1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
|
# Torch
from torch.jit.annotations import BroadcastingList2, BroadcastingList3 # noqa: F401
import torch.nn.functional as F
import torch
import torch.cuda
import torch.jit
import torch.jit._logging
import torch.jit.frontend
from torch.testing._internal.common_nn import module_tests, new_module_tests
from torch.testing._internal.common_utils import is_iterable_of_tensors
import collections
from copy import deepcopy
from typing import Any, Dict, List, Union
import math # noqa: F401
# Testing utils
from torch._six import inf
# TODO: include files like this should not set the default dtype
torch.set_default_dtype(torch.double)
L = 20
M = 10
S = 5
def unpack_variables(args):
if isinstance(args, tuple):
return tuple(unpack_variables(elem) for elem in args)
else:
return args
class dont_convert(tuple):
pass
non_differentiable = collections.namedtuple('non_differentiable', ['tensor'])
def create_input(call_args, requires_grad=True, non_contiguous=False, call_kwargs=None, dtype=torch.double, device=None):
if not isinstance(call_args, tuple):
call_args = (call_args,)
def map_arg(arg):
def maybe_non_contig(tensor):
if not non_contiguous or tensor.numel() < 2:
return tensor.clone()
return noncontiguous_like(tensor)
def conjugate(tensor):
return tensor.conj()
if isinstance(arg, torch.Size) or isinstance(arg, dont_convert):
return arg
elif isinstance(arg, tuple) and len(arg) == 0:
var = conjugate(torch.randn((), dtype=dtype, device=device))
var.requires_grad = requires_grad
return var
elif isinstance(arg, tuple) and not isinstance(arg[0], torch.Tensor):
return conjugate(maybe_non_contig(torch.randn(*arg, dtype=dtype, device=device))).requires_grad_(requires_grad)
# double check casting
elif isinstance(arg, non_differentiable):
if isinstance(arg.tensor, torch.Tensor):
if arg.tensor.dtype == torch.float:
return maybe_non_contig(arg.tensor.to(dtype=torch.double, device=device))
if arg.tensor.dtype == torch.cfloat:
return conjugate(maybe_non_contig(arg.tensor.to(dtype=torch.cdouble, device=device)))
return conjugate(maybe_non_contig(arg.tensor.to(device=device)))
return conjugate(maybe_non_contig(arg.tensor.to(device=device)))
elif isinstance(arg, torch.Tensor):
if arg.dtype == torch.float:
arg = arg.double()
if arg.dtype == torch.cfloat:
arg = arg.to(torch.cdouble)
if arg.is_complex() != dtype.is_complex:
raise RuntimeError("User provided tensor is real for a test that runs with complex dtype, ",
"which is not supported for now")
# NOTE: We do clone() after detach() here because we need to be able to change size/storage of v afterwards
v = conjugate(maybe_non_contig(arg)).detach().to(device=device).clone()
v.requires_grad = requires_grad and (v.is_floating_point() or v.is_complex())
return v
elif callable(arg):
return map_arg(arg(dtype=dtype, device=device))
else:
return arg
args_out = tuple(map_arg(arg) for arg in call_args)
kwargs_out = {k: map_arg(v) for k, v in call_kwargs.items()} if call_kwargs else {}
return args_out, kwargs_out
# NB: JIT script tests for all nn functional interfaces, script mode does
# not support in_place operations yet, so no inplace operation tests added.
# removed all the deprecated functions
#
# (
# method name,
# input size/constructing fn,
# args (tuple represents shape of a tensor arg),
# test variant name(will be used at test name suffix,
# 'inplace' skips grad tests), // optional
# (True, nonfusible_nodes, fusible_nodes) for autodiff // optional
# fn to determine if test should be skipped, // optional
# fn mapping output to part that should be gradcheck'ed, // optional
# kwargs for function, // optional
# )
nn_functional_tests = [
('conv1d', (S, S, S), ((S, S, S),)),
('conv2d', (S, S, S, S), ((S, S, S, S),)),
('conv3d', (S, S, S, S, S), ((S, S, S, S, S),)),
('conv_transpose1d', (S, S, S), ((S, S, S),)),
('conv_transpose2d', (S, S, S, S), ((S, S, S, S),)),
('conv_transpose3d', (S, S, S, S, S), ((S, S, S, S, S),)),
('conv_tbc', (S, S, S), ((S, S, S), (S,), 2)),
('avg_pool1d', (S, S, S), (3,)),
('avg_pool2d', (S, S, S, S), (3,), '', (True,)),
('avg_pool3d', (S, S, S, S, S), (3,)),
('fractional_max_pool2d', (S, S, S, S), (3, [2, 3],)),
('max_pool1d', (S, S, S), (2, 1)),
('max_pool1d', (S, S, S), (2, 1, 1, 1, False, True), 'with_indices'),
('max_pool2d', (S, S, S, S), (2, 1), '', (True, 'aten::max_pool2d_with_indices')),
('max_pool2d', (S, S, S, S), (2, 1, 1, 1, False, True), 'with_indices', (True, 'aten::max_pool2d_with_indices')),
('max_pool3d', (S, S, S, S, S), (2, 1)),
('max_unpool1d', torch.tensor([[[2., 4]]]), (torch.tensor([[[1, 3]]]), 2, 2, 0)),
('max_unpool2d', torch.tensor([[[[2., 4]]]]), (torch.tensor([[[[1, 3]]]]), 2, 2, 0)),
('max_unpool3d', torch.tensor([[[[[2., 4]]]]]), (torch.tensor([[[[[1, 3]]]]]), 2, 2, 0)),
('lp_pool1d', (S, S, S), (2., 3, 2,)),
('lp_pool2d', (S, S, S, S), (2., 3, 2,)),
('adaptive_max_pool1d', (S, S, S), (5,)),
('adaptive_max_pool2d', (S, S, S, S), ([5, 7],)),
('adaptive_max_pool3d', (S, S, S, S, S), ([3, 2, 2],)),
('adaptive_avg_pool1d', (S, S, S), (5,), '', (True,)),
('adaptive_avg_pool2d', (S, S, S, S), ([5, 7],), '', (True,)),
('adaptive_avg_pool3d', (S, S, S, S, S), ([3, 2, 2],), '', (True,)),
('dropout', (S, S, S), (0.5,), '', (True, 'aten::native_dropout')),
('alpha_dropout', (S, S, S), (0.5,)),
('dropout2d', (S, S, S), (0.5,)),
('dropout2d', (S, S, S, S), (0.5,), 'batched'),
('dropout3d', (S, S, S, S), (0.5,)),
('dropout3d', (S, S, S, S, S), (0.5,), 'batched'),
('feature_alpha_dropout', (S, S, S), (0.5,)),
('threshold', (S, S, S), (0.1, 2.), '', (True,)),
('threshold', (S, S, S), (0.1, 2., True), 'inplace'),
('relu', (S, S, S), (), '', (True,)),
('relu', (S, S, S), (), 'inplace'),
('glu', (S - 1, S - 1, S - 1), (),),
('hardtanh', (S, S, S), (-0.5, 0.5), '', (True,)),
('hardtanh', (S, S, S), (-0.5, 0.5, True), 'inplace'),
('relu6', (S, S, S), (), '', (True,)),
('relu6', (S, S, S), (True), 'inplace'),
('elu', (S, S, S), (0.9,),),
('elu', (S, S, S), (0.9, True), 'inplace'),
('selu', (S, S, S), (),),
('selu', (S, S, S), (True), 'inplace'),
('celu', (S, S, S), (0.9,),),
('celu', (S, S, S), (0.9, True), 'inplace'),
('leaky_relu', (S, S, S), (0.02,), '', (True,)),
('leaky_relu', (S, S, S), (0.02,), 'inplace'),
('rrelu', (S, S), (0.1, 0.3, False),),
('rrelu', (S, S), (0.1, 0.3, False, True), 'inplace'),
('hardshrink', (S, S, S), (0.4,), '', (True,)),
('tanhshrink', (S, S, S), (),),
('softsign', (S, S, S), (),),
('softplus', (S, S, S), (), '', (True,)),
('softmin', (S, S, S), (0,),),
('softmax', (S, S, S), (0,), '', (True,)),
('softmax', (S, S, S), (0, 3, torch.double), 'with_all_args', (True,)),
('tanh', (S, S, S), (), '', (True,)),
('sigmoid', (S, S, S), (), '', (True,)),
('silu', (S, S, S), (), '', (True,)),
('log_softmax', (S, S, S), (0,), '', (True,)),
('linear', (S, S), ((M, S),), '', (True, ['aten::linear'])),
('linear', (S, S), ((M, S), (M,)), 'addmm', (True, ['aten::linear'])),
('bilinear', (S, S, S), ((S, S, M), torch.zeros(M, S, M),),),
('embedding', torch.tensor([[1, 2, 4, 5], [4, 3, 2, 5]]), (torch.rand(6, 3), ), '', (True,)),
('embedding_bag', torch.tensor([1, 2, 4, 2]), (torch.rand(5, 3), torch.tensor([0, 4]),),),
('batch_norm', (S, S),
(non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), None, None, True, ),
'training', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (0, S, S, S),
(non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), True, ),
'size_zero', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (0, S, S, S),
(non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), True, ),
'size_zero_inference', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (S, S),
(non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), True, ),
'with_weight_and_bias_training', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
None, non_differentiable(torch.ones(S)), True, ),
'with_only_bias_training', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
non_differentiable(torch.randn(S)), None, True, ),
'with_only_weight_training', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
None, None, False, ),
'inference', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)), False, ),
'with_weight_and_bias_inference', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
None, non_differentiable(torch.ones(S)), False, ),
'with_only_bias_inference', (True, 'aten::_batch_norm_impl_index')),
('batch_norm', (S, S), (non_differentiable(torch.randn(S)), non_differentiable(torch.ones(S)),
non_differentiable(torch.randn(S)), None, False, ),
'with_only_weight_inference', (True, 'aten::_batch_norm_impl_index')),
('instance_norm', (S, S, S), (non_differentiable(torch.zeros(S)), non_differentiable(torch.ones(S))),),
('layer_norm', (S, S, S, S), ([5],), '',
(False, ['aten::contiguous', 'aten::_batch_norm_impl_index'])),
('layer_norm', (S, S, S, S), ([5], non_differentiable(torch.rand(S)),), 'with_only_weight',
(False, ['aten::contiguous', 'aten::_batch_norm_impl_index'])),
('layer_norm', (S, S, S, S), ([5], None, non_differentiable(torch.rand(S)),), 'with_only_bias',
(False, ['aten::contiguous', 'aten::_batch_norm_impl_index'])),
('layer_norm', (S, S, S, S), ([5], non_differentiable(torch.rand(S)),
non_differentiable(torch.rand(S))), 'with_weight_and_bias',
(False, ['aten::contiguous', 'aten::_batch_norm_impl_index', 'aten::addcmul'])),
('group_norm', (S, S, S), (1, torch.rand(5),),),
('local_response_norm', (S, S, S), (2, ),),
('nll_loss', F.log_softmax(torch.randn(3, 5), dim=0), (torch.tensor([1, 0, 4]),), '',),
('poisson_nll_loss', torch.rand(S, 2), (torch.rand(S, 2),),),
('poisson_nll_loss', torch.rand(S, 2), (torch.rand(S, 2), True, True), 'full'),
('kl_div', F.log_softmax(torch.randn(S, 10), 1), (F.softmax(torch.randn(S, 10), 1),),),
('cross_entropy', (3, S), (torch.randint(S, (3,), dtype=torch.int64),),),
('binary_cross_entropy_with_logits', (3,), (torch.empty(3).random_(2), ),),
('smooth_l1_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('huber_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('l1_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('mse_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('smooth_l1_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
('huber_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
('l1_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
('mse_loss', (3, S), ((torch.rand(3, S)),), 'with_grad'),
('margin_ranking_loss', (S,), ((S,), (S,)),),
('hinge_embedding_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('soft_margin_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('multilabel_soft_margin_loss', (3, S), (non_differentiable(torch.rand(3, S)),),),
('cosine_embedding_loss', (S, S), ((S, S), non_differentiable(torch.rand(S,))),),
('pixel_shuffle', (1, 9, 4, 4), (3,),),
('pixel_unshuffle', (1, 1, 12, 12), (3,),),
('affine_grid', (S, 2, 3), (torch.Size([S, 1, 7, 7]),),),
('pad', (3, 3, 4, 2), ([1, 1],),),
('pairwise_distance', (S, S), ((S, S),),),
('pdist', (S, S), (),),
('cosine_similarity', (S, S), ((S, S),),),
('triplet_margin_loss', (S, S), ((S, S), (S, S)),),
('normalize', (S, S, S), (),),
('unfold', (S, S, S, S), ([2, 3]),),
('fold', (1, 3 * 2 * 2, 12), ([4, 5], [2, 2]),),
('grid_sample', (S, S, S, S), (non_differentiable(torch.rand(S, S, S, 2)),),),
('gumbel_softmax', (S, S), (2.,), '', (True, ['aten::softmax', 'aten::add', 'aten::div'], ['aten::neg'])),
('gumbel_softmax', (S, S), (2., True,), 'hard', (True, ['aten::softmax', 'aten::add', 'aten::div'], ['aten::neg'])),
('multilabel_margin_loss', torch.tensor([[0.2, -0.2, 0.07]]), (torch.tensor([[0, 0, 1]]),),),
('multi_margin_loss', (S, S), (non_differentiable(torch.randint(S, (S, ), dtype=torch.int64)),
1, 1., non_differentiable(torch.randn(S))),),
('binary_cross_entropy', torch.randn(3, 2).sigmoid(), (non_differentiable(torch.rand(3, 2)),
non_differentiable(torch.randn(3, 2))),),
('binary_cross_entropy', torch.randn(3, 2).sigmoid(),
(non_differentiable(torch.rand(3, 2)),
non_differentiable(torch.randn(3, 2)), None, None, 'mean'), 'size_average'),
('ctc_loss', torch.rand(S, S, S).log_softmax(2).detach().requires_grad_(),
(torch.randint(1, S, (S, S), dtype=torch.long), torch.full((S,), S, dtype=torch.long),
torch.randint(1, S, (S,), dtype=torch.long))),
('upsample', torch.randn(S, S, M, M), (None, 2.), 'with_scale'),
('upsample', torch.randn(S, S, M, M), (4,), 'with_size'),
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'nearest_4d'),
('interpolate', torch.randn(S, S, M, M), (None, 2.), 'nearest_4d_with_scale'),
('interpolate', torch.randn(S, S, M, M), (4,), 'nearest_4d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'area_4d'),
('interpolate', torch.randn(S, S, M, M), (None, 2.), 'area_4d_with_scale'),
('interpolate', torch.randn(S, S, M, M), (4,), 'area_4d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'bilinear_4d'),
('interpolate', torch.randn(S, S, M, M), (None, 2.), 'bilinear_4d_with_scale'),
('interpolate', torch.randn(S, S, M, M), (4,), 'bilinear_4d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2,), 'bicubic_4d'),
('interpolate', torch.randn(S, S, M, M), (None, 2.), 'bicubic_4d_with_scale'),
('interpolate', torch.randn(S, S, M, M), (4,), 'bicubic_4d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 3, 3), (2,), 'nearest_3d'),
('interpolate', torch.randn(S, M, M), (None, 2.), 'nearest_3d_with_scale'),
('interpolate', torch.randn(S, M, M), (4,), 'nearest_3d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 3, 3), (2,), 'area_3d'),
('interpolate', torch.randn(S, M, M), (None, 2.), 'area_3d_with_scale'),
('interpolate', torch.randn(S, M, M), (4,), 'area_3d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 3, 3), (2,), 'linear_3d'),
('interpolate', torch.randn(S, M, M), (None, 2.), 'linear_3d_with_scale'),
('interpolate', torch.randn(S, M, M), (4,), 'linear_3d_with_size'),
('interpolate', torch.randn(S, M, M, M, M), (None, 2.), 'nearest_5d_with_scale'),
('interpolate', torch.randn(S, M, M, M, M), (4,), 'nearest_5d_with_size'),
('interpolate', torch.zeros(3, 3, 3).view(1, 1, 3, 3, 3), (2,), 'area_5d'),
('interpolate', torch.randn(S, M, M, M, M), (None, 2.), 'area_5d_with_scale'),
('interpolate', torch.randn(S, M, M, M, M), (4,), 'area_5d_with_size'),
('interpolate', torch.zeros(3, 3, 3).view(1, 1, 3, 3, 3), (2,), 'trilinear_5d'),
('interpolate', torch.randn(S, M, M, M, M), (None, 2.), 'trilinear_5d_with_scale'),
('interpolate', torch.randn(S, M, M, M, M), (4,), 'trilinear_5d_with_size'),
('interpolate', torch.zeros(3, 3).view(1, 1, 3, 3), (2, None, 'nearest', None, False),
'nearest_4d_not_recompute_scale_factor'),
('interpolate', torch.randn(S, S, M, M), (4, None, 'nearest', None, False),
'nearest_4d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, S, M, M), (None, 2., 'bilinear', None, False),
'bilinear_4d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, S, M, M), (4, None, 'bilinear', None, False),
'bilinear_4d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, S, M, M), (None, 2., 'bicubic', None, False),
'bicubic_4d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, S, M, M), (4, None, 'bicubic', None, False),
'bicubic_4d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M), (None, 2., 'nearest', None, False),
'nearest_3d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M), (4, None, 'nearest', None, False),
'nearest_3d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M), (None, 2., 'linear', None, False),
'linear_3d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M), (4, None, 'linear', None, False),
'linear_3d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M, M, M), (None, 2., 'nearest', None, False),
'nearest_5d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M, M, M), (4, None, 'nearest', None, False),
'nearest_5d_with_size_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M, M, M), (None, 2., 'trilinear', None, False),
'trilinear_5d_with_scale_not_recompute_scale_factor'),
('interpolate', torch.randn(S, M, M, M, M), (4, None, 'trilinear', None, False),
'trilinear_5d_with_size_not_recompute_scale_factor'),
]
script_template = '''
def the_method({}):
return {}
'''
def value_to_literal(value):
if isinstance(value, str):
# Quotes string and escapes special characters
return ascii(value)
if isinstance(value, torch.Tensor):
return 'torch.' + str(value)
else:
return str(value)
def get_call(method_name, func_type, args, kwargs):
kwargs_str = ', '.join([k + '=' + value_to_literal(v) for k, v in kwargs.items()])
self_arg = args[0]
if(func_type == 'method'):
args = args[1:]
argument_str = ', '.join(args)
argument_str += ', ' if len(args) and len(kwargs) else ''
argument_str += kwargs_str
if func_type == 'functional' or func_type == 'function':
call = 'torch.{}({})'.format(method_name, argument_str)
elif func_type == 'method':
call = '{}.{}({})'.format(self_arg, method_name, argument_str)
elif func_type == 'nn_functional':
call = 'torch.nn.functional.{}({})'.format(method_name, argument_str)
else:
raise TypeError('Unsupported function type')
return call
def get_constant(x):
if x == inf:
return 'math.inf'
if x == -inf:
return '-math.inf'
return x
def get_script_args(args):
formals: List[str] = []
tensors: List[Union[torch.Tensor, List[torch.Tensor]]] = []
actuals: List[str] = []
for arg in args:
if isinstance(arg, torch.Tensor):
name = 'i{}'.format(len(formals))
formals.append(name)
actuals.append(name)
tensors.append(arg)
elif is_iterable_of_tensors(arg):
name = 'i{}'.format(len(formals))
formals.append(name + ': List[torch.Tensor]')
actuals.append(name)
tensors.append(list(arg))
elif isinstance(arg, str):
actuals.append("'{}'".format(arg))
else:
actuals.append(str(get_constant(arg)))
return (formals, tensors, actuals)
# create a script function from (name, func_type, output_process_fn),
# and returns the compiled function and example inputs
def gen_script_fn_and_args(method_name, func_type, *args, **kwargs):
formals, tensors, actuals = get_script_args(args)
call = get_call(method_name, func_type, actuals, kwargs)
script = script_template.format(', '.join(formals), call)
CU = torch.jit.CompilationUnit(script)
return CU.the_method, tensors
# create a script function from (name, func_type),
# returns a function takes in (args, kwargs) and runs the compiled function
def create_script_fn(self, method_name, func_type):
# function returns tuple containing original output and
# filtered output to be used in checking gradients
def script_fn(*args, **kwargs):
fn, tensors = gen_script_fn_and_args(method_name, func_type, *args, **kwargs)
self.assertExportImport(fn.graph, tensors)
output = fn(*tensors)
# skip type annotate function attributes for now, see: https://github.com/python/mypy/issues/2087
script_fn.last_graph = fn.graph_for(*tensors) # type: ignore[attr-defined]
return output
return script_fn
class SplitInputs():
all_tensors: List[Any]
tensor_args: List[Any]
nontensor_args: List[Any]
arg_types: List[str]
tensor_kwargs: Dict[str, Any]
kwarg_order: List[str]
nontensor_kwargs: Dict[str, Any]
kwarg_types: Dict[str, Any]
@staticmethod
def _is_tensor_input(arg):
return isinstance(arg, torch.Tensor) or is_iterable_of_tensors(arg)
def __init__(self, args, kwargs):
self.arg_types = ['t' if self._is_tensor_input(arg) else 's' for arg in args]
self.kwarg_types = {k: 't' if self._is_tensor_input(v) else 's' for k, v in kwargs.items()}
self.tensor_args = [arg for arg in args if self._is_tensor_input(arg)]
self.nontensor_args = [arg for arg in args if not self._is_tensor_input(arg)]
self.tensor_kwargs = {k: v for k, v in kwargs.items() if self._is_tensor_input(v)}
self.nontensor_kwargs = {k: v for k, v in kwargs.items() if not self._is_tensor_input(v)}
self.all_tensors = [*self.tensor_args, *[v for k, v in self.tensor_kwargs.items()]]
self.kwarg_order = [k for k, v in kwargs.items()]
def nontensors_match(self, other: 'SplitInputs'):
if self.arg_types != other.arg_types:
return False
if self.kwarg_types != other.kwarg_types:
return False
if self.kwarg_order != other.kwarg_order:
return False
if self.nontensor_args != other.nontensor_args:
return False
if self.nontensor_kwargs != other.nontensor_kwargs:
return False
return True
# make a new function where all non-tensor arguments in 'args' have been partially
# applied, and all tensor arguments remain.
# used to trace functions when some arguments are not tensors
def partial_apply_nontensors(fn, args, kwargs):
inputs = SplitInputs(args, kwargs)
def new_fn(*tensors_):
tensors = iter(tensors_)
full_args = [args[i] if s == 's' else next(tensors) for i, s in enumerate(inputs.arg_types)]
full_kwargs = {k: kwargs[k] if s == 's' else next(tensors) for k, s in inputs.kwarg_types.items()}
return fn(*full_args, **full_kwargs)
return new_fn, inputs
# create a trace function from input fn
def create_traced_fn(self, fn, cache_traced_fn=False):
def traced_fn(*inputs, **kwargs):
# `check_trace` is set to False because check_trace is run with @no_grad
# Also, `check_against_reference` already does all the checks
# against python function
fn_tensors, split_inputs = partial_apply_nontensors(fn, inputs, kwargs)
if not cache_traced_fn or not hasattr(traced_fn, 'traced'):
traced = torch.jit.trace(fn_tensors, split_inputs.all_tensors, check_trace=False)
self.assertExportImport(traced.graph, split_inputs.all_tensors)
output = traced(*split_inputs.all_tensors)
if cache_traced_fn:
traced_fn.traced = traced
traced_fn.split_inputs = split_inputs
else:
# Guard to check that nontensor inputs are the same as during tracing
self.assertTrue(traced_fn.split_inputs.nontensors_match(split_inputs))
output = traced_fn.traced(*split_inputs.all_tensors)
traced = traced_fn.traced
# skip type annotate function attributes for now, see: https://github.com/python/mypy/issues/2087
traced_fn.last_graph = traced.graph_for(*split_inputs.all_tensors) # type: ignore[attr-defined]
traced_fn.graph = traced.graph # type: ignore[attr-defined]
return output
return traced_fn
# known to be failing in script
EXCLUDE_SCRIPT = {
'test_norm_fro_default',
'test_norm_fro_cpu',
'test_norm_nuc',
'test_norm_fro',
'test_norm_nuc_batched',
# aten op has additional cudnn argument
'test_nn_unfold',
# flaky test - TODO fix
'test_nn_ctc_loss',
# unknown builtin op
'test_nn_fold',
# jit doesn't support sparse tensors.
'test_to_sparse',
'test_to_sparse_dim',
}
# generates a script function and set of example inputs
# from a specified test in the format of nn_functional_tests
def get_nn_functional_compiled_fn_and_inputs(name, self_size, args, variant_name='', *extra_args):
test_name = 'test_nn_' + name
if variant_name != '':
test_name = test_name + '_' + variant_name
no_grad = variant_name == 'inplace'
self_variable = create_input((self_size,))[0][0]
kwargs = None
# need to record this because methods can change the size (e.g. unsqueeze)
args_variable, kwargs_variable = create_input(args)
self_tensor = deepcopy(self_variable.data)
args_tensor = deepcopy(unpack_variables(args_variable))
f_args_variable = (self_variable,) + args_variable
f_args_tensor = (self_tensor,) + args_tensor
with torch._jit_internal._disable_emit_hooks():
script_fn, inputs = gen_script_fn_and_args(name, "nn_functional", *f_args_variable)
return script_fn, inputs
# additional modules test
# TODO: delete this list once we make all nn_tests work
additional_module_tests = [
{
'module_name': 'Bilinear',
'constructor_args': (S, S, M),
'input_size': (S, S),
'extra_args': ((S, S),)
},
{
'module_name': 'RNNCell',
'constructor_args': (S, S),
'input_size': (S, S),
},
{
'module_name': 'LSTMCell',
'constructor_args': (S, S),
'input_size': (S, S),
},
{
'module_name': 'GRUCell',
'constructor_args': (S, S),
'input_size': (S, S),
},
{
'module_name': 'MultiheadAttention',
'constructor_args': (128, 8),
'input_size': (10, 8, 128),
'extra_args': (torch.randn(10, 8, 128), torch.randn(10, 8, 128)),
'slowTest': True
},
{
'module_name': 'Transformer',
'constructor_args': (1, 1, 1, 1, 2),
'input_size': (3, 1, 1),
'extra_args': (torch.randn(1, 1, 1),),
'slowTest': True
}
]
EXCLUDE_SCRIPT_MODULES = {
'test_nn_AdaptiveAvgPool2d_tuple_none',
'test_nn_AdaptiveAvgPool3d_tuple_none',
'test_nn_AdaptiveMaxPool2d_tuple_none',
'test_nn_AdaptiveMaxPool3d_tuple_none',
# Doesn't use future division, so this is not supported
'test_nn_CrossMapLRN2d',
}
script_method_template = '''
def forward({}):
return {}
'''
def create_script_module(self, nn_module, constructor_args, *args, **kwargs):
def script_module(*args, **kwargs):
formals, tensors, actuals = get_script_args(args)
method_args = ', '.join(['self'] + actuals)
call_args_str = ', '.join(actuals)
call = "self.submodule({})".format(call_args_str)
script = script_method_template.format(method_args, call)
submodule_constants = []
if kwargs.get('is_constant'):
submodule_constants = ['submodule']
# Create module to use the script method
class TheModule(torch.jit.ScriptModule):
__constants__ = submodule_constants
def __init__(self):
super(TheModule, self).__init__()
self.submodule = nn_module(*constructor_args)
def make_module(script):
module = TheModule()
# check __repr__
str(module)
module.define(script)
return module
module = make_module(script)
if self:
self.assertExportImportModule(module, tensors)
module(*args)
# skip type annotate function attributes for now, see: https://github.com/python/mypy/issues/2087
create_script_module.last_graph = module.graph # type: ignore[attr-defined]
return module
return script_module
def check_alias_annotation(method_name, args, kwargs, *, aten_name, func_type='method'):
formals, tensors, actuals = get_script_args(args)
call = get_call(method_name, func_type, actuals, kwargs)
script = script_template.format(', '.join(formals), call)
CU = torch.jit.CompilationUnit(script)
# to clean up IR
torch._C._jit_pass_inline(CU.the_method.graph)
torch._C._jit_pass_constant_propagation(CU.the_method.graph)
torch._C._jit_check_alias_annotation(CU.the_method.graph, tuple(tensors), aten_name)
def get_nn_module_name_from_kwargs(**kwargs):
if 'module_name' in kwargs:
return kwargs['module_name']
elif 'fullname' in kwargs:
return kwargs['fullname']
elif 'constructor' in kwargs:
return kwargs['constructor'].__name__
def get_nn_mod_test_name(**kwargs):
if 'fullname' in kwargs:
test_name = kwargs['fullname']
else:
test_name = get_nn_module_name_from_kwargs(**kwargs)
if 'desc' in kwargs:
test_name = "{}_{}".format(test_name, kwargs['desc'])
return 'test_nn_{}'.format(test_name)
def get_nn_module_class_from_kwargs(**kwargs):
name = get_nn_module_name_from_kwargs(**kwargs)
index = name.find("_")
if index == -1:
return name
else:
return name[0:name.find("_")]
def try_get_nn_module_compiled_mod_and_inputs(*args, **kwargs):
name = get_nn_module_name_from_kwargs(**kwargs)
if 'desc' in kwargs and 'eval' in kwargs['desc']:
# eval() is not supported, so skip these tests
return
test_name = name
if 'desc' in kwargs:
test_name = "{}_{}".format(test_name, kwargs['desc'])
test_name = get_nn_mod_test_name(**kwargs)
if test_name in EXCLUDE_SCRIPT_MODULES:
return
if 'constructor' in kwargs:
nn_module = kwargs['constructor']
else:
nn_module = getattr(torch.nn, name)
if "FunctionalModule" in str(nn_module):
return
if 'constructor_args_fn' in kwargs:
constructor_args = kwargs['constructor_args_fn']()
else:
constructor_args = kwargs.get('constructor_args', ())
# Set up inputs from tuple of sizes or constructor fn
input_dtype = torch.double
if 'input_fn' in kwargs:
input = kwargs['input_fn']()
if isinstance(input, torch.Tensor):
input = (input,)
if all(tensor.is_complex() for tensor in input):
input_dtype = torch.cdouble
else:
input = (kwargs['input_size'],)
# Extra parameters to forward()
if 'extra_args' in kwargs:
input = input + kwargs['extra_args']
if 'target_size' in kwargs:
input = input + (kwargs['target_size'],)
elif 'target_fn' in kwargs:
if torch.is_tensor(input):
input = (input,)
input = input + (kwargs['target_fn'](),)
args_variable, kwargs_variable = create_input(input, dtype=input_dtype)
f_args_variable = deepcopy(unpack_variables(args_variable))
out_var = deepcopy(f_args_variable)
args, mod = f_args_variable, create_script_module(None, nn_module, constructor_args, *f_args_variable)(*f_args_variable)
return mod, out_var
def get_all_nn_module_tests():
return module_tests + new_module_tests + additional_module_tests
|