File: dist_optimizer_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (279 lines) | stat: -rw-r--r-- 10,602 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

import threading

import torch
import torch.distributed.autograd as dist_autograd
import torch.distributed.rpc as rpc
from torch import optim
from torch.distributed.optim import DistributedOptimizer
from torch.testing._internal.dist_utils import dist_init
from torch.testing._internal.distributed.rpc.rpc_agent_test_fixture import (
    RpcAgentTestFixture,
)


class MyModule:
    lock = threading.Lock()

    def __init__(self, requires_grad=True):
        # cannot directly use torch.manual_seed(0) as all threads share the same
        # default generator. The race from multiple RPC threads could mess up
        # the draw order from the default RNG instance, leading to
        # non-deterministic behavior. Hence, create a dedicated RNG here.
        g_cpu = torch.Generator()
        g_cpu.manual_seed(0)
        self.w = torch.rand((3, 3), requires_grad=requires_grad, generator=g_cpu)

    def forward(self, t1):
        return torch.mm(self.w, t1)

    def get_w(self):
        return self.w


class FailingOptimizer(optim.Optimizer):
    def __init__(self, params):
        super().__init__(params, {})

    def step(self, closure=None):
        raise ValueError("Error running optimizer.")


class OptimizerFailingOnConstructor(optim.Optimizer):
    def __init__(self, params):
        super().__init__(params, {})
        raise ValueError("Error creating optimizer.")

    def step(self, closure=None):
        raise NotImplementedError


def _call_method(method, obj_rref, *args, **kwargs):
    return method(obj_rref.local_value(), *args, **kwargs)


def remote_method(method, obj_rref, *args, **kwargs):
    """
    Call rpc.remote on a method in a remote object.

    Args:
        method: the method (for example, Class.method)
        obj_rref (RRef): remote reference to the object
        args: positional arguments to pass to the method
        kwargs: keyword arguments to pass to the method

    Returns a RRef to the remote method call result.
    """
    return rpc.remote(
        obj_rref.owner(),
        _call_method,
        args=[method, obj_rref] + list(args),
        kwargs=kwargs,
    )


def rpc_async_method(method, obj_rref, *args, **kwargs):
    """
    Call rpc.rpc_async on a method in a remote object.

    Args:
        method: the method (for example, Class.method)
        obj_rref (RRef): remote reference to the object
        args: positional arguments to pass to the method
        kwargs: keyword arguments to pass to the method

    Returns a Future to the method call result.
    """
    return rpc.rpc_async(
        obj_rref.owner(),
        _call_method,
        args=[method, obj_rref] + list(args),
        kwargs=kwargs,
    )


class DistOptimizerTest(RpcAgentTestFixture):
    @dist_init()
    def test_dist_optim_exception(self):
        # distributed version
        owner1 = "worker%d" % ((self.rank + 1) % self.world_size)
        owner2 = "worker%d" % ((self.rank + 2) % self.world_size)

        remote_module1 = rpc.remote(owner1, MyModule)
        remote_module2 = rpc.remote(owner2, MyModule)
        remote_param1 = remote_method(MyModule.get_w, remote_module1)
        remote_param2 = remote_method(MyModule.get_w, remote_module2)

        dist_optim = DistributedOptimizer(
            FailingOptimizer, [remote_param1, remote_param2]
        )

        with dist_autograd.context() as context_id:
            g_cpu = torch.Generator()
            g_cpu.manual_seed(0)
            t1 = torch.rand((3, 3), requires_grad=True, generator=g_cpu)
            t2 = torch.rand((3, 3), requires_grad=True, generator=g_cpu)
            output1 = rpc_async_method(MyModule.forward, remote_module1, t2)
            output2 = rpc_async_method(MyModule.forward, remote_module2, output1.wait())
            loss = torch.add(output2.wait(), t1).sum()

            dist_autograd.backward(context_id, [loss])
            with self.assertRaisesRegex(Exception, "Error running optimizer"):
                dist_optim.step(context_id)

    @dist_init()
    def test_dist_optim_exception_on_constructor(self):
        # distributed version
        owner1 = "worker%d" % ((self.rank + 1) % self.world_size)
        owner2 = "worker%d" % ((self.rank + 2) % self.world_size)

        remote_module1 = rpc.remote(owner1, MyModule)
        remote_module2 = rpc.remote(owner2, MyModule)
        remote_param1 = remote_method(MyModule.get_w, remote_module1)
        remote_param2 = remote_method(MyModule.get_w, remote_module2)

        with self.assertRaisesRegex(Exception, "Error creating optimizer."):
            dist_optim = DistributedOptimizer(
                OptimizerFailingOnConstructor, [remote_param1, remote_param2]
            )

    def _test_dist_optim_base(self, optim_cls, *args, **kwargs):
        # local version
        module1 = MyModule()
        module2 = MyModule()
        params = [module1.get_w(), module2.get_w()]
        local_optim = optim_cls(params, *args, **kwargs)

        old_w1 = module1.w.clone().detach()
        old_w2 = module2.w.clone().detach()

        g_cpu = torch.Generator()
        g_cpu.manual_seed(0)
        t1 = torch.rand((3, 3), requires_grad=True, generator=g_cpu)
        t2 = torch.rand((3, 3), requires_grad=True, generator=g_cpu)
        output1 = module1.forward(t2)
        output2 = module2.forward(output1)
        loss = torch.add(output2, t1).sum()

        loss.backward()
        local_optim.step()

        # distributed version
        owner1 = "worker%d" % ((self.rank + 1) % self.world_size)
        owner2 = "worker%d" % ((self.rank + 2) % self.world_size)

        remote_module1 = rpc.remote(owner1, MyModule)
        remote_module2 = rpc.remote(owner2, MyModule)
        remote_param1 = remote_method(MyModule.get_w, remote_module1)
        remote_param2 = remote_method(MyModule.get_w, remote_module2)

        old_w1_remote = remote_param1.to_here()

        # sanity check: local and remote initial weights should match
        self.assertEqual(old_w1, remote_param1.to_here())
        self.assertEqual(old_w2, remote_param2.to_here())

        dist_optim = DistributedOptimizer(
            optim_cls, [remote_param1, remote_param2], *args, **kwargs
        )

        with dist_autograd.context() as context_id:
            g_cpu.manual_seed(0)
            t1 = torch.rand((3, 3), requires_grad=True, generator=g_cpu)
            t2 = torch.rand((3, 3), requires_grad=True, generator=g_cpu)
            output1 = rpc_async_method(MyModule.forward, remote_module1, t2)
            output2 = rpc_async_method(MyModule.forward, remote_module2, output1.wait())
            loss = torch.add(output2.wait(), t1)

            dist_autograd.backward(context_id, [loss.sum()])
            dist_optim.step(context_id)

            new_w1 = rpc_async_method(MyModule.get_w, remote_module1).wait()
            new_w2 = rpc_async_method(MyModule.get_w, remote_module2).wait()

            # ensure optimizer changed weights
            self.assertNotEqual(old_w1, new_w1)
            self.assertNotEqual(old_w2, new_w2)
            # ensure local equals remote
            self.assertEqual(new_w1, module1.get_w())
            self.assertEqual(new_w2, module2.get_w())

    @dist_init()
    def test_dist_optim(self):
        self._test_dist_optim_base(optim.Adagrad, lr=0.05)
        self._test_dist_optim_base(optim.Adam, lr=1e-2, amsgrad=True)
        self._test_dist_optim_base(optim.AdamW, lr=0.05, amsgrad=True)
        self._test_dist_optim_base(optim.SGD, lr=0.05)
        self._test_dist_optim_base(optim.SGD, lr=1e-3, momentum=1, weight_decay=1, nesterov=True)
        self._test_dist_optim_base(optim.Adadelta, rho=0.95)
        self._test_dist_optim_base(optim.RMSprop, lr=0.05)
        self._test_dist_optim_base(optim.Adamax, lr=0.05)
        self._test_dist_optim_base(optim.Rprop, lr=0.05)

    def _test_dist_optim_none_grads(self, optim_cls, *args, **kwargs):
        # local version
        module1 = MyModule()
        module2 = MyModule(requires_grad=False)
        params = [module1.get_w(), module2.get_w()]
        local_optim = optim_cls(params, *args, **kwargs)

        old_w1 = module1.w.clone().detach()
        old_w2 = module2.w.clone().detach()

        g_cpu = torch.Generator()
        g_cpu.manual_seed(0)
        t1 = torch.rand((3, 3), requires_grad=True, generator=g_cpu)
        t2 = torch.rand((3, 3), requires_grad=True, generator=g_cpu)
        output1 = module1.forward(t2)
        output2 = module2.forward(output1)
        loss = torch.add(output2, t1).sum()

        loss.backward()
        local_optim.step()

        # distributed version
        owner1 = "worker%d" % ((self.rank + 1) % self.world_size)
        owner2 = "worker%d" % ((self.rank + 2) % self.world_size)

        remote_module1 = rpc.remote(owner1, MyModule)
        remote_module2 = rpc.remote(owner2, MyModule, args=(False,))
        remote_param1 = remote_module1.remote().get_w()
        remote_param2 = remote_module2.remote().get_w()

        # sanity check: local and remote initial weights should match
        self.assertEqual(old_w1, remote_param1.to_here())
        self.assertEqual(old_w2, remote_param2.to_here())

        dist_optim = DistributedOptimizer(
            optim_cls, [remote_param1, remote_param2], *args, **kwargs
        )

        with dist_autograd.context() as context_id:
            g_cpu.manual_seed(0)
            t1 = torch.rand((3, 3), requires_grad=True, generator=g_cpu)
            t2 = torch.rand((3, 3), requires_grad=True, generator=g_cpu)
            output1 = remote_module1.rpc_async().forward(t2)
            output2 = remote_module2.rpc_async().forward(output1.wait())
            loss = torch.add(output2.wait(), t1)

            dist_autograd.backward(context_id, [loss.sum()])
            dist_optim.step(context_id)

            new_w1 = remote_module1.rpc_async().get_w().wait()
            new_w2 = remote_module2.rpc_async().get_w().wait()

            # ensure optimizer changed weights for w1
            self.assertNotEqual(old_w1, new_w1)

            # ensure optimizer not changed weights for w2
            self.assertEqual(old_w2, new_w2)
            # ensure local equals remote
            self.assertEqual(new_w1, module1.get_w())
            self.assertEqual(new_w2, module2.get_w())

    @dist_init()
    def test_dist_optim_none_grads(self):
        self._test_dist_optim_none_grads(optim.SGD, lr=0.05)
        self._test_dist_optim_none_grads(optim.RMSprop, lr=0.05)
        self._test_dist_optim_none_grads(optim.Rprop, lr=0.05)
        self._test_dist_optim_none_grads(optim.Adadelta, rho=0.95)