1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
|
# Torch
from torch.autograd import Variable
from torch.autograd.function import _nested_map
from torch.jit.annotations import BroadcastingList2, BroadcastingList3 # noqa: F401
from torch.onnx import OperatorExportTypes
import torch
import torch.cuda
import torch.jit
import torch.jit._logging
import torch.jit.frontend
import torch.jit.quantized
import zipfile
import functools
# Testing utils
from torch.testing import FileCheck
from torch.testing._internal.common_utils import IS_WINDOWS, \
freeze_rng_state, enable_profiling_mode_for_profiling_tests, ProfilingMode, TEST_BAILOUTS, \
is_iterable_of_tensors
from torch.testing._internal.common_jit import JitCommonTestCase
from torch.testing._internal.common_utils import enable_profiling_mode # noqa: F401
# Standard library
from contextlib import contextmanager
from functools import reduce
from io import StringIO
from collections import defaultdict
import importlib.util
import inspect
import io
import math
import os
import pickle
import sys
import tempfile
import textwrap
from importlib.abc import Loader
from typing import Any, Dict, List, Tuple, Union
RUN_CUDA = torch.cuda.is_available()
RUN_CUDA_MULTI_GPU = RUN_CUDA and torch.cuda.device_count() > 1
RUN_CUDA_HALF = RUN_CUDA
# HIP supports half, no version check necessary
if torch.cuda.is_available() and not torch.version.hip:
CUDA_VERSION = torch._C._cuda_getCompiledVersion()
for d in range(torch.cuda.device_count()):
major = torch.cuda.get_device_capability(d)[0]
if (major < 6):
RUN_CUDA_HALF = False
def execWrapper(code, glob, loc):
exec(code, glob, loc)
def do_input_map(fn, input):
return _nested_map(lambda t: isinstance(t, torch.Tensor), fn)(input)
def clear_class_registry():
torch._C._jit_clear_class_registry()
torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
torch.jit._state._clear_class_state()
def get_execution_plan(graph_executor_state):
execution_plans = list(graph_executor_state.execution_plans.values())
num_plans = len(execution_plans)
if num_plans != 1:
raise RuntimeError('This test assumes this GraphExecutor should '
'only have one execution plan, got: {}'.format(num_plans))
return execution_plans[0]
class _AssertRaisesRegexWithHighlightContext(object):
"""
A context manager that is useful for checking that error messages highlight
the correct part of the source code.
"""
def __init__(self, test_case, exception, regex, highlight):
self.test_case = test_case
self.exception_type = exception
self.regex = regex
self.highlight = highlight
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
with self.test_case.assertRaisesRegex(self.exception_type, self.regex):
if type:
raise value
if self.highlight:
FileCheck().check_source_highlighted(self.highlight).run(str(value))
return True
FUSION_GROUP = "prim::TensorExprGroup"
class JitTestCase(JitCommonTestCase):
_do_cuda_memory_leak_check = True
_restored_warnings = False
class capture_stdout(list):
"""
Replace sys.stdout with a temporary StringIO
"""
def __enter__(self):
self.sys_stdout = sys.stdout
self.stringio = StringIO()
sys.stdout = self.stringio
return self
def __exit__(self, *args):
self.append(str(self.stringio.getvalue()))
del self.stringio
sys.stdout = self.sys_stdout
class capture_stderr(list):
"""
Replace sys.stderr with a temporary StringIO
"""
def __enter__(self):
self.sys_stderr = sys.stderr
self.stringio = StringIO()
sys.stderr = self.stringio
return self
def __exit__(self, *args):
self.append(str(self.stringio.getvalue()))
del self.stringio
sys.stderr = self.sys_stderr
def setHooks(self):
torch._C._jit_set_emit_hooks(self.emitModuleHook, self.emitFunctionHook)
def clearHooks(self):
torch._C._jit_set_emit_hooks(None, None)
def setUp(self):
super().setUp()
# unittest overrides all warning filters and forces all of them to show up
# after we install our own to silence those coming from inside PyTorch.
# This will ensure that our filter still takes precedence.
if not JitTestCase._restored_warnings:
torch.jit.TracerWarning.ignore_lib_warnings()
JitTestCase._restored_warnings = True
self.setHooks()
def tearDown(self):
super().tearDown()
# needs to be cleared because python might be unloaded before
# the callback gets destucted
self.clearHooks()
clear_class_registry()
def assertAllFused(self, graph, except_for=()):
# note this helper collects nodes on 'fast path' only
# i.e. the true blocks of specialized checks
def get_nodes_and_parents_recursively(block, kind, acc):
for node in block.nodes():
if node.kind() == kind:
acc[block].append(node)
elif node.kind() == 'prim::DifferentiableGraph':
get_nodes_and_parents_recursively(node.g('Subgraph'), kind, acc)
elif node.kind() == 'prim::If' and (node.inputs().__next__().node().kind() == 'aten::all' or
node.inputs().__next__().node().kind() == 'prim::TypeCheck' or
node.inputs().__next__().node().kind() == 'prim::RequiresGradCheck'):
get_nodes_and_parents_recursively(node.blocks().__next__(), kind, acc)
else:
for inner_block in node.blocks():
get_nodes_and_parents_recursively(inner_block, kind, acc)
allowed_nodes = {'prim::Constant', FUSION_GROUP, 'prim::BailoutTemplate',
'prim::TupleConstruct', 'prim::If', 'prim::TypeCheck', 'prim::RequiresGradCheck'} | set(except_for)
fusion_groups : Dict[torch._C.Block, List[torch._C.Node]] = defaultdict(list)
get_nodes_and_parents_recursively(graph, FUSION_GROUP, fusion_groups)
self.assertTrue(len(fusion_groups) == 1, 'got {}'.format(graph))
(graph, fusion_nodes) = list(fusion_groups.items())[0]
# the block contains one FUSION_GROUP and the rest of nodes are `allowed_nodes`
self.assertTrue(len(fusion_nodes) == 1, 'got {}'.format(graph))
self.assertTrue(all(node.kind() in allowed_nodes for node in graph.nodes()),
'got {}'.format(graph))
def _isHookExceptionOk(self, e):
se = str(e)
allowed = ("Could not export Python function",
"closures are not exportable")
for a in allowed:
if a in se:
return True
return False
def _compared_saved_loaded(self, m):
def extract_files(buffer):
# crack open the zip format to get at the main module code
archive = zipfile.ZipFile(buffer)
# check that we have no duplicate names
self.assertEqual(len(set(archive.namelist())), len(archive.namelist()))
files = list(filter(lambda x: x.startswith('archive/code/'), archive.namelist()))
# unwrap all the code files into strings
code_files_str = filter(lambda x: x.endswith('.py'), files)
code_files_stream = (archive.open(f) for f in code_files_str)
code_files = ("".join([line.decode() for line in file]) for file in code_files_stream)
# unpickled all the debug files
debug_files_str = filter(lambda f: f.endswith('.debug_pkl'), files)
debug_files_stream = (archive.open(f) for f in debug_files_str)
debug_files = (pickle.load(f) for f in debug_files_stream)
return code_files, debug_files
# disable the hook while we parse code, otherwise we will re-enter the hook
with torch._jit_internal._disable_emit_hooks():
try:
# short-circuit if this is an empty function or module
if len(m.code) == 0:
return
if isinstance(m, torch._C.ScriptModule):
if len(m._method_names()) == 0:
return
# save the module to a buffer
buffer = io.BytesIO()
torch.jit.save(m, buffer)
# copy the data in the buffer so we can restore it later. This
# is because py2 and py3 have different semantics with zipfile
# and it's easier to just work with a fresh copy each time.
buffer_copy = buffer.getvalue()
code_files, debug_files = extract_files(buffer)
except RuntimeError as e:
if not self._isHookExceptionOk(e):
raise
else:
return
# import the model again (from a the copy we made of the original)
buffer2 = io.BytesIO(buffer_copy)
imported = torch.jit.load(buffer2)
# save it again
saved_module_buffer_2 = io.BytesIO()
torch.jit.save(imported, saved_module_buffer_2)
saved_module_buffer_2.seek(0)
code_files_2, debug_files_2 = extract_files(saved_module_buffer_2)
for a, b in zip(code_files, code_files_2):
self.assertMultiLineEqual(a, b)
if isinstance(m, torch._C.ScriptModule):
self.assertTrue(torch._C._ivalue_tags_match(m, imported._c))
def emitFunctionHook(self, func):
# func has invalid names for export, skip the jitter check
if func.name == "<lambda>" or "aten::" in func.name:
return
self._compared_saved_loaded(func)
def emitModuleHook(self, module):
self._compared_saved_loaded(module)
def getExportImportCopyWithPacking(self, m, also_test_file=True, map_location=None):
buffer = io.BytesIO()
m.apply(lambda s: s._pack() if s._c._has_method('_pack') else None)
torch.jit.save(m, buffer)
m.apply(lambda s: s._unpack() if s._c._has_method('_unpack') else None)
buffer.seek(0)
imported = torch.jit.load(buffer, map_location=map_location)
imported.apply(lambda s: s._unpack() if s._c._has_method('_unpack') else None)
if not also_test_file:
return imported
# Ideally we would like to not have to manually delete the file, but NamedTemporaryFile
# opens the file, and it cannot be opened multiple times in Windows. To support Windows,
# close the file after creation and try to remove it manually
f = tempfile.NamedTemporaryFile(delete=False)
try:
f.close()
imported.save(f.name)
result = torch.jit.load(f.name, map_location=map_location)
finally:
os.unlink(f.name)
result.apply(lambda s: s._unpack() if s._c._has_method('_unpack') else None)
return result
def assertGraphContains(self, graph, kind, consider_subgraphs=False):
if consider_subgraphs:
strgraph = str(graph)
count = strgraph.count(kind) - strgraph.count('with {}'.format(kind))
self.assertTrue(count > 0)
return
def nodes(block):
out = []
for node in block.nodes():
if node.kind() == kind:
out.append(node)
for block in node.blocks():
out += nodes(block)
return out
out_nodes = nodes(graph)
self.assertTrue(len(out_nodes) > 0)
def assertGraphContainsExactly(self, graph, kind, num_kind_nodes, consider_subgraphs=False):
def perform_assert(graph, kind, actual, expected, consider_subgraphs):
if actual == expected:
return
subgraph = 'including' if consider_subgraphs else 'excluding'
raise AssertionError(
'{}\nError: graph contains {} {} nodes ({} subgraphs) but expected {}'.format(
graph, actual, kind, subgraph, expected))
if consider_subgraphs:
strgraph = str(graph)
count = strgraph.count(kind) - strgraph.count('with {}'.format(kind))
perform_assert(graph, kind, count, num_kind_nodes,
consider_subgraphs)
return
def nodes(block):
out = []
for node in block.nodes():
if node.kind() == kind:
out.append(node)
for block in node.blocks():
out += nodes(block)
return out
out_nodes = nodes(graph)
perform_assert(graph, kind, len(out_nodes), num_kind_nodes,
consider_subgraphs)
def assertExpectedONNXGraph(self, g, *args, **kwargs):
g = torch.onnx._optimize_trace(g, operator_export_type=OperatorExportTypes.ONNX)
self.assertExpectedGraph(g, *args, **kwargs)
def assertExpectedGraph(self, trace, *args, **kwargs):
if isinstance(trace, torch._C.Graph):
graph = trace
else:
graph = trace.graph()
torch._C._jit_pass_lint(graph)
torch._C._jit_pass_dce(graph)
torch._C._jit_pass_lint(graph)
graph = torch._C._jit_pass_canonicalize(graph)
torch._C._jit_pass_lint(graph)
self.assertExpected(str(graph), *args, **kwargs)
def run_pass(self, name, trace):
if isinstance(trace, torch._C.Graph):
graph = trace
set_graph = False
else:
set_graph = True
graph = trace.graph()
torch._C._jit_pass_lint(graph)
result = getattr(torch._C, '_jit_pass_' + name)(graph)
if result is not None and not isinstance(result, bool):
graph = result
torch._C._jit_pass_lint(graph)
if set_graph:
trace.set_graph(graph)
return graph
def get_frame_vars(self, frames_up):
frame = inspect.currentframe()
if not frame:
raise RuntimeError("failed to inspect frame")
i = 0
while i < frames_up + 1:
frame = frame.f_back
if not frame:
raise RuntimeError("failed to get frame")
i += 1
defined_vars: Dict[str, Any] = {}
defined_vars.update(frame.f_locals)
defined_vars.update(frame.f_globals)
return defined_vars
def assertRaisesRegexWithHighlight(self, exception, regex, highlight):
return _AssertRaisesRegexWithHighlightContext(self, exception, regex, highlight)
def checkScriptRaisesRegex(self, script, inputs, exception, regex,
name=None, outputs=None, capture_output=False,
frames_up=1, profiling=ProfilingMode.PROFILING):
"""
Checks that a given function will throw the correct exception,
when executed with normal python, the string frontend, and the
AST frontend. Logic taken from `checkScript` (see comments there
for details)
"""
with enable_profiling_mode_for_profiling_tests():
# Normal Python
with self.assertRaisesRegex(exception, regex):
if isinstance(script, str):
frame = self.get_frame_vars(frames_up)
the_locals: Dict[str, Any] = {}
execWrapper(script, glob=frame, loc=the_locals)
frame.update(the_locals)
python_fn = frame[name]
else:
python_fn = script
python_fn(*inputs)
# String frontend
with self.assertRaisesRegex(exception, regex):
if isinstance(script, str):
cu = torch.jit.CompilationUnit(script, _frames_up=frames_up)
string_frontend = getattr(cu, name)
else:
source = textwrap.dedent(inspect.getsource(script))
cu = torch.jit.CompilationUnit(source, _frames_up=frames_up)
string_frontend = getattr(cu, script.__name__)
string_frontend(*inputs)
# Python AST frontend
if not isinstance(script, str):
with self.assertRaisesRegex(exception, regex):
ge = torch.jit.script(python_fn)
ge(*inputs)
def checkBailouts(self, model, inputs, expected):
state = model.get_debug_state()
plan = get_execution_plan(state)
num_bailouts = plan.code.num_bailouts()
for i in range(0, num_bailouts):
plan.code.request_bailout(i)
bailout_outputs = model(*inputs)
self.assertEqual(bailout_outputs, expected)
def checkScript(self,
script,
inputs,
name='func',
optimize=True,
inputs_requires_grad=False,
capture_output=False,
frames_up=1,
profiling=ProfilingMode.PROFILING,
atol=None,
rtol=None):
"""
Checks that a given script generates the same output as the Python
version using the given inputs.
"""
with torch.jit.optimized_execution(optimize):
with enable_profiling_mode_for_profiling_tests():
extra_profile_runs = any(isinstance(x, torch.Tensor) and x.requires_grad for x in inputs)
if isinstance(script, str):
# Compile the string to a Script function
# with enable_profiling_mode():
cu = torch.jit.CompilationUnit(script, _frames_up=frames_up)
# Execute the Python function so we can run it later and get its
# outputs
frame = self.get_frame_vars(frames_up)
the_locals: Dict[str, Any] = {}
execWrapper(script, glob=frame, loc=the_locals)
frame.update(the_locals)
python_fn = frame[name]
scripted_fn = getattr(cu, name)
else:
# Check the string frontend first
source = textwrap.dedent(inspect.getsource(script))
self.checkScript(
source,
inputs,
script.__name__,
optimize=optimize,
inputs_requires_grad=inputs_requires_grad,
capture_output=capture_output,
profiling=profiling,
frames_up=2)
# Continue checking the Python frontend
scripted_fn = torch.jit.script(script, _frames_up=1)
python_fn = script
if inputs_requires_grad:
recording_inputs = do_input_map(lambda t: t.detach().requires_grad_(), inputs)
else:
recording_inputs = inputs
if capture_output:
with self.capture_stdout() as script_stdout:
script_outputs = scripted_fn(*recording_inputs)
with self.capture_stdout() as opt_script_stdout:
opt_script_outputs = scripted_fn(*recording_inputs)
with self.capture_stdout() as _python_stdout:
python_outputs = python_fn(*inputs)
if not IS_WINDOWS:
self.assertExpected(script_stdout[0], subname='stdout')
self.assertEqual(python_outputs, opt_script_outputs, atol=atol, rtol=rtol)
else:
# profiling run
script_outputs = scripted_fn(*recording_inputs)
if inputs_requires_grad or extra_profile_runs:
opt_script_outputs = scripted_fn(*recording_inputs)
# optimized run
opt_script_outputs = scripted_fn(*recording_inputs)
if TEST_BAILOUTS:
self.checkBailouts(scripted_fn, inputs, opt_script_outputs)
python_outputs = python_fn(*inputs)
self.assertEqual(python_outputs, script_outputs, atol=atol, rtol=rtol)
self.assertEqual(script_outputs, opt_script_outputs, atol=atol, rtol=rtol)
return scripted_fn
def checkTrace(self, func, reference_tensors, input_tensors=None,
drop=None, allow_unused=False, verbose=False,
inputs_require_grads=True, check_tolerance=1e-5, export_import=True,
_force_outplace=False):
# TODO: check gradients for parameters, not just inputs
def allSum(vs):
# drop allows us to remove some values from ever being used
# to test unused outputs
if drop is not None:
vs = vs[:-drop]
# we don't want all the grad for all the outputs to be the same
# so we multiply each by a constant
return sum(math.log(i + 2) * v.sum() for i, v in enumerate(vs) if v is not None)
if input_tensors is None:
input_tensors = reference_tensors
def flatten_inputs(inputs):
def input_reduce(input, fn, acc):
if isinstance(input, torch.Tensor):
fn(input, acc)
elif isinstance(input, dict):
reduce(lambda acc, key: input_reduce(input[key], fn, acc), input, acc)
else:
reduce(lambda acc, val: input_reduce(val, fn, acc), input, acc)
return acc
return tuple(input_reduce(recording_inputs, lambda t, acc: acc.append(t), []))
nograd_inputs = reference_tensors
if inputs_require_grads:
recording_inputs = do_input_map(lambda t: t.clone().requires_grad_(), reference_tensors)
flattened_recording_inputs = flatten_inputs(recording_inputs)
else:
recording_inputs = reference_tensors
# `check_trace` is set to False because check_trace is run with @no_grad
# Also, `checkTrace` already does all the checks
# against python function
ge = torch.jit.trace(func, input_tensors, check_tolerance=check_tolerance,
_force_outplace=_force_outplace, check_trace=False)
if export_import:
ge = self.getExportImportCopy(ge)
if verbose:
print(ge.graph)
# test no gradients case
outputs = func(*nograd_inputs)
outputs_ge = ge(*nograd_inputs)
self.assertEqual(outputs, outputs_ge)
# test gradients case
outputs = func(*recording_inputs)
if inputs_require_grads:
grads = torch.autograd.grad(allSum(outputs), flattened_recording_inputs,
allow_unused=allow_unused)
outputs_ge = ge(*recording_inputs)
if inputs_require_grads:
grads_ge = torch.autograd.grad(allSum(outputs_ge), flattened_recording_inputs,
allow_unused=allow_unused)
self.assertEqual(outputs, outputs_ge)
if inputs_require_grads:
self.assertEqual(grads, grads_ge)
self.assertEqual(outputs, outputs_ge)
if inputs_require_grads:
self.assertEqual(grads, grads_ge)
# test the grad grad case
outputs = func(*recording_inputs)
l1 = allSum(outputs)
if inputs_require_grads:
grads = torch.autograd.grad(l1, flattened_recording_inputs, create_graph=True,
allow_unused=allow_unused)
if inputs_require_grads:
l2 = (allSum(grads) * l1)
grads2 = torch.autograd.grad(l2, flattened_recording_inputs, allow_unused=allow_unused)
if inputs_require_grads:
recording_inputs = do_input_map(lambda t: Variable(t, requires_grad=True), reference_tensors)
flattened_recording_inputs = flatten_inputs(recording_inputs)
outputs_ge = ge(*recording_inputs)
l1_ge = allSum(outputs_ge)
if inputs_require_grads:
grads_ge = torch.autograd.grad(
l1_ge, flattened_recording_inputs, create_graph=True, allow_unused=allow_unused)
if inputs_require_grads:
l2_ge = (allSum(grads_ge) * l1_ge)
grads2_ge = torch.autograd.grad(l2_ge, flattened_recording_inputs, allow_unused=allow_unused)
self.assertEqual(outputs, outputs_ge)
if inputs_require_grads:
self.assertEqual(grads, grads_ge)
for g2, g2_ge in zip(grads2, grads2_ge):
if g2 is None and g2_ge is None:
continue
self.assertEqual(g2, g2_ge, atol=8e-4, rtol=8e-4)
return ge
def checkModule(self, nn_module, args):
"""
Check that a nn.Module's results in Script mode match eager and that it
can be exported
"""
sm = torch.jit.script(nn_module)
with freeze_rng_state():
eager_out = nn_module(*args)
with freeze_rng_state():
script_out = sm(*args)
self.assertEqual(eager_out, script_out)
self.assertExportImportModule(sm, args)
return sm
class NoTracerWarnContextManager(object):
def __enter__(self):
self.prev = torch._C._jit_get_tracer_state_warn()
torch._C._jit_set_tracer_state_warn(False)
def __exit__(self, *args):
torch._C._jit_set_tracer_state_warn(self.prev)
@contextmanager
def inline_everything_mode(should_inline):
old = torch._C._jit_get_inline_everything_mode()
torch._C._jit_set_inline_everything_mode(should_inline)
try:
yield
finally:
torch._C._jit_set_inline_everything_mode(old)
@contextmanager
def set_fusion_group_inlining(inlining):
old = torch._C._debug_get_fusion_group_inlining()
torch._C._debug_set_fusion_group_inlining(inlining)
try:
yield
finally:
torch._C._debug_set_fusion_group_inlining(old)
# note: not re-entrant, use unnested only
@contextmanager
def disable_autodiff_subgraph_inlining(enabled=True):
torch._C._debug_set_autodiff_subgraph_inlining(not enabled)
try:
yield
finally:
torch._C._debug_set_autodiff_subgraph_inlining(True)
def _inline_everything(fn):
@functools.wraps(fn)
def wrapper(*args, **kwargs):
with inline_everything_mode(True):
fn(*args, **kwargs)
return wrapper
# this exists for forward compatibility reasons temporarily.
# TODO(suo) remove
def _tmp_donotuse_dont_inline_everything(fn):
@functools.wraps(fn)
def wrapper(*args, **kwargs):
with inline_everything_mode(False):
fn(*args, **kwargs)
return wrapper
# make it easy to quicky define/trace a function for these tests
def _trace(*args, **kwargs):
def wrapper(func):
return torch.jit.trace(func, args, **kwargs)
return wrapper
def enable_cpu_fuser(fn):
def wrapper(*args, **kwargs):
torch._C._jit_override_can_fuse_on_cpu_legacy(True)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_set_te_must_use_llvm_cpu(False)
try:
fn(*args, **kwargs)
finally:
torch._C._jit_override_can_fuse_on_cpu_legacy(False)
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_set_te_must_use_llvm_cpu(True)
return wrapper
def enable_cpu_fuser_if(cond):
if cond:
return enable_cpu_fuser
else:
def noop_fuser(fn):
def wrapper(*args, **kwargs):
return fn(*args, **kwargs)
return wrapper
return noop_fuser
def get_forward(c):
return c._get_method('forward')
def get_forward_graph(c):
return c._get_method('forward').graph
def get_module_method(m, module, method):
return m._c.getattr(module)._get_method(method)
def attrs_with_prefix(module, prefix):
return [x for x, _ in module._modules._c.items()
if x.startswith(prefix)]
def warmup_backward(f, *args):
profiling_count = 3
results = []
for i in range(profiling_count):
if len(args) > 0:
r = torch.autograd.grad(f, *args)
results.append(r)
else:
f.backward(retain_graph=True)
return results
# TODO: Remove me once https://bugs.python.org/issue42666 is resolved
def make_global(*args):
for arg in args:
setattr(sys.modules[arg.__module__], arg.__name__, arg)
# Helper function to eval Python3 code without causing a syntax error for
# this file under py2
def _get_py3_code(code, fn_name):
with tempfile.TemporaryDirectory() as tmp_dir:
script_path = os.path.join(tmp_dir, 'script.py')
with open(script_path, 'w') as f:
f.write(code)
spec = importlib.util.spec_from_file_location(fn_name, script_path)
module = importlib.util.module_from_spec(spec)
loader = spec.loader
assert isinstance(loader, Loader) # Assert type to meet MyPy requriement
loader.exec_module(module)
fn = getattr(module, fn_name)
return fn
class TensorExprTestOptions():
def __init__(self):
self.old_profiling_executor = torch._C._jit_set_profiling_executor(True)
self.old_profiling_mode = torch._C._get_graph_executor_optimize(True)
self.old_cpu_fuser_state = torch._C._jit_can_fuse_on_cpu()
self.old_gpu_fuser_state = torch._C._jit_can_fuse_on_gpu()
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)
self.texpr_fuser_state = torch._C._jit_texpr_fuser_enabled()
torch._C._jit_set_texpr_fuser_enabled(True)
self.old_fusion_inlining = torch._C._debug_get_fusion_group_inlining()
torch._C._debug_set_fusion_group_inlining(False)
self.old_te_must_use_llvm_cpu = torch._C._jit_get_te_must_use_llvm_cpu()
torch._C._jit_set_te_must_use_llvm_cpu(False)
self.old_nvfuser = torch._C._jit_set_nvfuser_enabled(False)
def restore(self):
torch._C._jit_set_profiling_executor(self.old_profiling_executor)
torch._C._get_graph_executor_optimize(self.old_profiling_mode)
torch._C._jit_set_texpr_fuser_enabled(self.texpr_fuser_state)
torch._C._jit_override_can_fuse_on_gpu(self.old_gpu_fuser_state)
torch._C._jit_override_can_fuse_on_cpu(self.old_cpu_fuser_state)
torch._C._debug_set_fusion_group_inlining(self.old_fusion_inlining)
torch._C._jit_set_te_must_use_llvm_cpu(self.old_te_must_use_llvm_cpu)
torch._C._jit_set_nvfuser_enabled(self.old_nvfuser)
def clone_inputs(args):
inputs: List[Union[torch.Tensor, List[torch.Tensor]]] = []
for arg in args:
if isinstance(arg, torch.Tensor):
inputs.append(arg.detach().clone())
elif is_iterable_of_tensors(arg):
inputs.append([t.detach().clone() for t in arg])
else:
inputs.append(arg)
return inputs
def get_traced_sample_variant_pairs(device, dtype, op):
# tuples of (variant, sample)
outputs: List[Tuple[Any, Any]] = []
samples = op.sample_inputs(device, dtype)
# Acquires variants to test
func = op.get_op()
method = op.get_method()
variants = {
# TODO: inplace tests currently fail, fix and add inplace variant
'function': func, 'method': method,
}
# TODO: find better way to standardize on op registration itself..
has_fake_function = op.name in ["resize_", 'resize_as_']
if has_fake_function:
variants = {'method': getattr(torch.Tensor, op.name)}
# In eager mode, these ops can take (Tensor, bool) args; but in
# JIT they can only take (Tensor, Scalar), and bool is not a
# scalar in the JIT type system. So to test these in JIT, the bool
# is converted to an int for the test.
ops_with_unsupported_bool_args = [
{
"name": "div_floor_rounding",
"arg_idx": [0],
},
{
"name": "div_no_rounding_mode",
"arg_idx": [0],
},
{
"name": "div_trunc_rounding",
"arg_idx": [0],
},
{
"name": "index_fill",
"arg_idx": [2],
},
{
"name": "full_like",
"arg_idx": [0],
},
{
"name": "mul",
"arg_idx": [0],
},
{
"name": "new_full",
"arg_idx": [1],
},
]
# doesn't support tracing
if has_fake_function:
return outputs
for sample in samples:
for func_type, variant in variants.items():
if variant is None:
continue
if is_lambda(variant):
continue
matching_ops = filter(lambda x: op.formatted_name == x["name"], ops_with_unsupported_bool_args)
for op_data in matching_ops:
for idx in op_data["arg_idx"]:
args = list(sample.args)
if len(sample.args) > idx and isinstance(sample.args[idx], bool):
args[idx] = int(args[idx])
sample.args = tuple(args)
outputs.append((variant, sample))
return outputs
# types.LambdaType gave false positives
def is_lambda(lamb):
LAMBDA = lambda: 0 # noqa: E731
return isinstance(lamb, type(LAMBDA)) and lamb.__name__ == LAMBDA.__name__
|