            self._run_with_retry(result=result, num_runs_left=num_retries_left, report_only=report_only,
                                 num_red=num_red, num_green=num_green + 1)
        elif not report_only and num_retries_left < MAX_NUM_RETRIES:
            # in this case, our test was rerun (as a retry has been used) and it just passed.
            # we incur one more recursive call with num_runs_left = 0 to allow for accurate flaky reporting
            self._run_with_retry(result=result, num_runs_left=0, report_only=report_only,
                                 num_red=num_red, num_green=num_green + 1)


    def run(self, result=None):
        with contextlib.ExitStack() as stack:
            if TEST_WITH_CROSSREF:
                stack.enter_context(CrossRefMode())
            num_runs = MAX_NUM_RETRIES + 1 if RETRY_TEST_CASES else 1
            self._run_with_retry(
                result=result,
                num_runs_left=num_runs,
                report_only=not OVERRIDE_FLAKY_SIGNAL,
                num_red=0,
                num_green=0)

    def setUp(self):
        check_if_enable(self)
        set_rng_seed(SEED)

    @staticmethod
    def _make_crow_indices(n_rows, n_cols, nnz,
                           *, device, dtype, random=True):
        """Return crow_indices of a CSR tensor with size (n_rows, n_cols) and
        the number of specified elements nnz.

        If random is True, the column counts of rows are in random
        order. Otherwise, the column counts of rows are defined by the
        used sampling method.

        Sampling method
        ---------------

        The used sampling method was introduced in
        https://pearu.github.io/csr_sampling.html, and here we give
        only an overall description of the method.

        Notice that crow_indices can be defined as cumsum(counts)
        where counts is a sequence of non-negative integers satisfying
        the following conditions:

          len(counts) == n_rows + 1
          counts.max() <= n_cols

        while counts[i + 1] is interpreted as the number of specified
        elements in the i-th row.

        The used sampling method aims at increasing the diversity of
        CSR samples, that is, a CSR sample should contain (i) rows
        that are all filled, (ii) rows with no elements at all, and
        (iii) rows that are partially filled. At the same time and for
        the given total number of specified elements (nnz), there
        should be minimal preference to rows with a given number of
        elements.  To achieve this, the sampling method is built-up on
        using a sawteeth model for counts. In the simplest case, we
        would have

          counts = arange(n_rows + 1) % (n_cols + 1)

        that has equal number of all possible column counts per row.
        This formula can be used only for specific input values of
        n_rows, n_cols, and nnz. To generalize this model to any
        combinations of inputs, the counts model above is extended
        with an incomplete sawtooth, and the right and lower
        rectangular parts that will guarantee that

          counts.sum() == nnz

        for any combination of n_rows, n_cols, and nnz. Basically,
        we'll find a maximal window in (n_rows + 1, n_cols + 1)-grid
        that is able to hold a sequence of sawteeth and so-called
        final correction, while the external part of the window is
        filled with counts to meet the nnz contraint exactly.
        """
        assert 0 <= nnz <= n_rows * n_cols, (nnz, n_rows, n_cols)

        def sawteeth(n, m):
            # return the total number of counts in the sequence of
            # sawteeth where n and m define a window in (n_rows+1,
            # n_cols+1) rectangle where the sequence of sawteeth
            # perfectly fit.
            M = (n_cols - m) * (n_cols - m + 1) // 2
            K = (n_rows - n) % (n_cols - m + 1)
            return M * ((n_rows - n) // (n_cols - m + 1)) + K * (K - 1) // 2

        # Different from the original method description, here counts
        # has leading 0 required by crow_indices:
        counts = torch.zeros(n_rows + 1, dtype=dtype, device=torch.device('cpu'))

        n = m = 0
        N = sawteeth(n, m)
        if N and nnz >= max(N, n_cols):
            # determine the width of the sawteeth window. We use bisection to solve
            #   N(n, 0) == 0 or nnz - n * n_cols < max(N(n, 0), n_cols)
            # for n
            n_left = n
            n_right = n_rows - 1
            N_right = sawteeth(n_right, m)
            while n_right - n_left > 1:
                n_middle = (n_left + n_right) // 2
                N_middle = sawteeth(n_middle, m)
                if N_middle == 0 or nnz - n_middle * n_cols < max(N_middle, n_cols):
                    n_right, N_right = n_middle, N_middle
                else:
                    n_left = n_middle
            n, N = n_right, N_right
            # fill the right rectangle with counts:
            assert n
            counts[-n:].fill_(n_cols)

        if N and nnz - n * n_cols >= max(N, n_rows - n):
            # determine the height of the sawteeth window. We use bisection to solve
            #   N(n, m) == 0 or nnz - n * n_cols - m * (n_rows - n) < max(N(n, m), n_rows - n)
            # for m.
            m_left = m
            m_right = n_cols - 1
            N_right = sawteeth(n, m_right)
            while m_right - m_left > 1:
                m_middle = (m_left + m_right) // 2
                N_middle = sawteeth(n, m_middle)
                if N_middle == 0 or nnz - n * n_cols - m_middle * (n_rows - n) < max(N_middle, n_rows - n):
                    m_right, N_right = m_middle, N_middle
                else:
                    m_left = m_middle
            m, N = m_right, N_right
            # fill the bottom rectangle with counts:
            assert m
            counts[1:n_rows - n + 1].fill_(m)

        if N:
            # fill the sawteeth window with counts
            q, r = divmod(nnz - n * n_cols - m * (n_rows - n),
                          (n_cols - m) * (n_cols - m + 1) // 2)
            p = 1 + q * (n_cols - m + 1)
            if sys.version_info >= (3, 8):
                k = math.isqrt(2 * r)
            else:
                # math.isqrt(x) is available starting from Python 3.8.
                # Here we use int(math.sqrt(x)) as an approximation
                # that appers to give exaxt result for all x values
                # less than 2**35, at least, the upper limit of x is
                # TBD.
                k = int(math.sqrt(2 * r))
            if k * (k + 1) > 2 * r:
                k -= 1
            corr = r - k * (k + 1) // 2
            assert not ((p > 1) and (m > 0))  # full sawteeth are never on top of a bottom rectangle
            # sequence of full sawteeth:
            counts[1:p] = torch.arange(p - 1, dtype=dtype, device=counts.device) % (n_cols - m + 1)
            # incomplete sawtooth:
            counts[p:p + k + 1] += torch.arange(k + 1, dtype=dtype, device=counts.device)
        else:
            # given input does not support sawteeth
            p = 1
            corr = nnz - n * n_cols - m * (n_rows - n)

        # correction that will guarantee counts.sum() == nnz:
        counts[p] += corr

        if random:
            # randomize crow_indices by shuffling the sawteeth
            # sequence:
            perm = torch.randperm(n_rows, device=counts.device)
            counts[1:] = counts[1:][perm]

        # compute crow_indices:
        crow_indices = counts
        crow_indices.cumsum_(dim=0)
        return crow_indices.to(device=device)

    def genSparseCompressedTensor(self, size, nnz, *, layout, device, dtype, index_dtype, blocksize=(), dense_dims=0):
        from operator import mul
        from functools import reduce
        sparse_dim = 2
        assert all(size[d] > 0 for d in range(len(size))) or nnz == 0, 'invalid arguments'
        assert len(size) >= sparse_dim
        if blocksize:
            assert len(blocksize) == 2, (size, blocksize)
            assert size[-2 - dense_dims] % blocksize[0] == 0, (size, blocksize)
            assert size[-1 - dense_dims] % blocksize[1] == 0, (size, blocksize)
            blocksize0, blocksize1 = blocksize
        else:
            blocksize0 = blocksize1 = 1

        size = tuple(size)
        dense_size = size[(len(size) - dense_dims):]

        def random_sparse_compressed(n_compressed_dims, n_plain_dims, nnz):
            compressed_indices = self._make_crow_indices(n_compressed_dims, n_plain_dims, nnz, device=device, dtype=index_dtype)
            plain_indices = torch.zeros(nnz, dtype=index_dtype, device=device)
            for i in range(n_compressed_dims):
                count = compressed_indices[i + 1] - compressed_indices[i]
                plain_indices[compressed_indices[i]:compressed_indices[i + 1]], _ = torch.sort(
                    torch.randperm(n_plain_dims, dtype=index_dtype, device=device)[:count])
            low = -1 if dtype != torch.uint8 else 0
            high = 1 if dtype != torch.uint8 else 2
            values = make_tensor((nnz,) + blocksize + dense_size, device=device, dtype=dtype, low=low, high=high)
            return values, compressed_indices, plain_indices

        batch_shape = size[:-2 - dense_dims]
        n_batch = reduce(mul, batch_shape, 1)

        if layout in {torch.sparse_csr, torch.sparse_bsr}:
            n_compressed_dims, n_plain_dims = size[-2 - dense_dims] // blocksize0, size[-1 - dense_dims] // blocksize1
        else:
            n_compressed_dims, n_plain_dims = size[-1 - dense_dims] // blocksize1, size[-2 - dense_dims] // blocksize0
        blocknnz = nnz // (blocksize0 * blocksize1)
        sparse_tensors = [random_sparse_compressed(n_compressed_dims, n_plain_dims, blocknnz) for _ in range(n_batch)]
        sparse_tensors_it = map(list, zip(*sparse_tensors))

        values = torch.stack(next(sparse_tensors_it)).reshape(*batch_shape, blocknnz, *blocksize, *dense_size)
        compressed_indices = torch.stack(next(sparse_tensors_it)).reshape(*batch_shape, -1)
        plain_indices = torch.stack(next(sparse_tensors_it)).reshape(*batch_shape, -1)
        return torch.sparse_compressed_tensor(compressed_indices, plain_indices,
                                              values, size=size, dtype=dtype, layout=layout, device=device)

    def genSparseCSRTensor(self, size, nnz, *, device, dtype, index_dtype, dense_dims=0):
        return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_csr, device=device,
                                              dtype=dtype, index_dtype=index_dtype, blocksize=(), dense_dims=dense_dims)

    def genSparseCSCTensor(self, size, nnz, *, device, dtype, index_dtype, dense_dims=0):
        return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_csc, device=device,
                                              dtype=dtype, index_dtype=index_dtype, blocksize=(), dense_dims=0)

    def genSparseBSRTensor(self, size, blocksize, nnz, *, device, dtype, index_dtype, dense_dims=0):
        assert len(blocksize) == 2
        return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_bsr, device=device,
                                              dtype=dtype, index_dtype=index_dtype, blocksize=blocksize, dense_dims=dense_dims)

    def genSparseBSCTensor(self, size, blocksize, nnz, *, device, dtype, index_dtype, dense_dims=0):
        assert len(blocksize) == 2
        return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_bsc, device=device,
                                              dtype=dtype, index_dtype=index_dtype, blocksize=blocksize, dense_dims=dense_dims)

    def genSparseTensor(self, size, sparse_dim, nnz, is_uncoalesced, device, dtype):
        # Assert not given impossible combination, where the sparse dims have
        # empty numel, but nnz > 0 makes the indices containing values.
        assert all(size[d] > 0 for d in range(sparse_dim)) or nnz == 0, 'invalid arguments'

        v_size = [nnz] + list(size[sparse_dim:])
        v = make_tensor(v_size, device=device, dtype=dtype, low=-1, high=1)
        i = torch.rand(sparse_dim, nnz, device=device)
        i.mul_(torch.tensor(size[:sparse_dim]).unsqueeze(1).to(i))
        i = i.to(torch.long)
        if is_uncoalesced:
            i1 = i[:, :(nnz // 2), ...]
            i2 = i[:, :((nnz + 1) // 2), ...]
            i = torch.cat([i1, i2], 1)
        x = torch.sparse_coo_tensor(i, v, torch.Size(size), dtype=dtype, device=device)

        if not is_uncoalesced:
            x = x.coalesce()
        else:
            # FIXME: `x` is a sparse view of `v`. Currently rebase_history for
            #        sparse views is not implemented, so this workaround is
            #        needed for inplace operations done on `x`, e.g., copy_().
            #        Remove after implementing something equivalent to CopySlice
            #        for sparse views.
            # NOTE: We do clone() after detach() here because we need to be able to change size/storage of x afterwards
            x = x.detach().clone()._coalesced_(False)
        return x, x._indices().clone(), x._values().clone()

    def safeToDense(self, t):
        # coalesce is only implemented for COO
        if t.layout == torch.sparse_coo:
            t = t.coalesce()
        return t.to_dense()

    # Compares a torch function with a reference function for a given sample input (object of SampleInput)
    # Note: only values are compared, type comparison is not done here
    def compare_with_reference(self, torch_fn, ref_fn, sample_input, **kwargs):
        numpy_sample = sample_input.numpy()
        n_inp, n_args, n_kwargs = numpy_sample.input, numpy_sample.args, numpy_sample.kwargs
        t_inp, t_args, t_kwargs = sample_input.input, sample_input.args, sample_input.kwargs

        actual = torch_fn(t_inp, *t_args, **t_kwargs)
        expected = ref_fn(n_inp, *n_args, **n_kwargs)

        self.assertEqual(actual, expected, exact_device=False, **kwargs)

    # Compares the given Torch and NumPy functions on the given tensor-like object.
    # NOTE: both torch_fn and np_fn should be functions that take a single
    #   tensor (array). If the torch and/or NumPy function require additional
    #   arguments then wrap the function in a lambda or pass a partial function.
    # TODO: add args/kwargs for passing to assertEqual (e.g. rtol, atol)
    def compare_with_numpy(self, torch_fn, np_fn, tensor_like,
                           device=None, dtype=None, **kwargs):
        assert TEST_NUMPY

        if isinstance(tensor_like, torch.Tensor):
            assert device is None
            assert dtype is None
            t_cpu = tensor_like.detach().cpu()
            if t_cpu.dtype is torch.bfloat16:
                t_cpu = t_cpu.float()
            a = t_cpu.numpy()
            t = tensor_like
        else:
            d = copy.copy(torch_to_numpy_dtype_dict)
            d[torch.bfloat16] = np.float32
            a = np.array(tensor_like, dtype=d[dtype])
            t = torch.tensor(tensor_like, device=device, dtype=dtype)

        np_result = np_fn(a)
        torch_result = torch_fn(t).cpu()

        # Converts arrays to tensors
        if isinstance(np_result, np.ndarray):
            try:
                np_result = torch.from_numpy(np_result)
            except Exception:
                # NOTE: copying an array before conversion is necessary when,
                #   for example, the array has negative strides.
                np_result = torch.from_numpy(np_result.copy())
            if t.dtype is torch.bfloat16 and torch_result.dtype is torch.bfloat16 and np_result.dtype is torch.float:
                torch_result = torch_result.to(torch.float)

        self.assertEqual(np_result, torch_result, **kwargs)

    def assertEqualIgnoreType(self, *args, **kwargs) -> None:
        # If you are seeing this function used, that means test is written wrongly
        # and deserves detailed investigation
        return self.assertEqual(*args, exact_dtype=False, **kwargs)

    def assertEqualBroadcasting(self, x, y, *args, **kwargs) -> None:
        r"""Tests if tensor x equals to y, if y to be broadcast to x.shape.
        """
        if not isinstance(y, Iterable):
            # int, float, etc. or different shape tensors
            y = torch.ones_like(x) * y
        if not isinstance(y, torch.Tensor):
            # iterable, but not a tensor
            y = torch.ones_like(x) * torch.tensor(y)
        return self.assertEqual(x, y, *args, **kwargs)

    def assertEqual(
            self,
            x,
            y,
            msg: Optional[Union[str, Callable[[str], str]]] = None,
            *,
            atol: Optional[float] = None,
            rtol: Optional[float] = None,
            equal_nan=True,
            exact_dtype=True,
            # TODO: default this to True
            exact_device=False,
            exact_layout=False,
            exact_stride=False,
            exact_is_coalesced=False
    ):
        # Hide this function from `pytest`'s traceback
        __tracebackhide__ = True

        # numpy's dtypes are a superset of what PyTorch supports. In case we encounter an unsupported dtype, we fall
        # back to an elementwise comparison. Note that this has to happen here and not for example in
        # `TensorOrArrayPair`, since at that stage we can no longer split the array into its elements and perform
        # multiple comparisons.
        if any(
            isinstance(input, np.ndarray) and not has_corresponding_torch_dtype(input.dtype) for input in (x, y)
        ):
            def to_list(input):
                return input.tolist() if isinstance(input, (torch.Tensor, np.ndarray)) else list(input)

            x = to_list(x)
            y = to_list(y)
        # When comparing a sequence of numbers to a tensor, we need to convert the sequence to a tensor here.
        # Otherwise, the pair origination of `assert_equal` will fail, because the sequence is recognized as container
        # that should be checked elementwise while the tensor is not.
        elif isinstance(x, torch.Tensor) and isinstance(y, Sequence):
            y = torch.as_tensor(y, dtype=x.dtype, device=x.device)
        elif isinstance(x, Sequence) and isinstance(y, torch.Tensor):
            x = torch.as_tensor(x, dtype=y.dtype, device=y.device)

        # If x or y are tensors and nested then we unbind them to a list of tensors this should allow us to compare
        # a nested tensor to a nested tensor and a nested tensor to a list of expected tensors
        if isinstance(x, torch.Tensor) and x.is_nested:
            x = x.unbind()
        if isinstance(y, torch.Tensor) and y.is_nested:
            y = y.unbind()

        assert_equal(
            x,
            y,
            pair_types=(
                NonePair,
                RelaxedBooleanPair,
                RelaxedNumberPair,
                TensorOrArrayPair,
                StringPair,
                SetPair,
                TypePair,
                ObjectPair,
            ),
            sequence_types=(
                Sequence,
                torch.storage.TypedStorage,
                Sequential,
                ModuleList,
                ParameterList,
                ScriptList,
                torch.utils.data.dataset.Subset,
            ),
            mapping_types=(Mapping, ModuleDict, ParameterDict, ScriptDict),
            rtol=rtol,
            rtol_override=self.rel_tol,
            atol=atol,
            atol_override=self.precision,
            equal_nan=equal_nan,
            check_device=exact_device,
            check_dtype=exact_dtype,
            check_layout=exact_layout,
            check_stride=exact_stride,
            check_is_coalesced=exact_is_coalesced,
            # This emulates unittest.TestCase's behavior if a custom message passed and
            # TestCase.longMessage (https://docs.python.org/3/library/unittest.html#unittest.TestCase.longMessage)
            # is True (default)
            msg=(lambda generated_msg: f"{generated_msg} : {msg}") if isinstance(msg, str) and self.longMessage else msg,
        )

    def assertNotEqual(self, x, y, msg: Optional[str] = None, *,                                       # type: ignore[override]
                       atol: Optional[float] = None, rtol: Optional[float] = None, **kwargs) -> None:
        with self.assertRaises(AssertionError, msg=msg):
            self.assertEqual(x, y, msg, atol=atol, rtol=rtol, **kwargs)

    def assertEqualTypeString(self, x, y) -> None:
        # This API is used simulate deprecated x.type() == y.type()
        self.assertEqual(x.device, y.device)
        self.assertEqual(x.dtype, y.dtype)
        self.assertEqual(x.is_sparse, y.is_sparse)

    def assertObjectIn(self, obj: Any, iterable: Iterable[Any]) -> None:
        for elem in iterable:
            if id(obj) == id(elem):
                return
        raise AssertionError("object not found in iterable")

    # Reimplemented to provide special behavior when
    # _ignore_not_implemented_error is True
    def assertRaises(self, expected_exception, *args, **kwargs):
        if self._ignore_not_implemented_error:
            context: Optional[AssertRaisesContextIgnoreNotImplementedError] = \
                AssertRaisesContextIgnoreNotImplementedError(expected_exception, self)  # type: ignore[call-arg]
            try:
                return context.handle('assertRaises', args, kwargs)  # type: ignore[union-attr]
            finally:
                # see https://bugs.python.org/issue23890
                context = None
        else:
            return super().assertRaises(expected_exception, *args, **kwargs)

    # Reimplemented to provide special behavior when
    # _ignore_not_implemented_error is True
    def assertRaisesRegex(self, expected_exception, expected_regex, *args, **kwargs):
        # Verifies that an exception with the type expected_exception and message
        # matching the regular expression defined by expected_regex is thrown.
        # If the test is instantiated for a non-native device type (like XLA)
        # then the message is not validated.

        # Checks whether the test is instantiated for a device type by testing
        # if the test class has defined the device_type attribute and,
        # if so, tests whether the instantiated device type is native or not
        if hasattr(self, 'device_type') and self.device_type not in NATIVE_DEVICES:  # type: ignore[attr-defined]
            # empty string matches any string
            expected_regex = ''

        if self._ignore_not_implemented_error:
            context = AssertRaisesContextIgnoreNotImplementedError(  # type: ignore[call-arg]
                expected_exception, self, expected_regex)
            return context.handle('assertRaisesRegex', args, kwargs)  # type: ignore[attr-defined]
        else:
            return super().assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)

    # TODO: Support context manager interface
    # NB: The kwargs forwarding to callable robs the 'subname' parameter.
    # If you need it, manually apply your callable in a lambda instead.
    def assertExpectedRaises(self, exc_type, callable, *args, **kwargs):
        subname = None
        if 'subname' in kwargs:
            subname = kwargs['subname']
            del kwargs['subname']
        try:
            callable(*args, **kwargs)
        except exc_type as e:
            self.assertExpected(str(e), subname)
            return
        # Don't put this in the try block; the AssertionError will catch it
        self.fail(msg="Did not raise when expected to")

    def assertNotWarn(self, callable, msg=''):
        r"""
        Test if :attr:`callable` does not raise a warning.
        """
        with warnings.catch_warnings(record=True) as ws:
            warnings.simplefilter("always")  # allow any warning to be raised
            with set_warn_always_context(True):
                callable()
            self.assertTrue(len(ws) == 0, msg)

    @contextmanager
    def assertWarnsOnceRegex(self, category, regex=''):
        """Context manager for code that *must always* warn

        This filters expected warnings from the test and fails if
        the expected warning is not caught. It uses set_warn_always() to force
        TORCH_WARN_ONCE to behave like TORCH_WARN
        """
        pattern = re.compile(regex)
        with warnings.catch_warnings(record=True) as ws:
            warnings.simplefilter("always")  # allow any warning to be raised
            with set_warn_always_context(True):
                yield
            if len(ws) == 0:
                self.fail('no warning caught')
            self.assertTrue(any([type(w.message) is category for w in ws]))
            self.assertTrue(
                any([re.match(pattern, str(w.message)) for w in ws]),
                f'{pattern}, {[w.message for w in ws if type(w.message) is category]}')

    def assertExpected(self, s, subname=None):
        r"""
        Test that a string matches the recorded contents of a file
        derived from the name of this test and subname.  This file
        is placed in the 'expect' directory in the same directory
        as the test script. You can automatically update the recorded test
        output using --accept.

        If you call this multiple times in a single function, you must
        give a unique subname each time.
        """
        if not isinstance(s, str):
            raise TypeError("assertExpected is strings only")

        def remove_prefix(text, prefix):
            if text.startswith(prefix):
                return text[len(prefix):]
            return text
        # NB: we take __file__ from the module that defined the test
        # class, so we place the expect directory where the test script
        # lives, NOT where test/common_utils.py lives.  This doesn't matter in
        # PyTorch where all test scripts are in the same directory as
        # test/common_utils.py, but it matters in onnx-pytorch
        module_id = self.__class__.__module__
        munged_id = remove_prefix(self.id(), module_id + ".")
        test_file = os.path.realpath(sys.modules[module_id].__file__)
        expected_file = os.path.join(os.path.dirname(test_file),
                                     "expect",
                                     munged_id)

        subname_output = ""
        if subname:
            expected_file += "-" + subname
            subname_output = " ({})".format(subname)
        expected_file += ".expect"
        expected = None

        def accept_output(update_type):
            print("Accepting {} for {}{}:\n\n{}".format(update_type, munged_id, subname_output, s))
            with open(expected_file, 'w') as f:
                # Adjust for producer_version, leave s unmodified
                s_tag = re.sub(r'(producer_version): "[0-9.]*"',
                               r'\1: "CURRENT_VERSION"', s)
                f.write(s_tag)

        try:
            with open(expected_file) as f:
                expected = f.read()
        except IOError as e:
            if e.errno != errno.ENOENT:
                raise
            elif expecttest.ACCEPT:
                return accept_output("output")
            else:
                raise RuntimeError(
                    ("I got this output for {}{}:\n\n{}\n\n"
                     "No expect file exists; to accept the current output, run:\n"
                     "python {} {} --accept").format(munged_id, subname_output, s, __main__.__file__, munged_id)) from None

        # a hack for JIT tests
        if IS_WINDOWS:
            expected = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', expected)
            s = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', s)

        # Adjust for producer_version
        expected = expected.replace(
            'producer_version: "CURRENT_VERSION"',
            'producer_version: "{}"'.format(torch.onnx.producer_version)
        )
        if expecttest.ACCEPT:
            if expected != s:
                return accept_output("updated output")
        else:
            if hasattr(self, "assertMultiLineEqual"):
                # Python 2.7 only
                # NB: Python considers lhs "old" and rhs "new".
                self.assertMultiLineEqual(expected, s)
            else:
                self.assertEqual(s, expected)

    def assertExpectedStripMangled(self, s, subname=None):
        s = re.sub(r'__torch__[^ ]+', '', s)
        self.assertExpected(s, subname)

    def assertGreaterAlmostEqual(self, first, second, places=None, msg=None, delta=None):
        """Assert that ``first`` is greater than or almost equal to ``second``.

        The equality of ``first`` and ``second`` is determined in a similar way to
        the ``assertAlmostEqual`` function of the standard library.
        """
        if delta is not None and places is not None:
            raise TypeError("specify delta or places not both")

        if first >= second:
            return

        diff = second - first
        if delta is not None:
            if diff <= delta:
                return

            standardMsg = f"{first} not greater than or equal to {second} within {delta} delta"
        else:
            if places is None:
                places = 7

            if round(diff, places) == 0:
                return

            standardMsg = f"{first} not greater than or equal to {second} within {places} places"

        msg = self._formatMessage(msg, standardMsg)
        raise self.failureException(msg)

    def assertAtenOp(self, onnx_model, operator, overload_name=""):
        all_aten_nodes = [p for p in onnx_model.graph.node
                          if p.op_type == "ATen" and p.domain == "org.pytorch.aten"]
        self.assertTrue(all_aten_nodes)

        for op in all_aten_nodes:
            attrs = {attr.name: attr.s.decode() for attr in op.attribute}
            if attrs.get("operator") == operator:
                break

        self.assertEqual(attrs["operator"], operator)
        self.assertEqual(attrs.get("overload_name", ""), overload_name)

    def check_nondeterministic_alert(self, fn, caller_name, should_alert=True):
        '''Checks that an operation produces a nondeterministic alert when
        expected while `torch.use_deterministic_algorithms(True)` is set.

        Args:
          fn (callable): Function to check for a nondeterministic alert

          caller_name (str): Name of the operation that produces the
              nondeterministic alert. This name is expected to appear at the
              beginning of the error/warning message.

          should_alert (bool, optional): If True, then the check will only pass
              if calling `fn` produces a nondeterministic error/warning with the
              expected message. If False, then the check will only pass if
              calling `fn` does not produce an error. Default: `True`.
        '''

        alert_message = '^' + caller_name + ' does not have a deterministic implementation, but you set'

        # Check that errors are thrown correctly
        with DeterministicGuard(True):
            if should_alert:
                with self.assertRaisesRegex(
                        RuntimeError,
                        alert_message,
                        msg='expected a non-deterministic error, but it was not raised'):
                    fn()

            else:
                # If a nondeterministic error is not expected, make sure
                # that it is not raised
                try:
                    fn()
                except RuntimeError as e:
                    if 'does not have a deterministic implementation' in str(e):
                        self.fail(
                            'did not expect non-deterministic error message, '
                            + 'but got one anyway: "' + str(e) + '"')
                    # Reraise exceptions unrelated to nondeterminism
                    raise

        # Check that warnings are thrown correctly
        with DeterministicGuard(True, warn_only=True):
            if should_alert:
                with self.assertWarnsRegex(
                        UserWarning,
                        alert_message):
                    fn()
            else:
                with warnings.catch_warnings(record=True) as w:
                    warnings.simplefilter("always")
                    fn()
                    for warning in w:
                        if isinstance(warning, UserWarning):
                            self.assertTrue(re.search(alert_message, str(warning)) is None)

    # run code in subprocess and capture exceptions.
    @staticmethod
    def run_process_no_exception(code, env=None):
        import subprocess

        popen = subprocess.Popen(
            [sys.executable, '-c', code],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            env=env)
        (stdout, stderr) = popen.communicate()
        return (stdout, stderr)

    # returns captured stderr
    @staticmethod
    def runWithPytorchAPIUsageStderr(code):
        env = os.environ.copy()
        env["PYTORCH_API_USAGE_STDERR"] = "1"
        # remove CI flag since this is a wrapped test process.
        # CI flag should be set in the parent process only.
        if "CI" in env.keys():
            del env["CI"]
        (stdout, stderr) = TestCase.run_process_no_exception(code, env=env)
        return stderr.decode('ascii')


def download_file(url, binary=True):
    from urllib.parse import urlsplit
    from urllib import request, error

    filename = os.path.basename(urlsplit(url)[2])
    data_dir = get_writable_path(os.path.join(os.path.dirname(__file__), 'data'))
    path = os.path.join(data_dir, filename)

    if os.path.exists(path):
        return path
    try:
        data = request.urlopen(url, timeout=15).read()
        with open(path, 'wb' if binary else 'w') as f:
            f.write(data)
        return path
    except error.URLError as e:
        msg = "could not download test file '{}'".format(url)
        warnings.warn(msg, RuntimeWarning)
        raise unittest.SkipTest(msg) from e

def find_free_port():
    """
    Finds an available port and returns that port number.

    NOTE: If this function is being used to allocate a port to Store (or
    indirectly via init_process_group or init_rpc), it should be used
    in conjuction with the `retry_on_connect_failures` decorator as there is a potential
    race condition where the allocated port may become unavailable before it can be used
    """
    with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
        sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
        sock.bind(('localhost', 0))
        _, port = sock.getsockname()
        return port

# Errors that we can get in c10d initialization for which we should retry tests for.
ADDRESS_IN_USE = "Address already in use"
CONNECT_TIMEOUT = "connect() timed out."

def retry_on_connect_failures(func=None, connect_errors=(ADDRESS_IN_USE)):
    """Reruns a test if the test returns a RuntimeError and the exception
    contains one of the strings in connect_errors."""
    # This if block is executed when using this function as a decorator with arguments.
    if func is None:
        return partial(retry_on_connect_failures, connect_errors=connect_errors)

    @wraps(func)
    def wrapper(*args, **kwargs):
        n_retries = 10
        tries_remaining = n_retries
        while True:
            try:
                return func(*args, **kwargs)
            except RuntimeError as error:
                if any(connect_error in str(error) for connect_error in connect_errors):
                    tries_remaining -= 1
                    if tries_remaining == 0:
                        raise RuntimeError(f"Failing after {n_retries} retries with error: {str(error)}")
                    time.sleep(random.random())
                    continue
                raise
    return wrapper


# Decorator to retry upon certain Exceptions.
def retry(ExceptionToCheck, tries=3, delay=3, skip_after_retries=False):
    def deco_retry(f):
        @wraps(f)
        def f_retry(*args, **kwargs):
            mtries, mdelay = tries, delay
            while mtries > 1:
                try:
                    return f(*args, **kwargs)
                except ExceptionToCheck as e:
                    msg = "%s, Retrying in %d seconds..." % (str(e), mdelay)
                    print(msg)
                    time.sleep(mdelay)
                    mtries -= 1
            try:
                return f(*args, **kwargs)
            except ExceptionToCheck as e:
                raise unittest.SkipTest(f"Skipping after {tries} consecutive {str(e)}") from e if skip_after_retries else e
        return f_retry  # true decorator
    return deco_retry


# FIXME: modernize these to be consistent with make_tensor
#   and review including them in torch.testing
# Methods for matrix generation

def random_square_matrix_of_rank(l, rank, dtype=torch.double, device='cpu'):
    assert rank <= l
    A = torch.randn(l, l, dtype=dtype, device=device)
    u, s, vh = torch.linalg.svd(A, full_matrices=False)
    for i in range(l):
        if i >= rank:
            s[i] = 0
        elif s[i] == 0:
            s[i] = 1
    return (u * s.to(dtype).unsqueeze(-2)) @ vh

def random_well_conditioned_matrix(*shape, dtype, device, mean=1.0, sigma=0.001):
    """
    Returns a random rectangular matrix (batch of matrices)
    with singular values sampled from a Gaussian with
    mean `mean` and standard deviation `sigma`.
    The smaller the `sigma`, the better conditioned
    the output matrix is.
    """
    primitive_dtype = {
        torch.float: torch.float,
        torch.double: torch.double,
        torch.cfloat: torch.float,
        torch.cdouble: torch.double
    }
    x = torch.rand(shape, dtype=dtype, device=device)
    m = x.size(-2)
    n = x.size(-1)
    u, _, vh = torch.linalg.svd(x, full_matrices=False)
    s = (torch.randn(*(shape[:-2] + (min(m, n),)), dtype=primitive_dtype[dtype], device=device) * sigma + mean) \
        .sort(-1, descending=True).values.to(dtype)
    return (u * s.unsqueeze(-2)) @ vh

# Returns a noncontiguous (tensor with the same shape and values as t
# The noncontiguous tensor is constructed such that elements in the innermost
#   dimension are separated by zeros or (whenever possible) nans
# TODO: consider more complicated noncontiguity schemes
def noncontiguous_like(t):
    # Short-circuits if t is already noncontiguous
    if not t.is_contiguous():
        return t

    # Choose a "weird" value that won't be accessed
    if t.dtype.is_floating_point or t.dtype.is_complex:
        value = math.nan
    elif t.dtype == torch.bool:
        value = True
    else:
        value = 12

    result = t.new_empty(t.shape + (2,))
    result[..., 0] = value
    result[..., 1] = t.detach()
    result = result[..., 1]
    result.requires_grad_(t.requires_grad)
    return result

# TODO: remove this (prefer make_symmetric_matrices below)
def random_symmetric_matrix(l, *batches, **kwargs):
    dtype = kwargs.get('dtype', torch.double)
    device = kwargs.get('device', 'cpu')
    A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
    A = (A + A.mT).div_(2)
    return A

# Creates a symmetric matrix or batch of symmetric matrices
# Shape must be a square matrix or batch of square matrices
def make_symmetric_matrices(*shape, device, dtype):
    assert shape[-1] == shape[-2]
    t = make_tensor(shape, device=device, dtype=dtype)
    t = (t + t.mT).div_(2)
    return t

def random_hermitian_matrix(l, *batches, **kwargs):
    dtype = kwargs.get('dtype', torch.double)
    device = kwargs.get('device', 'cpu')
    A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
    A = (A + A.mH).div_(2)
    return A


def random_symmetric_psd_matrix(l, *batches, **kwargs):
    """
    Returns a batch of random symmetric positive-semi-definite matrices.
    The shape of the result is batch_dims + (matrix_size, matrix_size)
    The following example creates a tensor of size 2 x 4 x 3 x 3
    >>> # xdoctest: +SKIP("undefined variables")
    >>> matrices = random_symmetric_psd_matrix(3, 2, 4, dtype=dtype, device=device)
    """
    dtype = kwargs.get('dtype', torch.double)
    device = kwargs.get('device', 'cpu')
    A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device)
    return A @ A.mT


def random_hermitian_psd_matrix(matrix_size, *batch_dims, dtype=torch.double, device='cpu'):
    """
    Returns a batch of random Hermitian positive-semi-definite matrices.
    The shape of the result is batch_dims + (matrix_size, matrix_size)
    The following example creates a tensor of size 2 x 4 x 3 x 3
    >>> # xdoctest: +SKIP("undefined variables")
    >>> matrices = random_hermitian_psd_matrix(3, 2, 4, dtype=dtype, device=device)
    """
    A = torch.randn(*(batch_dims + (matrix_size, matrix_size)), dtype=dtype, device=device)
    return A @ A.mH


# TODO: remove this (prefer make_symmetric_pd_matrices below)
def random_symmetric_pd_matrix(matrix_size, *batch_dims, **kwargs):
    dtype = kwargs.get('dtype', torch.double)
    device = kwargs.get('device', 'cpu')
    A = torch.randn(*(batch_dims + (matrix_size, matrix_size)),
                    dtype=dtype, device=device)
    return torch.matmul(A, A.mT) \
        + torch.eye(matrix_size, dtype=dtype, device=device) * 1e-5


# Creates a symmetric positive-definite matrix or batch of
#   such matrices
def make_symmetric_pd_matrices(*shape, device, dtype):
    assert shape[-1] == shape[-2]
    t = make_tensor(shape, device=device, dtype=dtype)
    i = torch.eye(shape[-1], device=device, dtype=dtype) * 1e-5
    return t @ t.mT + i

def random_hermitian_pd_matrix(matrix_size, *batch_dims, dtype, device):
    """
    Returns a batch of random Hermitian positive-definite matrices.
    The shape of the result is batch_dims + (matrix_size, matrix_size)
    The following example creates a tensor of size 2 x 4 x 3 x 3
    >>> # xdoctest: +SKIP("undefined variables")
    >>> matrices = random_hermitian_pd_matrix(3, 2, 4, dtype=dtype, device=device)
    """
    A = torch.randn(*(batch_dims + (matrix_size, matrix_size)),
                    dtype=dtype, device=device)
    return A @ A.mH + torch.eye(matrix_size, dtype=dtype, device=device)

# Creates a full rank matrix with distinct singular values or
#   a batch of such matrices
def make_fullrank_matrices_with_distinct_singular_values(*shape, device, dtype, requires_grad=False):
    with torch.no_grad():
        t = make_tensor(shape, device=device, dtype=dtype)
        u, _, vh = torch.linalg.svd(t, full_matrices=False)
        real_dtype = t.real.dtype if t.dtype.is_complex else t.dtype
        k = min(shape[-1], shape[-2])
        # We choose the singular values to be "around one"
        # This is to make the matrix well conditioned
        # s = [2, 3, ..., k+1]
        s = torch.arange(2, k + 2, dtype=real_dtype, device=device)
        # s = [2, -3, 4, ..., (-1)^k k+1]
        s[1::2] *= -1.
        # 1 + 1/s so that the singular values are in the range [2/3, 3/2]
        # This gives a condition number of 9/4, which should be good enough
        s.reciprocal_().add_(1.)
        # Note that the singular values need not be ordered in an SVD so
        # we don't need need to sort S
        x = (u * s.to(u.dtype)) @ vh
    x.requires_grad_(requires_grad)
    return x

def random_matrix(rows, columns, *batch_dims, **kwargs):
    """Return rectangular matrix or batches of rectangular matrices.

    Parameters:
      dtype - the data type
      device - the device kind
      singular - when True, the output will be singular
    """
    dtype = kwargs.get('dtype', torch.double)
    device = kwargs.get('device', 'cpu')
    silent = kwargs.get("silent", False)
    singular = kwargs.get("singular", False)
    if silent and not torch._C.has_lapack:
        return torch.ones(rows, columns, dtype=dtype, device=device)

    A = torch.randn(batch_dims + (rows, columns), dtype=dtype, device=device)
    if A.numel() == 0:
        return A
    u, _, vh = torch.linalg.svd(A, full_matrices=False)
    k = min(rows, columns)
    s = torch.linspace(1 / (k + 1), 1, k, dtype=dtype, device=device)
    if singular:
        # make matrix singular
        s[k - 1] = 0
        if k > 2:
            # increase the order of singularity so that the pivoting
            # in LU factorization will be non-trivial
            s[0] = 0
    return (u * s.unsqueeze(-2)) @ vh


def random_lowrank_matrix(rank, rows, columns, *batch_dims, **kwargs):
    """Return rectangular matrix or batches of rectangular matrices with
    given rank.
    """
    B = random_matrix(rows, rank, *batch_dims, **kwargs)
    C = random_matrix(rank, columns, *batch_dims, **kwargs)
    return B.matmul(C)


def random_sparse_matrix(rows, columns, density=0.01, **kwargs):
    """Return rectangular random sparse matrix within given density.

    The density of the result approaches to given density as the size
    of the matrix is increased and a relatively small value of density
    is specified but higher than min(rows, columns)/(rows * columns)
    for non-singular matrices.
    """
    dtype = kwargs.get('dtype', torch.double)
    device = kwargs.get('device', 'cpu')
    singular = kwargs.get("singular", False)

    k = min(rows, columns)
    nonzero_elements = max(min(rows, columns), int(rows * columns * density))

    row_indices = [i % rows for i in range(nonzero_elements)]
    column_indices = [i % columns for i in range(nonzero_elements)]
    random.shuffle(column_indices)
    indices = [row_indices, column_indices]
    values = torch.randn(nonzero_elements, dtype=dtype, device=device)
    # ensure that the diagonal dominates
    values *= torch.tensor([-float(i - j)**2 for i, j in zip(*indices)], dtype=dtype, device=device).exp()
    indices_tensor = torch.tensor(indices)
    A = torch.sparse_coo_tensor(indices_tensor, values, (rows, columns), device=device)
    return A.coalesce()


def random_sparse_pd_matrix(matrix_size, density=0.01, **kwargs):
    """Return random sparse positive-definite matrix with given density.

    The eigenvalues of the matrix are defined as::
      arange(1, matrix_size+1)/matrix_size

    Algorithm:
      A = diag(arange(1, matrix_size+1)/matrix_size)
      while <A density is smaller than required>:
          <choose random i, j in range(matrix_size), theta in [0, 2*pi]>
          R = <rotation matrix (i,j,theta)>
          A = R^T A R
    """
    import math
    torch = kwargs.get('torch', globals()['torch'])
    dtype = kwargs.get('dtype', torch.double)
    device = kwargs.get('device', 'cpu')
    data = dict([((i, i), float(i + 1) / matrix_size)
                 for i in range(matrix_size)])


    def multiply(data, N, i, j, cs, sn, left=True):
        for k in range(N):
            if left:
                ik, jk = (k, i), (k, j)
            else:
                ik, jk = (i, k), (j, k)
            aik, ajk = data.get(ik, 0), data.get(jk, 0)
            aik, ajk = cs * aik + sn * ajk, -sn * aik + cs * ajk
            if aik:
                data[ik] = aik
            else:
                data.pop(ik, None)
            if ajk:
                data[jk] = ajk
            else:
                data.pop(jk, None)

    target_nnz = density * matrix_size * matrix_size
    while len(data) < target_nnz:
        i = random.randint(0, matrix_size - 1)
        j = random.randint(0, matrix_size - 1)
        if i != j:
            theta = random.uniform(0, 2 * math.pi)
            cs = math.cos(theta)
            sn = math.sin(theta)
            multiply(data, matrix_size, i, j, cs, sn, left=True)
            multiply(data, matrix_size, i, j, cs, sn, left=False)
    icoords, jcoords, values = [], [], []
    for (i, j), v in sorted(data.items()):
        icoords.append(i)
        jcoords.append(j)
        values.append(v)
    indices_tensor = torch.tensor([icoords, jcoords])
    return torch.sparse_coo_tensor(indices_tensor, values, (matrix_size, matrix_size), dtype=dtype, device=device)

# FIXME: remove this by updating test suites using it
def do_test_dtypes(self, dtypes, layout, device):
    for dtype in dtypes:
        if dtype != torch.float16:
            out = torch.zeros((2, 3), dtype=dtype, layout=layout, device=device)
            self.assertIs(dtype, out.dtype)
            self.assertIs(layout, out.layout)
            self.assertEqual(device, out.device)

# FIXME: remove this by updating test suites using it
def do_test_empty_full(self, dtypes, layout, device):
    shape = torch.Size([2, 3])

    def check_value(tensor, dtype, layout, device, value, requires_grad):
        self.assertEqual(shape, tensor.shape)
        self.assertIs(dtype, tensor.dtype)
        self.assertIs(layout, tensor.layout)
        self.assertEqual(tensor.requires_grad, requires_grad)
        if tensor.is_cuda and device is not None:
            self.assertEqual(device, tensor.device)
        if value is not None:
            fill = tensor.new(shape).fill_(value)
            self.assertEqual(tensor, fill)

    def get_int64_dtype(dtype):
        module = '.'.join(str(dtype).split('.')[1:-1])
        if not module:
            return torch.int64
        return operator.attrgetter(module)(torch).int64

    default_dtype = torch.get_default_dtype()
    check_value(torch.empty(shape), default_dtype, torch.strided, -1, None, False)
    check_value(torch.full(shape, -5.), default_dtype, torch.strided, -1, None, False)
    for dtype in dtypes:
        for rg in {dtype.is_floating_point, False}:
            int64_dtype = get_int64_dtype(dtype)
            v = torch.empty(shape, dtype=dtype, device=device, layout=layout, requires_grad=rg)
            check_value(v, dtype, layout, device, None, rg)
            out = v.new()
            check_value(torch.empty(shape, out=out, device=device, layout=layout, requires_grad=rg),
                        dtype, layout, device, None, rg)
            check_value(v.new_empty(shape), dtype, layout, device, None, False)
            check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=False),
                        int64_dtype, layout, device, None, False)
            check_value(torch.empty_like(v), dtype, layout, device, None, False)
            check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=False),
                        int64_dtype, layout, device, None, False)

            if dtype is not torch.float16 and layout != torch.sparse_coo:
                fv = 3
                v = torch.full(shape, fv, dtype=dtype, layout=layout, device=device, requires_grad=rg)
                check_value(v, dtype, layout, device, fv, rg)
                check_value(v.new_full(shape, fv + 1), dtype, layout, device, fv + 1, False)
                out = v.new()
                check_value(torch.full(shape, fv + 2, out=out, device=device, layout=layout, requires_grad=rg),
                            dtype, layout, device, fv + 2, rg)
                check_value(v.new_full(shape, fv + 3, dtype=int64_dtype, device=device, requires_grad=False),
                            int64_dtype, layout, device, fv + 3, False)
                check_value(torch.full_like(v, fv + 4), dtype, layout, device, fv + 4, False)
                check_value(torch.full_like(v, fv + 5,
                                            dtype=int64_dtype, layout=layout, device=device, requires_grad=False),
                            int64_dtype, layout, device, fv + 5, False)

# FIXME: improve load_tests() documentation here
running_script_path = None
def set_running_script_path():
    global running_script_path
    try:
        running_file = os.path.abspath(os.path.realpath(sys.argv[0]))
        if running_file.endswith('.py'):  # skip if the running file is not a script
            running_script_path = running_file
    except Exception:
        pass

def check_test_defined_in_running_script(test_case):
    if running_script_path is None:
        return
    test_case_class_file = os.path.abspath(os.path.realpath(inspect.getfile(test_case.__class__)))
    assert test_case_class_file == running_script_path, "Class of loaded TestCase \"{}\" " \
        "is not defined in the running script \"{}\", but in \"{}\". Did you " \
        "accidentally import a unittest.TestCase from another file?".format(
            test_case.id(), running_script_path, test_case_class_file)

def load_tests(loader, tests, pattern):
    set_running_script_path()
    test_suite = unittest.TestSuite()
    for test_group in tests:
        if not DISABLE_RUNNING_SCRIPT_CHK:
            for test in test_group:
                check_test_defined_in_running_script(test)
        if test_group._tests:
            test_suite.addTest(test_group)
    return test_suite

# FIXME: document this and move it to test_serialization
class BytesIOContext(io.BytesIO):
    def __enter__(self):
        return self

    def __exit__(self, *args):
        pass

# Tentative value for nondet_tol for gradcheck when backward implementation
# relies on nondeterministic operations, i.e., those listed here:
# https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
#
# For more information see https://github.com/pytorch/pytorch/issues/56202
GRADCHECK_NONDET_TOL = 1e-12

def is_slow_gradcheck_env() -> bool:
    return os.environ.get('PYTORCH_TEST_WITH_SLOW_GRADCHECK', "0") == "1"

skipIfSlowGradcheckEnv = unittest.skipIf(
    is_slow_gradcheck_env(),
    "Tests that don't use gradcheck don't need to run on slow_gradcheck CI"
)

def gradcheck(fn, inputs, **kwargs):
    # Wrapper around gradcheck that enables certain keys by default.
    # Use this testing-internal gradcheck instead of autograd.gradcheck so that new features like vmap and
    # forward-mode AD are tested by default. We create this wrapper because we'd like to keep new checks
    # to be disabled to default for the public-facing api to avoid breaking user code.
    #
    # All PyTorch devs doing testing should use this wrapper instead of autograd.gradcheck.
    default_values = {
        "check_batched_grad": True,
        "fast_mode": True,
    }

    if is_slow_gradcheck_env():
        default_values["fast_mode"] = False

    for key, value in default_values.items():
        # default value override values explicitly set to None
        k = kwargs.get(key, None)
        kwargs[key] = k if k is not None else value

    return torch.autograd.gradcheck(fn, inputs, **kwargs)

def gradgradcheck(fn, inputs, grad_outputs=None, **kwargs):
    # Wrapper around gradgradcheck that enables certain keys by default
    # See gradcheck above for an explanation of why we need something like this.
    #
    # All PyTorch devs doing testing should use this wrapper instead of autograd.gradgradcheck
    default_values = {
        "check_batched_grad": True,
        "fast_mode": True,
    }

    if is_slow_gradcheck_env():
        default_values["fast_mode"] = False

    for key, value in default_values.items():
        # default value override values explicitly set to None
        k = kwargs.get(key, None)
        kwargs[key] = k if k is not None else value

    return torch.autograd.gradgradcheck(fn, inputs, grad_outputs, **kwargs)


def _assertGradAndGradgradChecks(test_case, apply_fn, inputs, **kwargs):
    # call assert function rather than returning a bool since it's nicer
    # if we get whether this failed on the gradcheck or the gradgradcheck.
    test_case.assertTrue(gradcheck(apply_fn, inputs, **kwargs))
    test_case.assertTrue(gradgradcheck(apply_fn, inputs, **kwargs))


@contextmanager
def set_cwd(path: str) -> Iterator[None]:
    old_cwd = os.getcwd()
    try:
        os.chdir(path)
        yield
    finally:
        os.chdir(old_cwd)


# FIXME: delete this
# Using @toleranceOverride specific to your test is the recommended way
# of doing this. These are just some values that worked for test_nn.
dtype2prec_DONTUSE = {torch.float: 1e-5,
                      torch.double: 1e-5,
                      torch.half: 1e-2,
                      torch.bfloat16: 1e-1}

# FIXME: move to test_sparse or sparse utils
# This is a wrapper that wraps a test to run this test twice, one with
# coalesced=True, another with coalesced=False for coalesced/uncoalesced sparse tensors.
def coalescedonoff(f):
    @wraps(f)
    def wrapped(self, *args, **kwargs):
        f(self, *args, **kwargs, coalesced=True)
        f(self, *args, **kwargs, coalesced=False)
    return wrapped


@contextlib.contextmanager
def disable_gc():
    if gc.isenabled():
        try:
            gc.disable()
            yield
        finally:
            gc.enable()
    else:
        yield


def find_library_location(lib_name: str) -> Path:
    # return the shared library file in the installed folder if exist,
    # else the file in the build folder
    torch_root = Path(torch.__file__).resolve().parent
    path = torch_root / 'lib' / lib_name
    if os.path.exists(path):
        return path
    torch_root = Path(__file__).resolve().parent.parent.parent
    return torch_root / 'build' / 'lib' / lib_name

def sandcastle_skip(reason):
    """
    Similar to unittest.skip, however in the sandcastle environment it just
    "passes" the test instead to avoid creating tasks complaining about tests
    skipping continuously.
    """
    def decorator(func):
        if not IS_SANDCASTLE:
            func.__unittest_skip__ = True
            func.__unittest_skip_why__ = reason
            return func

        @wraps(func)
        def wrapper(*args, **kwargs):
            print(f'Skipping {func.__name__} on sandcastle for following reason: {reason}', file=sys.stderr)
            return
        return wrapper

    return decorator

def mock_wrapper(method):
    """
    Returns a function that calls the real implementation of a method
    in addition to passing args to a mock object.
    """
    mock = MagicMock()

    @wraps(method)
    def wrapper(self, *args, **kwargs):
        mock(*args, **kwargs)
        return method(self, *args, **kwargs)
    wrapper.mock = mock  # type: ignore[attr-defined]
    return wrapper

def get_tensors_from(args, kwargs):
    """ Returns a set of all Tensor objects in the given args and kwargs. """
    return set([arg for arg in args if isinstance(arg, Tensor)] +
               [v for v in kwargs.values() if isinstance(v, Tensor)])


# Returns scalar tensor representation of a list of integer byte values
def bytes_to_scalar(byte_list: List[int], dtype: torch.dtype, device: torch.device):
    dtype_to_ctype: Dict[torch.dtype, Any] = {
        torch.int8: ctypes.c_int8,
        torch.uint8: ctypes.c_uint8,
        torch.int16: ctypes.c_int16,
        torch.int32: ctypes.c_int32,
        torch.int64: ctypes.c_int64,
        torch.bool: ctypes.c_bool,
        torch.float32: ctypes.c_float,
        torch.complex64: ctypes.c_float,
        torch.float64: ctypes.c_double,
        torch.complex128: ctypes.c_double,
    }
    ctype = dtype_to_ctype[dtype]
    num_bytes = ctypes.sizeof(ctype)

    def check_bytes(byte_list):
        for byte in byte_list:
            assert 0 <= byte <= 255

    if dtype.is_complex:
        assert len(byte_list) == (num_bytes * 2)
        check_bytes(byte_list)
        real = ctype.from_buffer((ctypes.c_byte * num_bytes)(
            *byte_list[:num_bytes])).value
        imag = ctype.from_buffer((ctypes.c_byte * num_bytes)(
            *byte_list[num_bytes:])).value
        res = real + 1j * imag
    else:
        assert len(byte_list) == num_bytes
        check_bytes(byte_list)
        res = ctype.from_buffer((ctypes.c_byte * num_bytes)(
            *byte_list)).value

    return torch.tensor(res, device=device, dtype=dtype)


def sandcastle_skip_if(condition, reason):
    """
    Similar to unittest.skipIf, however in the sandcastle environment it just
    "passes" the test instead to avoid creating tasks complaining about tests
    skipping continuously.
    """
    def decorator(func):
        if condition:
            if IS_SANDCASTLE:
                @wraps(func)
                def wrapper(*args, **kwargs):
                    print(f'Skipping {func.__name__} on sandcastle for following reason: {reason}', file=sys.stderr)
                return wrapper
            else:
                func.__unittest_skip__ = True
                func.__unittest_skip_why__ = reason

        return func

    return decorator

def dtype_name(dtype):
    """ Returns the pretty name of the dtype (e.g. torch.int64 -> int64). """
    return str(dtype).split('.')[1]


dtype_abbrs = {
    torch.bfloat16: 'bf16',
    torch.float64: 'f64',
    torch.float32: 'f32',
    torch.float16: 'f16',
    torch.complex32: 'c32',
    torch.complex64: 'c64',
    torch.complex128: 'c128',
    torch.int8: 'i8',
    torch.int16: 'i16',
    torch.int32: 'i32',
    torch.int64: 'i64',
    torch.bool: 'b8',
    torch.uint8: 'u8',
}


def set_single_threaded_if_parallel_tbb(fn):
    """Set test to be single threaded for parallel tbb.

    See https://github.com/pytorch/pytorch/issues/64571#issuecomment-914691883
    """
    if not IS_TBB:
        return fn

    @wraps(fn)
    def wrap_fn(*args, **kwargs):
        num_threads = torch.get_num_threads()
        torch.set_num_threads(1)
        try:
            return fn(*args, **kwargs)
        finally:
            torch.set_num_threads(num_threads)
    return wrap_fn


@functools.lru_cache()
def get_cycles_per_ms() -> float:
    """Measure and return approximate number of cycles per millisecond for torch.cuda._sleep
    """

    def measure() -> float:
        start = torch.cuda.Event(enable_timing=True)
        end = torch.cuda.Event(enable_timing=True)
        start.record()
        torch.cuda._sleep(1000000)
        end.record()
        end.synchronize()
        cycles_per_ms = 1000000 / start.elapsed_time(end)
        return cycles_per_ms

    # Get 10 values and remove the 2 max and 2 min and return the avg.
    # This is to avoid system disturbance that skew the results, e.g.
    # the very first cuda call likely does a bunch of init, which takes
    # much longer than subsequent calls.
    #
    # Tested on both Tesla V100, Quadro GP100, Titan RTX, RTX 3090 GPUs
    # and seems to return stable values. Therefore, we enable caching
    # using lru_cache decorator above.
    num = 10
    vals = []
    for _ in range(num):
        vals.append(measure())
    vals = sorted(vals)
    return mean(vals[2 : num - 2])


# OpInfo utils

T = TypeVar('T')
def first_sample(self: unittest.TestCase, samples: Iterable[T]) -> T:
    """
    Returns the first sample from an iterable of samples, like those returned by OpInfo.
    The test will be skipped if no samples are available.
    """
    try:
        return next(iter(samples))
    except StopIteration:
        raise unittest.SkipTest('Skipped! Need at least 1 sample input')

# this helper method is to recursively
# clone the tensor-type input of operators tested by OpInfo
def clone_input_helper(input):
    if isinstance(input, torch.Tensor):
        return torch.clone(input)

    if isinstance(input, Sequence):
        return tuple(map(clone_input_helper, input))

    return input

@contextmanager
def custom_op(opname, symbolic_fn, opset_version):
    """Context manager/decorator to test ONNX export with custom oeprator"""
    try:
        register_custom_op_symbolic(opname, symbolic_fn, opset_version)
        yield
    finally:
        unregister_custom_op_symbolic(opname, opset_version)