1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
import torch
import torch.distributed as dist
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.dist_utils import INIT_METHOD_TEMPLATE, dist_init
from torch.testing._internal.distributed.rpc.rpc_agent_test_fixture import (
RpcAgentTestFixture,
)
from torch.testing._internal.common_distributed import (
requires_gloo,
requires_nccl,
skip_if_lt_x_gpu,
skip_if_rocm,
)
from torch.distributed.pipeline.sync import Pipe
class PipeWithDDPTest(RpcAgentTestFixture):
@property
def world_size(self) -> int:
return 2
@skip_if_lt_x_gpu(4)
@requires_nccl()
@dist_init
@skip_if_rocm
def test_basic_nccl_ckpt_never(self):
self._run_basic_test("nccl", "never")
@skip_if_lt_x_gpu(4)
@requires_nccl()
@dist_init
@skip_if_rocm
def test_basic_nccl_ckpt_never_find_unused(self):
self._run_basic_test("nccl", "never", find_unused_parameters=True)
@skip_if_lt_x_gpu(4)
@requires_nccl()
@dist_init
@skip_if_rocm
def test_basic_nccl_ckpt_always(self):
self._run_basic_test("nccl", "always", static_graph=True)
@skip_if_lt_x_gpu(4)
@requires_nccl()
@dist_init
@skip_if_rocm
def test_basic_nccl_ckpt_except_last(self):
self._run_basic_test("nccl", "except_last", static_graph=True)
@skip_if_lt_x_gpu(4)
@requires_gloo()
@dist_init
@skip_if_rocm
def test_basic_gloo_ckpt_never(self):
self._run_basic_test("gloo", "never")
@skip_if_lt_x_gpu(4)
@requires_gloo()
@dist_init
@skip_if_rocm
def test_basic_gloo_ckpt_never_find_unused(self):
self._run_basic_test("gloo", "never", find_unused_parameters=True)
@skip_if_lt_x_gpu(4)
@requires_gloo()
@dist_init
@skip_if_rocm
def test_basic_gloo_ckpt_always(self):
self._run_basic_test("gloo", "always", static_graph=True)
@skip_if_lt_x_gpu(4)
@requires_gloo()
@dist_init
@skip_if_rocm
def test_basic_gloo_ckpt_except_last(self):
self._run_basic_test("gloo", "except_last", static_graph=True)
def _run_basic_test(self, backend, checkpoint, find_unused_parameters=False, static_graph=False):
dist.init_process_group(
backend=backend,
init_method=INIT_METHOD_TEMPLATE.format(file_name=self.file_name),
world_size=self.world_size,
rank=self.rank,
)
# Use 4 GPUs, two replicas of a pipe across GPU 0 and 1 and another
# pipe between GPU 2 and 3. Both replicas are replicated via DDP.
fc1 = nn.Linear(16, 8, bias=False).cuda(2 * self.rank)
class MyModule(nn.Module):
def __init__(self, device):
super(MyModule, self).__init__()
self.fc2 = nn.Linear(8, 4, bias=False).cuda(device)
self.fc3 = nn.Linear(4, 2, bias=False).cuda(device)
def forward(self, inp):
if find_unused_parameters:
return self.fc2(inp)
else:
return self.fc3(self.fc2(inp))
layer2 = MyModule(2 * self.rank + 1)
model = nn.Sequential(
fc1,
layer2
)
model = Pipe(model, chunks=2, checkpoint=checkpoint)
model = DistributedDataParallel(
model,
find_unused_parameters=find_unused_parameters,
static_graph=static_graph,
)
# Ensure inputs are different across ranks to verify that gradient
# sync indeed occurs.
model_input = torch.rand(16, 16).cuda(2 * self.rank) * (self.rank + 1)
out = model(model_input).local_value()
out.sum().backward()
# Run forward again for find_unused_parameters to trigger any potential errors.
if find_unused_parameters:
# Ensure inputs are different across ranks to verify that gradient
# sync indeed occurs.
unused_param_input = torch.rand(16, 16).cuda(2 * self.rank) * (self.rank + 1)
model(unused_param_input).local_value().sum().backward()
# Run a few more iterations of fwd + bwd to ensure gradient synchronization
# occurs properly across iterations via delay_all_reduce/bucketized allreduce.
for _ in range(3):
model_input = torch.rand(16, 16).cuda(2 * self.rank) * (self.rank + 1)
out = model(model_input).local_value()
out.sum().backward()
# Check grads
output = [torch.empty_like(fc1.weight.grad), torch.empty_like(fc1.weight.grad)]
dist.all_gather(output, fc1.weight.grad)
self.assertEqual(output[0], output[1])
output = [torch.empty_like(layer2.fc2.weight.grad), torch.empty_like(layer2.fc2.weight.grad)]
dist.all_gather(output, layer2.fc2.weight.grad)
self.assertEqual(output[0], output[1])
if not find_unused_parameters:
output = [torch.empty_like(layer2.fc3.weight.grad), torch.empty_like(layer2.fc3.weight.grad)]
dist.all_gather(output, layer2.fc3.weight.grad)
self.assertEqual(output[0], output[1])
|