1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
|
import time
import io
from typing import Dict, List, Tuple, Any
import torch
import torch.distributed as dist
import torch.distributed.rpc as rpc
from torch import Tensor
from torch.autograd.profiler import record_function
from torch.distributed.rpc import RRef
from torch.distributed.rpc.internal import RPCExecMode, _build_rpc_profiling_key
from torch.futures import Future
from torch.testing._internal.common_utils import TemporaryFileName
from torch.testing._internal.dist_utils import (
dist_init,
get_function_event,
initialize_pg,
worker_name,
)
from torch.testing._internal.distributed.rpc.rpc_agent_test_fixture import (
RpcAgentTestFixture,
)
from torch.autograd.profiler_legacy import profile as _profile
def rref_isinstance(rref, cls_to_check):
return isinstance(rref.local_value(), cls_to_check)
def sleep(t):
time.sleep(t)
def rpc_return_rref(dst):
return rpc.remote(dst, torch.add, args=(torch.ones(2, 2), 1))
@torch.jit.script
def rref_local_value(rref: RRef[Tensor]) -> Tensor:
return rref.local_value()
@torch.jit.script
def list_create() -> List[int]:
global_list = [1, 2, 3]
return global_list
@torch.jit.script
def rref_list_mutate(rref: RRef[List[int]]) -> None:
rref.local_value().append(4)
rref.to_here().append(5)
rref.to_here(5.0).append(6)
def return_value(value: int) -> int:
return value
class RRefAPITest:
@dist_init
def test_rref_is_owner(self):
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
rref_var = rpc_return_rref(dst_worker_name)
@torch.jit.script
def rref_tensor_is_owner(rref_var: RRef[Tensor]) -> bool:
return rref_var.is_owner()
res = rref_tensor_is_owner(rref_var)
self.assertEqual(res, False)
@dist_init
def test_rref_local_value(self):
if self.rank != 0:
return
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
rref = rpc_return_rref(dst_worker_name)
with self.assertRaisesRegex(
RuntimeError, r"Can't call RRef.local_value\(\) on a non-owner RRef"
):
rref_local_value(rref)
ret = ret = rpc.rpc_sync(dst_worker_name, rref_local_value, (rref,))
self.assertEqual(ret, torch.add(torch.ones(2, 2), 1))
@dist_init
def test_local_rref_local_value(self):
if self.rank != 0:
return
dst_worker_name = worker_name(self.rank)
rref = rpc.remote(dst_worker_name, return_value, (5,), {})
ret = rref_local_value(rref)
self.assertEqual(ret, 5)
def _create_rref(self):
owner_rank = (self.rank + 2) % self.world_size
return rpc.remote(
worker_name(owner_rank), torch.add, args=(torch.zeros(2, 2), 1)
)
@dist_init
def test_user_rrefs_confirmed(self):
dst_rank = (self.rank + 1) % self.world_size
rref = self._create_rref()
ret = rpc.rpc_sync(
worker_name(dst_rank), script_check_rref_confirmed, args=(rref,)
)
self.assertEqual(ret, True)
@dist_init
def test_user_rrefs_confirmed_remote(self):
dst_rank = (self.rank + 1) % self.world_size
rref = self._create_rref()
ret_rref = rpc.remote(
worker_name(dst_rank), script_check_rref_confirmed, args=(rref,)
)
self.assertEqual(ret_rref.to_here(), True)
@dist_init
def test_rref_list_mutate(self):
dst = worker_name((self.rank + 1) % self.world_size)
list_rref = rpc.remote(dst, list_create)
rpc.rpc_sync(dst, rref_list_mutate, args=(list_rref,))
self.assertEqual(list_rref.to_here(), [1, 2, 3, 4, 5, 6])
@torch.jit.script
def no_arg():
return 0
@torch.jit.script
def one_arg(value):
return value + 1
@torch.jit.script
def script_add_ones(x):
return torch.add(x, torch.ones(1))
@torch.jit.script
def script_add_ones_with_record_function(x, block: str):
with record_function(block):
return torch.add(x, torch.ones(1))
@torch.jit.script
def record_function_on_caller_rpc_async(dst_worker_name: str, block: str) -> Tensor:
t: Tensor = torch.ones(1)
with record_function(block) as rf:
fut1 = rpc.rpc_async(dst_worker_name, script_add_ones, (t, ))
# Extra operator call to avoid de-duplication of the next async call
# see https://github.com/pytorch/pytorch/pull/62710#discussion_r694680279
zero = torch.zeros_like(t)
fut2 = rpc.rpc_async(dst_worker_name, script_add_ones, (t, ))
res = fut1.wait() + fut2.wait() + zero
return res
@torch.jit.script
def script_fork_wait_udf(tensor):
fut = torch.jit._fork(script_add_ones, tensor)
x = torch.jit._wait(fut)
return x
@torch.jit.script
def rref_to_here(rref_var: RRef[Tensor]) -> Tensor:
return rref_var.to_here()
@torch.jit.script
def return_rref(rref_var: RRef[Tensor]) -> RRef[Tensor]:
return rref_var
@torch.jit.script
def script_raise_func(value):
if value.numel() == 2:
raise ValueError("Expected error")
return value + 1
@torch.jit.script
def script_fork_wait_throw(invalue):
fut = torch.jit._fork(script_raise_func, invalue)
value = torch.jit._wait(fut)
return value
@torch.jit.script
def call_rpc_with_profiling(handle: Tensor, dst_worker_name: str) -> Tensor:
# Call rpc_async from within ScriptFunction and ensure that we can attach
# profiling callbacks. Note that handle here is a Tensor representation of
# RecordFunction.
fut = rpc.rpc_async(dst_worker_name, one_arg, (torch.tensor(1),))
torch.ops.profiler._call_end_callbacks_on_jit_fut(handle, fut)
ret = fut.wait()
return ret
@torch.jit.script
def call_rpc_torchscript_with_record_function(dst_worker_name: str, block: str) -> Tensor:
fut = rpc.rpc_async(dst_worker_name, script_add_ones_with_record_function, (torch.tensor(1), block))
return fut.wait()
@torch.jit.script
def call_fork_with_profiling(handle: Tensor) -> Tensor:
# Call fork from within ScriptFunction and ensure that we can attach profiling
# callbacks to the resulting future. Note that handle here is a Tensor
# representation of RecordFunction.
fut = torch.jit._fork(one_arg, torch.tensor(1))
torch.ops.profiler._call_end_callbacks_on_jit_fut(handle, fut)
ret = fut.wait()
return ret
class MyScriptModuleWithRRefs(torch.jit.ScriptModule):
def __init__(self, dst_worker):
super().__init__()
self.rrefs = []
for _ in range(4):
self.rrefs.append(rpc_return_rref(dst_worker))
@torch.jit.script_method
def forward(self) -> Tensor:
res_tensor = torch.ones(2, 2)
for rref in self.rrefs:
res_tensor += rref.to_here()
return res_tensor
@torch.jit.ignore
def rref_python_annotation(rref_var: RRef[Tensor]) -> RRef[Tensor]:
return rref_var
@torch.jit.script
def rref_script_annotation(rref_var: RRef[Tensor]) -> Tensor:
return rref_python_annotation(rref_var).to_here()
class RRefTypingTest:
@dist_init
def test_rref_as_arg_and_return(self):
n = self.rank + 1
dst_rank = n % self.world_size
local_ret = one_arg(torch.ones(2, 2))
# create rref on current rank
rref = rpc.remote(worker_name(self.rank), one_arg, args=(torch.ones(2, 2),))
# pass rref to another user in rpc call
ret = rpc.rpc_sync(worker_name(dst_rank), rref_to_here, args=(rref,))
self.assertEqual(ret, local_ret)
# return rref in rpc call
rref1 = rpc.rpc_sync(worker_name(dst_rank), return_rref, args=(rref,))
self.assertEqual(rref1.to_here(), local_ret)
# pass rref to another user in remote call
rref2 = rpc.remote(worker_name(dst_rank), rref_to_here, args=(rref,))
self.assertEqual(rref2.to_here(), local_ret)
# return rref in remote call
rref3 = rpc.remote(worker_name(dst_rank), return_rref, args=(rref,))
self.assertEqual(rref3.to_here().to_here(), local_ret)
@dist_init
def test_my_script_module_with_rrefs(self):
n = self.rank + 1
dst_rank = n % self.world_size
module_with_rrefs = MyScriptModuleWithRRefs(worker_name(dst_rank))
res = module_with_rrefs()
self.assertEqual(res, torch.ones(2, 2) * 9)
@dist_init
def test_rref_python_annotation(self):
n = self.rank + 1
dst_rank = n % self.world_size
rref_var = rpc_return_rref(worker_name(dst_rank))
res = rref_script_annotation(rref_var)
self.assertEqual(res, torch.ones(2, 2) + 1)
class FutureTypingTest:
@dist_init
def test_future_passed_between_python_and_jit(self):
dst_rank = (self.rank + 1) % self.world_size
inputs = (torch.tensor([1, 1]), torch.tensor([2, 2]))
ret_fut = rpc.rpc_async(worker_name(dst_rank), two_args_two_kwargs, args=inputs)
expected_res = torch.tensor([10, 10])
@torch.jit.script
def future_wait_in_script(fut: Future[Tensor]) -> Tensor:
return fut.wait()
self.assertEqual(future_wait_in_script(ret_fut), expected_res)
@torch.jit.script
def future_return_to_python(
dst_rank: int, inputs: Tuple[Tensor, Tensor]
) -> Future[Tensor]:
return rpc.rpc_async(
"worker{}".format(dst_rank), two_args_two_kwargs, inputs
)
fut_res = future_return_to_python(dst_rank, inputs)
self.assertEqual(fut_res.wait(), expected_res)
@dist_init
def test_future_python_annotation(self):
if self.rank != 0:
return
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
input_0 = torch.ones(2, 2)
input_1 = 1
expected_res = torch.add(input_0, input_1)
@torch.jit.ignore
def python_return_future() -> Future[Tensor]:
fut = rpc.rpc_async(dst_worker_name, torch.add, (input_0, input_1), {})
return fut
@torch.jit.script
def script_use_future() -> Tensor:
fut = python_return_future()
return fut.wait()
res = script_use_future()
self.assertEqual(res, expected_res)
@torch.jit.script
class MyScriptClass:
def __init__(self, a: int):
self.a = a
def get_value(self) -> int:
return self.a
@torch.jit.interface
class MyModuleInterface(torch.nn.Module):
def forward(self) -> Tensor:
# pyre-ignore[7]: Pyre and torch.jit.interface don't mix well
pass
class MyScriptModule(torch.jit.ScriptModule):
def __init__(self, rank):
super().__init__()
self.a = torch.ones(rank)
@torch.jit.script_method
def forward(self) -> Tensor:
return self.a
@torch.jit.script_method
def custom_func(self) -> Tensor:
return self.a
def owner_create_rref_my_script_class(a):
return rpc.RRef(MyScriptClass(a))
def owner_create_rref_my_script_module(a):
return rpc.RRef(MyScriptModule(a), type_hint=MyModuleInterface)
@torch.jit.script
def script_rref_get_value_my_script_class(rref: RRef[MyScriptClass]) -> int:
return rref.to_here().get_value()
@torch.jit.script
def script_rref_run_forward_my_script_module(rref: RRef[MyModuleInterface]) -> Tensor:
return rref.to_here().forward()
class LocalRRefTest:
@dist_init
def test_create_local_script_class_rref_in_py(self):
if self.rank != 0:
return
# Create a local RRef<MyScriptClass>.
rref_script_class = rpc.RRef(MyScriptClass(self.rank))
ret = rref_script_class.to_here().get_value()
self.assertEqual(ret, self.rank)
@dist_init
def test_create_local_script_module_rref_in_py(self):
if self.rank != 0:
return
# Create a local RRef<MyModuleInterface>.
rref_script_module = rpc.RRef(MyScriptModule(self.rank), MyModuleInterface)
ret = rref_script_module.to_here().forward()
self.assertEqual(ret, torch.ones(self.rank))
# Create a local RRef<MyModuleInterface> without type hint.
with self.assertRaisesRegex(
RuntimeError,
(
"The RRef being created contains a ScriptModule, "
"must provide its ModuleInterface type hint."
),
):
rref_script_module = rpc.RRef(MyScriptModule(self.rank))
@dist_init
def test_return_local_script_class_rref_in_py_and_use_in_script(self):
if self.rank != 0:
return
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
# Create a local RRef<MyScriptClass> remotely in Python.
rref = rpc.rpc_sync(
dst_worker_name, owner_create_rref_my_script_class, args=(self.rank,)
)
def use_rref_on_owner(rref: RRef[MyScriptClass]) -> int:
args = (rref,)
kwargs: Dict[str, Any] = {}
fut = rpc.rpc_async(
rref.owner(), script_rref_get_value_my_script_class, args, kwargs
)
ret = fut.wait()
return ret
# Use RRef<MyScriptClass> in local Python RPC and remote Script run.
ret = use_rref_on_owner(rref)
self.assertEqual(ret, self.rank)
# Use RRef<MyScriptClass> in local Script RPC and remote Script run.
use_rref_on_owner_script = torch.jit.script(use_rref_on_owner)
ret = use_rref_on_owner_script(rref)
self.assertEqual(ret, self.rank)
@dist_init
def test_return_local_script_module_rref_in_py_and_use_in_script(self):
if self.rank != 0:
return
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
# Create a local RRef<MyModuleInterface> remotely in Python.
rref = rpc.rpc_sync(
dst_worker_name, owner_create_rref_my_script_module, args=(self.rank,)
)
def use_rref_on_owner(rref: RRef[MyModuleInterface]) -> Tensor:
args = (rref,)
kwargs: Dict[str, Any] = {}
fut = rpc.rpc_async(
rref.owner_name(),
script_rref_run_forward_my_script_module,
args,
kwargs,
)
ret = fut.wait()
return ret
# Use RRef<MyScriptClass> in local Python RPC and remote Script run.
ret = use_rref_on_owner(rref)
self.assertEqual(ret, torch.ones(self.rank))
# Use RRef<MyScriptClass> in local Script RPC and remote Script run.
use_rref_on_owner_script = torch.jit.script(use_rref_on_owner)
ret = use_rref_on_owner_script(rref)
self.assertEqual(ret, torch.ones(self.rank))
def python_function():
return 0
@torch.jit.script
def two_args_two_kwargs(
first_arg,
second_arg,
first_kwarg=torch.tensor([3, 3]),
second_kwarg=torch.tensor([4, 4]),
):
return first_arg + second_arg + first_kwarg + second_kwarg
@torch.jit.script
def assorted_types_args_kwargs(
tensor_arg: Tensor, # noqa: E999
str_arg: str,
int_arg: int,
tensor_kwarg: Tensor = torch.tensor([2, 2]),
str_kwarg: str = "str_kwarg",
int_kwarg: int = 2,
):
return tensor_arg + tensor_kwarg, str_arg + str_kwarg, int_arg + int_kwarg
@torch.jit.script
def raise_script():
raise RuntimeError("Expected error")
@torch.jit.script
def script_rpc_async_call(
dst_worker_name: str, args: Tuple[Tensor, Tensor], kwargs: Dict[str, Tensor]
):
fut = rpc.rpc_async(dst_worker_name, two_args_two_kwargs, args, kwargs)
ret = fut.wait()
return ret
@torch.jit.script
def script_rpc_sync_call(
dst_worker_name: str, args: Tuple[Tensor, Tensor], kwargs: Dict[str, Tensor]
):
res = rpc.rpc_sync(dst_worker_name, two_args_two_kwargs, args, kwargs)
return res
@torch.jit.script
def script_rpc_remote_call(
dst_worker_name: str, args: Tuple[Tensor, Tensor], kwargs: Dict[str, Tensor]
):
rref_res = rpc.remote(dst_worker_name, two_args_two_kwargs, args, kwargs)
return rref_res.to_here()
class JitRpcOpTest:
# Call functions remotely from Script.
@dist_init
def test_all_kwargs_are_populated_by_defaults(self):
if self.rank != 0:
return
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
args = (torch.tensor([1, 1]), torch.tensor([2, 2]))
kwargs = {}
for script_op in [script_rpc_async_call, script_rpc_sync_call, script_rpc_remote_call]:
ret = script_op(
dst_worker_name, args, kwargs
)
self.assertEqual(ret, torch.tensor([10, 10]))
@dist_init
def test_some_kwargs_are_populated_by_defaults(self):
if self.rank != 0:
return
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
args = (torch.tensor([1, 1]), torch.tensor([2, 2]))
kwargs = {"first_kwarg": torch.tensor([2, 2])}
for script_op in [script_rpc_async_call, script_rpc_sync_call, script_rpc_remote_call]:
ret = script_op(
dst_worker_name, args, kwargs
)
self.assertEqual(ret, torch.tensor([9, 9]))
@dist_init
def test_no_kwargs_are_populated_by_defaults(self):
if self.rank != 0:
return
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
args = (torch.tensor([1, 1]), torch.tensor([2, 2]))
kwargs = {
"first_kwarg": torch.tensor([2, 2]),
"second_kwarg": torch.tensor([3, 3]),
}
for script_op in [script_rpc_async_call, script_rpc_sync_call, script_rpc_remote_call]:
ret = script_op(
dst_worker_name, args, kwargs
)
self.assertEqual(ret, torch.tensor([8, 8]))
@dist_init
def test_args_and_kwargs_contain_different_types(self):
if self.rank != 0:
return
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
@torch.jit.script
def script_rpc_async_call_with_assorted_types(
dst_worker_name: str,
):
args = (torch.tensor([1, 1]), "str_arg", 1)
# Must annotate the value type as `Any`, because JIT type inference
# does not support multiple types when defining a Dict.
# The error JIT gives is,
# "Dict values must contain only a single type, "
# "expected: Tensor but found str instead."
kwargs: Dict[str, Any] = {
"tensor_kwarg": torch.tensor([3, 3]),
"str_kwarg": "_str_kwarg",
"int_kwarg": 3,
}
fut = rpc.rpc_async(
dst_worker_name, assorted_types_args_kwargs, args, kwargs
)
ret = fut.wait()
return ret
ret = script_rpc_async_call_with_assorted_types(
dst_worker_name
)
self.assertEqual(ret, (torch.tensor([4, 4]), "str_arg_str_kwarg", 4))
@dist_init
def test_kwargs_not_passed(self):
if self.rank != 0:
return
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
@torch.jit.script
def script_rpc_async_call_without_kwargs_passed(
dst_worker_name: str,
):
args = ()
fut = rpc.rpc_async(dst_worker_name, no_arg, args)
ret = fut.wait()
return ret
ret = script_rpc_async_call_without_kwargs_passed(
dst_worker_name
)
self.assertEqual(ret, 0)
@dist_init
def test_args_kwargs_are_neither_passed(self):
if self.rank != 0:
return
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
@torch.jit.script
def script_rpc_async_call_without_args_kwargs_passed(
dst_worker_name: str,
):
fut = rpc.rpc_async(dst_worker_name, no_arg)
ret = fut.wait()
return ret
ret = script_rpc_async_call_without_args_kwargs_passed(
dst_worker_name
)
self.assertEqual(ret, 0)
@dist_init
def test_less_than_needed_args_are_specified(self):
if self.rank != 0:
return
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
# Notice, args matching happens during scripting.
with self.assertRaisesRegex(RuntimeError, "Argument second_arg not provided"):
@torch.jit.script
def script_rpc_async_call_with_less_args(
dst_worker_name: str, # noqa: E999
):
args = (torch.tensor([1, 1]),)
kwargs = {}
fut = rpc.rpc_async(dst_worker_name, two_args_two_kwargs, args, kwargs)
ret = fut.wait()
return ret
@dist_init
def test_more_than_needed_args_are_specified(self):
if self.rank != 0:
return
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
# Notice, args matching happens during scripting.
with self.assertRaisesRegex(
RuntimeError,
"Expected at most 4 arguments but found 5 positional arguments",
):
@torch.jit.script
def script_rpc_async_call_with_more_args(
dst_worker_name: str,
):
args = (
torch.tensor([1, 1]),
torch.tensor([2, 2]),
torch.tensor([3, 3]),
torch.tensor([4, 4]),
torch.tensor([5, 5]),
)
kwargs = {}
fut = rpc.rpc_async(dst_worker_name, two_args_two_kwargs, args, kwargs)
ret = fut.wait()
return ret
@dist_init
def test_unexepected_kwarg_is_specified(self):
if self.rank != 0:
return
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
# Notice, kwargs matching happens during execution.
@torch.jit.script
def script_rpc_async_call_with_unexpected_kwarg(
dst_worker_name: str, # noqa: E999
):
args = (torch.tensor([1, 1]), torch.tensor([2, 2]))
kwargs = {"third_kwarg": torch.tensor([1, 1])}
fut = rpc.rpc_async(dst_worker_name, two_args_two_kwargs, args, kwargs)
ret = fut.wait()
return ret
with self.assertRaisesRegex(
RuntimeError, "Unknown keyword argument 'third_kwarg'"
):
ret = script_rpc_async_call_with_unexpected_kwarg(
dst_worker_name
)
self.assertEqual(ret, 0)
@dist_init
def test_call_python_function_remotely_from_script_not_supported(self):
if self.rank != 0:
return
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
@torch.jit.script
def rpc_async_call_remote_py_function_in_torchscript(dst_worker_name: str):
args = ()
kwargs = {}
fut = rpc.rpc_async(dst_worker_name, python_function, args, kwargs)
ret = fut.wait()
return ret
with self.assertRaisesRegex(
RuntimeError, "attempted to get undefined function"
):
ret = rpc_async_call_remote_py_function_in_torchscript(dst_worker_name)
self.assertEqual(ret, 0)
@dist_init
def test_call_script_function_that_raises_remotely_from_script(self):
if self.rank != 0:
return
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
# Notice, TorchScript always translates(emits) Python `raise` statement,
# as the exception message string, "Exception",
# no matter what exception type and excetpion message are in the statement,
@torch.jit.script
def rpc_async_call_remote_raising_torchscript_in_torchscript(
dst_worker_name: str,
):
args = ()
kwargs = {}
fut = rpc.rpc_async(dst_worker_name, raise_script, args, kwargs)
ret = fut.wait()
return ret
with self.assertRaisesRegex(RuntimeError, "Expected error"):
ret = rpc_async_call_remote_raising_torchscript_in_torchscript(
dst_worker_name
)
self.assertEqual(ret, 0)
@dist_init
def test_call_script_function_that_not_exists_remotely_from_script(self):
if self.rank != 0:
return
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
@torch.jit.script
def nonexisting_script():
return 0
@torch.jit.script
def rpc_async_call_remote_nonexisting_torchscript_in_torchscript(
dst_worker_name: str,
):
args = ()
kwargs = {}
fut = rpc.rpc_async(dst_worker_name, nonexisting_script, args, kwargs)
ret = fut.wait()
return ret
with self.assertRaisesRegex(
RuntimeError, "attempted to get undefined function nonexisting_script"
):
ret = rpc_async_call_remote_nonexisting_torchscript_in_torchscript(
dst_worker_name
)
self.assertEqual(ret, 0)
@torch.jit.ignore
def my_script_module_init(rank: int) -> MyModuleInterface:
return MyScriptModule(rank)
@torch.jit.script
def construct_my_script_module(rank: int) -> MyModuleInterface:
return my_script_module_init(rank)
@torch.jit.script
def run_ref_script_module(
ref_script_module: RRef[MyModuleInterface], t: Tensor
) -> Tensor:
module = ref_script_module.to_here()
return module.forward() + t
@torch.jit.script
def script_check_rref_confirmed(rref: RRef[Tensor]) -> bool:
return rref.confirmed_by_owner()
@torch.jit.script
def save_rref(rref_var: RRef[Tensor], fname: str) -> None:
torch.save(rref_var, fname)
@torch.jit.script
def script_add(x: Tensor, y: Tensor) -> Tensor:
return x + y
@rpc.functions.async_execution
@torch.jit.script
def async_add(to: str, x: Tensor, y: Tensor) -> Future[Tensor]:
return rpc.rpc_async(to, script_add, (x, y))
@rpc.functions.async_execution
@torch.jit.script
def async_wrong_type() -> Tensor:
return torch.zeros(2)
def load_script_module_with_pickled_rref(pickled_script_module):
f = io.BytesIO(pickled_script_module)
m = torch.jit.load(f)
return m()
class JitRpcTest(
RRefAPITest,
RRefTypingTest,
LocalRRefTest,
JitRpcOpTest,
FutureTypingTest,
RpcAgentTestFixture,
):
@dist_init
def test_torchscript_function(self):
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
local_ret = one_arg(torch.ones(2, 2))
ret = rpc.rpc_sync(dst_worker_name, one_arg, args=(torch.ones(2, 2),))
self.assertEqual(ret, local_ret)
rref = rpc.remote(dst_worker_name, one_arg, args=(torch.ones(2, 2),))
self.assertEqual(rref.to_here(), local_ret)
# create rref to itself
local_rref = rpc.remote(
worker_name(self.rank), one_arg, args=(torch.ones(2, 2),)
)
self.assertEqual(local_rref.to_here(), local_ret)
@dist_init
def test_torchscript_function_exception(self):
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
with self.assertRaisesRegex(RuntimeError, r"one_arg\(\) expected at most"):
ret = rpc.rpc_sync(dst_worker_name, one_arg, args=(10, 20))
with self.assertRaisesRegex(RuntimeError, r"one_arg\(\) expected at most"):
rref = rpc.remote(dst_worker_name, one_arg, args=(10, 20))
@dist_init
def test_torchscript_functions_not_supported(self):
dst_worker_name = worker_name((self.rank + 1) % self.world_size)
my_local_script_module = MyScriptModule(self.rank)
# It is not thread safe to instantiate MyScriptModule in multiple threads,
# wait for local MyScriptModule instantiation to finish,
# otherwise it could instantiate MyScriptModule in parallel with
# server thread in the below
initialize_pg(self.file_init_method, self.rank, self.world_size)
dist.barrier()
# rpc_sync still accepts script class and run it in
# the same code path as python call.
ret = rpc.rpc_sync(dst_worker_name, MyScriptClass, args=(self.rank,))
# rpc_sync does not accept script module method.
# Python 3.5 and Python 3.6 throw different error message, the only
# common word can be greped is "pickle".
with self.assertRaisesRegex(TypeError, "pickle"):
ret = rpc.rpc_async(
dst_worker_name, my_local_script_module.forward, args=()
)
@dist_init
def test_remote_script_module(self):
# TODO, need more investigation
# there is rref leak when shutting down, suspect it is because
# ref as arg is passed to pybind boundary, and the ref is not garbage
# collected by python when calling shutdown()
import torch.distributed.rpc.api as api
api._ignore_rref_leak = True
local_ret = torch.ones(self.rank) + torch.ones(self.rank)
n = self.rank + 1
dst_rank = n % self.world_size
remote_ref = rpc.remote(
worker_name(dst_rank), construct_my_script_module, args=(self.rank,)
)
# pass rref arg to owner
ret = rpc.rpc_sync(
worker_name(dst_rank),
run_ref_script_module,
args=(remote_ref, torch.ones(self.rank)),
)
self.assertEqual(ret, local_ret)
# pass rref arg to self/user
with self.assertRaisesRegex(
RuntimeError,
"is an RRef to a ScriptModule. It can't be sent through RPC from owner,",
):
ret = rpc.rpc_sync(
worker_name(self.rank),
run_ref_script_module,
args=(remote_ref, torch.ones(self.rank)),
)
@dist_init
def test_create_script_module_on_remote(self):
dst_name = worker_name((self.rank + 1) % self.world_size)
# Construct on remote end with rpc_sync
created_script_module = rpc.rpc_sync(
dst_name, MyScriptModule, args=(self.rank,)
)
# Forward should output a ones tensor of self.rank.
self.assertTrue(isinstance(created_script_module, torch.jit.ScriptModule))
rank_ones_tensor = created_script_module()
self.assertEqual(torch.ones(self.rank), rank_ones_tensor)
# Construct ScriptModule with rpc.remote.
remote_script_module = rpc.remote(dst_name, MyScriptModule, args=(self.rank,))
# Verify it is an instance of ScriptModule on remote end.
remote_end_is_script = rpc.rpc_sync(
remote_script_module.owner(),
rref_isinstance,
args=(remote_script_module, torch.jit.ScriptModule),
)
self.assertTrue(remote_end_is_script)
# Run forward pass remotely.
remote_forward_output = remote_script_module.rpc_sync().forward()
self.assertEqual(remote_forward_output, torch.ones(self.rank))
# Run function defined on ScriptModule remotely.
remote_func_output = remote_script_module.rpc_sync().custom_func()
self.assertEqual(remote_func_output, torch.ones(self.rank))
# Ensure we can transfer ScriptModule RRef to this rank and run
# forward pass.
local_script_module = remote_script_module.to_here()
self.assertTrue(isinstance(local_script_module, torch.jit.ScriptModule))
rank_ones_tensor = local_script_module()
self.assertEqual(rank_ones_tensor, torch.ones(self.rank))
local_script_func_output = local_script_module.custom_func()
self.assertEqual(local_script_func_output, torch.ones(self.rank))
@dist_init
def test_load_script_module_with_pickled_rref(self):
dst_name = worker_name((self.rank + 1) % self.world_size)
m1 = MyScriptModuleWithRRefs(dst_name)
m2 = MyScriptModuleWithRRefs(dst_name)
f = io.BytesIO()
rpc._enable_jit_rref_pickle()
torch.jit.save(m1, f)
rpc._disable_jit_rref_pickle()
out1 = rpc.rpc_sync(
dst_name,
load_script_module_with_pickled_rref,
args=(f.getvalue(),)
)
out2 = m2()
self.assertEqual(out1, out2)
@dist_init
def test_rref_jit_pickle_not_supported(self):
n = self.rank + 1
dst_rank = n % self.world_size
rref_var = rpc_return_rref(worker_name(dst_rank))
with TemporaryFileName() as fname:
with self.assertRaisesRegex(
RuntimeError, "RRef jit pickling is only allowed inside RPC calls"
):
save_rref(rref_var, fname)
@dist_init
def test_remote_script_throw(self):
rref = rpc.remote(
worker_name((self.rank + 1) % self.world_size),
script_raise_func,
args=(torch.ones(2),),
)
with self.assertRaisesRegex(Exception, ".*Expected error.*"):
rref.to_here()
@dist_init
def test_remote_script_udf(self):
rref = rpc.remote(
worker_name((self.rank + 1) % self.world_size),
script_fork_wait_udf,
args=(torch.ones(2),),
)
self.assertEqual(rref.to_here(), torch.ones(2) * 2)
@dist_init
def test_async_script_udf(self):
future = rpc.rpc_async(
worker_name((self.rank + 1) % self.world_size),
script_fork_wait_udf,
args=(torch.ones(2),),
)
self.assertEqual(future.wait(), torch.ones(2) * 2)
@dist_init
def test_callback_simple(self):
def callback(fut):
return fut.wait() + 1
future = rpc.rpc_async(
worker_name((self.rank + 1) % self.world_size),
script_fork_wait_udf,
args=(torch.ones(2),),
).then(callback)
self.assertEqual(future.wait(), torch.ones(2) * 2 + 1)
@dist_init
def test_callback_chain(self):
n = self.rank + 1
dst = worker_name(n % self.world_size)
def callback(fut):
return fut.wait() + 1
fut = rpc.rpc_async(
worker_name(n % self.world_size), one_arg, args=(torch.ones(n, n),)
)
num_cbs = 20
for _ in range(num_cbs):
fut = fut.then(callback)
self.assertEqual(fut.wait(), torch.ones(n, n) + 1 + num_cbs)
@dist_init
def test_add_done_callback(self):
callback_called = None
def callback(fut):
nonlocal callback_called
callback_called = fut.wait() * 2
future = rpc.rpc_async(
worker_name((self.rank + 1) % self.world_size),
script_fork_wait_udf,
args=(torch.ones(2),),
)
future.add_done_callback(callback)
future_then = future.then(lambda _: True)
self.assertEqual(future.wait(), torch.ones(2) * 2)
# We have no guarantee that the add_done_callback fn will execute before the test finishes.
# Adding a 'then' callback that runs afterwards to guarantee we wait for the first callback
future_then.wait()
self.assertEqual(callback_called, torch.ones(2) * 4)
@dist_init
def test_async_script_throw(self):
future = rpc.rpc_async(
worker_name((self.rank + 1) % self.world_size),
script_fork_wait_throw,
args=(torch.ones(2),),
)
with self.assertRaisesRegex(Exception, ".*Expected error.*"):
future.wait()
@dist_init
def test_callback_with_exception(self):
def callback(fut):
with self.assertRaisesRegex(Exception, ".*Expected error.*"):
fut.wait()
raise RuntimeError("Another expected error")
future = rpc.rpc_async(
worker_name((self.rank + 1) % self.world_size),
script_fork_wait_throw,
args=(torch.ones(2),),
).then(callback)
with self.assertRaisesRegex(RuntimeError, "Another expected error"):
future.wait()
@dist_init
def test_call_rpc_with_profiling(self):
# Ensures that we can call torch.ops.profiler._call_end_callbacks_on_jit_fut on a jit
# future from within a script function that calls rpc_async
if self.rank == 0:
with _profile() as prof:
prof_key = _build_rpc_profiling_key(
RPCExecMode.ASYNC,
torch._jit_internal._qualified_name(one_arg),
"worker0",
"worker1",
)
with torch.autograd.profiler.record_function(prof_key) as rf:
ret = call_rpc_with_profiling(rf.handle, "worker1")
# TODO: Can't get a reliable time for this profiling event since
# it's hard to estimate the execution time on the remote end for non-UDFs.
# This can be resolved by https://github.com/pytorch/pytorch/issues/36272.
# After that, this test should be modified to validate the function time.
events = prof.function_events
function_event = get_function_event(events, prof_key)
self.assertTrue(torch._jit_internal._qualified_name(one_arg) in function_event.name)
@dist_init
def test_rpc_async_jit_profiled(self):
# Tests that rpc_async calls made from within a TorchScript function are
# profiled.
if self.rank == 0:
dst_rank = (self.rank + 1) % self.world_size
dst_worker_name = worker_name(dst_rank)
args = (torch.tensor([1, 1]), torch.tensor([2, 2]))
kwargs = {}
with _profile() as prof:
script_rpc_async_call(
dst_worker_name, args, kwargs
)
# Ensure rpc_async call is profiled
function_events = prof.function_events
qual_name = torch._jit_internal._qualified_name(two_args_two_kwargs)
rpc_async_jit_event = [
event
for event in function_events
if qual_name in event.name and event.node_id == self.rank
]
self.assertEqual(len(rpc_async_jit_event), 1)
rpc_async_jit_event = rpc_async_jit_event[0]
profiled_name = _build_rpc_profiling_key(
RPCExecMode.ASYNC_JIT,
qual_name,
worker_name(self.rank),
dst_worker_name,
)
self.assertEqual(profiled_name, rpc_async_jit_event.name)
remote_events = [event for event in function_events if event.is_remote]
# All remote events should have taken place on dst_rank
remote_event_node_ids = {
remote_event.node_id for remote_event in remote_events
}
self.assertEqual(remote_event_node_ids, {dst_rank})
# script_rpc_async_call invokes add operator
# so we should see this as a remote event.
remote_add = [
remote_event
for remote_event in remote_events
if "aten::add" in remote_event.name
][0]
remote_add_profiled_name = f"{profiled_name}#remote_op: aten::add"
self.assertEqual(remote_add.name, remote_add_profiled_name)
@dist_init
def test_record_function_on_caller_rpc_async(self):
if self.rank == 0:
dst_rank = (self.rank + 1) % self.world_size
dst_worker_name = worker_name(dst_rank)
block_scope = "foo"
with _profile() as prof:
# Runs 2 rpc_async calls within JIT under record_function.
record_function_on_caller_rpc_async(dst_worker_name, block_scope)
# Ensure record_function event is profiled.
function_events = prof.function_events
record_function_scope_event = [
event for event in function_events if event.name == block_scope
]
self.assertEqual(1, len(record_function_scope_event))
record_function_scope_event = record_function_scope_event[0]
# Ensure RPC future is profiled.
expected_key = _build_rpc_profiling_key(
RPCExecMode.ASYNC_JIT,
torch._jit_internal._qualified_name(script_add_ones),
worker_name(self.rank),
dst_worker_name,
)
jit_rpc_events = [
event for event in function_events if event.name == expected_key
]
self.assertEqual(2, len(jit_rpc_events))
# Validate that the record_function scope time is greater than both
# of the individual RPC async call times. The reason it is not necessarily
# greater than the sum is because the two can execute in parallel.
for jit_rpc_event in jit_rpc_events:
self.assertTrue(
record_function_scope_event.cpu_time_total
> jit_rpc_event.cpu_time_total
)
@dist_init
def test_rpc_torchscript_record_function(self):
# tests that torchscript functions can be profiled using with
# record_function(...) over RPC.
REMOTE_OP_STR = "#remote_op: "
if self.rank == 0:
dst_rank = (self.rank + 1) % self.world_size
dst_worker_name = worker_name(dst_rank)
block_scope = "foo"
with _profile() as prof:
call_rpc_torchscript_with_record_function(dst_worker_name, block_scope)
# Need to call below to populate CPU children.
prof.key_averages()
function_events = prof.function_events
expected_key = (
_build_rpc_profiling_key(
RPCExecMode.ASYNC_JIT,
torch._jit_internal._qualified_name(
script_add_ones_with_record_function
),
worker_name(self.rank),
dst_worker_name,
)
+ REMOTE_OP_STR
+ block_scope
)
remote_record_function_event = [
evt for evt in function_events if evt.name == expected_key
][0]
self.assertTrue(block_scope in remote_record_function_event.name)
remote_children = remote_record_function_event.cpu_children
self.assertTrue("aten::add" in child.name for child in remote_children)
def test_record_function_jit_end_callbacks_with_fork(self):
# Ensures that we can call rf._call_end_callbacks_on_future on a jit
# future in python eager mode with torch.jit.fork
sleep_interval = 1
with _profile() as prof:
with torch.autograd.profiler.record_function("foo") as rf:
fut = torch.jit._fork(sleep, sleep_interval)
rf._call_end_callbacks_on_future(fut)
fut.wait()
function_events = prof.function_events
sleep_event = get_function_event(function_events, "foo")
self.assertEqual(sleep_event.name, "foo")
# Validate that callbacks were fired at the right time by checking the
# profiling event cpu time
self.assertGreaterAlmostEqual(sleep_event.cpu_time * 1e-6, sleep_interval)
def test_call_fork_in_jit_with_profiling(self):
# Ensures that we can call torch.ops.profiler._call_end_callbacks_on_jit_fut on a jit
# future from within a script function with torch.jit.fork
with _profile() as prof:
with torch.autograd.profiler.record_function("foo") as rf:
ret = call_fork_with_profiling(rf.handle)
events = prof.function_events
function_event = get_function_event(events, "foo")
self.assertEqual(function_event.name, "foo")
@dist_init
def test_async_function_simple(self):
dst1 = worker_name((self.rank + 1) % self.world_size)
dst2 = worker_name((self.rank + 2) % self.world_size)
ret = rpc.rpc_sync(
dst1, async_add, args=(dst2, torch.ones(2, 2), torch.ones(2, 2))
)
self.assertEqual(ret, torch.ones(2, 2) + 1)
@dist_init
def test_async_function_wrong_return_type(self):
with self.assertRaisesRegex(
RuntimeError,
"Async functions must return an IValue of Future type, but got Tensor",
):
rpc.rpc_sync(
worker_name((self.rank + 1) % self.world_size), async_wrong_type
)
@dist_init
def test_async_function_wrong_decorator_order(self):
# @torch.jit.script complains about undefined value rpc. Error is shown
# below. The reason for not checking error string is to avoid making
# JIT error handling code depend on RPC tests, as we don't have any
# restrictions on the error message here.
#
# RuntimeError:
# undefined value rpc:
# def async_wrong_decorator_order(to, x, y):
# # type: (str, Tensor, Tensor) -> Future[Tensor]
# return rpc.rpc_async(to, script_add, (x, y))
# ~~~ <--- HERE
with self.assertRaises(RuntimeError):
@torch.jit.script
@rpc.functions.async_execution
def async_wrong_decorator_order(
to: str, x: Tensor, y: Tensor
) -> Future[Tensor]:
return rpc.rpc_async(to, script_add, (x, y))
@dist_init
def test_async_function_remote(self):
dst1 = worker_name((self.rank + 1) % self.world_size)
dst2 = worker_name((self.rank + 2) % self.world_size)
rref = rpc.remote(
dst1, async_add, args=(dst2, torch.ones(2, 2), torch.ones(2, 2))
)
self.assertEqual(rref.to_here(), torch.ones(2, 2) + 1)
@dist_init
def test_async_function_remote_multi(self):
dst1 = worker_name((self.rank + 1) % self.world_size)
dst2 = worker_name((self.rank + 2) % self.world_size)
num = 20
rrefs = []
for i in range(num):
rrefs.append(
rpc.remote(
dst1, async_add, args=(dst2, torch.ones(2, 2), torch.ones(2, 2) * i)
)
)
for i in range(num):
self.assertEqual(rrefs[i].to_here(), torch.ones(2, 2) + i)
@dist_init
def test_async_function_wrong_return_type_remote(self):
rref = rpc.remote(
worker_name((self.rank + 1) % self.world_size), async_wrong_type
)
with self.assertRaisesRegex(
RuntimeError,
"Async functions must return an IValue of Future type, but got Tensor",
):
rref.to_here()
|