File: core.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (2699 lines) | stat: -rw-r--r-- 103,075 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
import collections
import collections.abc
import math
import operator
import unittest
from dataclasses import asdict, dataclass
from enum import Enum
from functools import partial
from itertools import product
from typing import Any, Callable, Iterable, List, Optional, Tuple

from torchgen.utils import dataclass_repr

import torch
from torch.testing import make_tensor
from torch.testing._internal.common_device_type import (
    skipCPUIfNoFFT,
    tol,
    toleranceOverride,
)
from torch.testing._internal.common_dtype import (
    _dispatch_dtypes,
    floating_and_complex_types,
    floating_and_complex_types_and,
    floating_types,
)
from torch.testing._internal.common_utils import (
    is_iterable_of_tensors,
    noncontiguous_like,
    TEST_WITH_ROCM,
    torch_to_numpy_dtype_dict,
)
from torch.testing._internal.opinfo import utils

# Reasonable testing sizes for dimensions
L = 20
M = 10
S = 5
XS = 3

# Unique value to distinguish default from anything else
_NOTHING = object()


# Extension of getattr to support qualified names
# e.g. _getattr_qual(torch, 'linalg.norm') -> torch.linalg.norm
def _getattr_qual(obj, name, default=_NOTHING):
    try:
        for path in name.split("."):
            obj = getattr(obj, path)
        return obj
    except AttributeError:
        if default is not _NOTHING:
            return default
        else:
            raise


class DecorateInfo(object):
    """Describes which test, or type of tests, should be wrapped in the given
    decorators when testing an operator. Any test that matches all provided
    arguments will be decorated. The decorators will only be applied if the
    active_if argument is True."""

    __slots__ = [
        "decorators",
        "cls_name",
        "test_name",
        "device_type",
        "dtypes",
        "active_if",
    ]

    def __init__(
        self,
        decorators,
        cls_name=None,
        test_name=None,
        *,
        device_type=None,
        dtypes=None,
        active_if=True,
    ):
        self.decorators = (
            list(decorators)
            if isinstance(decorators, collections.abc.Sequence)
            else [decorators]
        )
        self.cls_name = cls_name
        self.test_name = test_name
        self.device_type = device_type
        self.dtypes = dtypes
        self.active_if = active_if

        # Validate dtypes
        if self.dtypes is not None:
            for dtype in self.dtypes:
                assert isinstance(dtype, torch.dtype)

    def is_active(self, cls_name, test_name, device_type, dtype):
        return (
            self.active_if
            and (self.cls_name is None or self.cls_name == cls_name)
            and (self.test_name is None or self.test_name == test_name)
            and (self.device_type is None or self.device_type == device_type)
            and (self.dtypes is None or dtype in self.dtypes)
        )


# FIXME
# Note: historically the 'input' kwarg had to be a Tensor or TensorList, but we are trying
#   to support scalar inputs, too. Some tests still depend on 'input' being a Tensor
#   or TensorList, however.
class SampleInput(object):
    """Represents sample inputs to a function."""

    __slots__ = [
        "input",
        "args",
        "kwargs",
        "output_process_fn_grad",
        "broadcasts_input",
        "name",
    ]

    def __init__(
        self,
        input,
        *var_args,
        args=None,
        kwargs=None,
        output_process_fn_grad=None,
        broadcasts_input=None,
        name=None,
        **var_kwargs,
    ):
        # input is the first input to the op and is typically either a Tensor or TensorList (Sequence[Tensor]).
        # This follows the typical pattern where for Tensor inputs op(t, ...) = t.op(...).
        self.input = input

        # Allow calling either as SampleInput(input, args=args, kwargs=kwargs), or as
        # SampleInput(input, *args, **kwargs) but not to mix the two forms
        if args is not None or kwargs is not None:
            assert (
                not var_args and not var_kwargs
            ), """
A SampleInput can be constructed "naturally" with *args and **kwargs or by
explicitly setting the "args" and "kwargs" paremeters, but the two
methods of construction cannot be mixed!"""
        elif len(var_args) or len(var_kwargs):
            assert (
                output_process_fn_grad is None
                and broadcasts_input is None
                and name is None
            ), """
A SampleInput constructed "naturally" with *args and **kwargs
cannot specify additional metadata in keyword arguments"""

        self.args = args if args is not None else var_args
        assert isinstance(self.args, tuple)
        self.kwargs = kwargs if kwargs is not None else var_kwargs
        assert isinstance(self.kwargs, dict)

        self.output_process_fn_grad = (
            output_process_fn_grad
            if output_process_fn_grad is not None
            else lambda x: x
        )
        self.name = name if name is not None else ""

        # Specifies if `self.input` is broadcasted or not,
        # given that the operator supports broadcasting.
        # This field is used to verify the behavior for inplace variant.
        #
        # If a SampleInput is marked with `broadcasts_input=True`,
        # it is verified that we get a `RuntimeError` with this sample,
        # and inplace variant. Also inplace grad{grad} tests are skipped,
        # for such inputs (as they will error out otherwise).
        self.broadcasts_input = (
            broadcasts_input if broadcasts_input is not None else False
        )

    def with_metadata(
        self, *, output_process_fn_grad=None, broadcasts_input=None, name=None
    ):
        if output_process_fn_grad is not None:
            self.output_process_fn_grad = output_process_fn_grad
        if broadcasts_input is not None:
            self.broadcasts_input = broadcasts_input
        if name is not None:
            self.name = name
        return self

    def _repr_helper(self, formatter):
        # Helper function to return the details of the SampleInput as `str`
        # It consolidates all the fields of SampleInput and allows,
        # formatting the fields like `input`, `args`, etc with `formatter`
        # callable to customize the representation.
        # Look at `summary` method for example.
        arguments = [
            f"input={formatter(self.input)}",
            f"args={formatter(self.args)}",
            f"kwargs={formatter(self.kwargs)}",
            f"output_process_fn_grad={self.output_process_fn_grad}",
            f"broadcasts_input={self.broadcasts_input}",
            f"name={repr(self.name)}",
        ]

        return f'SampleInput({", ".join(a for a in arguments if a is not None)})'

    def __repr__(self):
        return self._repr_helper(lambda x: x)

    def summary(self):
        # Returns the SampleInput details in a more
        # friendly format.
        # It formats `Tensor` and `TensorList`
        # in a more condensed representation.
        def formatter(arg):
            # Format any instance of `Tensor` (standalone, in list, or in dict)
            # by Tensor[TensorShape]
            # Eg. Tensor with shape (3, 4) is formatted as Tensor[3, 4]
            if isinstance(arg, torch.Tensor):
                shape = str(tuple(arg.shape)).replace("(", "").replace(")", "")
                return f"Tensor[{shape}]"
            elif isinstance(arg, dict):
                return {k: formatter(v) for k, v in arg.items()}
            elif is_iterable_of_tensors(arg):
                return "TensorList[" + ", ".join(map(formatter, arg)) + "]"
            elif isinstance(arg, (list, tuple)):  # Handle list, tuple
                return "(" + ",".join(map(formatter, arg)) + ")"

            return repr(arg)

        return self._repr_helper(formatter)

    # Applies the transform f(t) -> t to each tensor and dtype in the SampleInput
    def transform(self, f):
        def tt(t):
            def _tt(t):
                with torch.no_grad():
                    return f(t)

            if isinstance(t, torch.Tensor):
                return _tt(t)
            elif isinstance(t, torch.dtype):
                return _tt(t)
            elif isinstance(t, list):
                return list(map(tt, t))
            elif isinstance(t, tuple):
                return tuple(map(tt, t))
            elif isinstance(t, dict):
                return {k: tt(v) for k, v in t.items()}
            else:
                return t

        sample_tt_input, tt_args, tt_kwargs = (
            tt(self.input),
            tt(self.args),
            tt(self.kwargs),
        )

        # Note the transformed SampleInput assumes metadata like output_process_fn_grad is still valid!
        return SampleInput(
            sample_tt_input,
            args=tt_args,
            kwargs=tt_kwargs,
            output_process_fn_grad=self.output_process_fn_grad,
            broadcasts_input=self.broadcasts_input,
            name=self.name + "_transformed",
        )

    # Returns the NumPy version of the sample input object in the form of a tuple: (input, args, kwargs)
    # Converts tensors to ndarrays by calling .detach().cpu().numpy() on them
    # Converts dtypes by remapping them using torch_to_numpy_dtype_dict
    def numpy(self):
        def to_numpy(t):
            if isinstance(t, torch.Tensor):
                if t.dtype is torch.bfloat16:
                    return t.detach().cpu().to(torch.float32).numpy()
                if t.dtype is torch.chalf:
                    return t.detach().cpu().to(torch.cfloat).numpy()
                return t.detach().cpu().numpy()
            elif isinstance(t, torch.dtype):
                return torch_to_numpy_dtype_dict[t]

            return t

        return self.transform(to_numpy)

    def noncontiguous(self):
        def to_noncontiguous(t):
            if isinstance(t, torch.Tensor):
                return noncontiguous_like(t)
            elif isinstance(t, torch.dtype):
                return t

            return t

        return self.transform(to_noncontiguous)


NumericsFilter = collections.namedtuple("NumericsFilter", ["condition", "safe_val"])


class ErrorInput(object):
    """
    A SampleInput that will cause the operation to throw an error plus information
    about the resulting error.
    """

    __slots__ = ["sample_input", "error_type", "error_regex"]

    def __init__(self, sample_input, *, error_type=RuntimeError, error_regex):
        self.sample_input = sample_input
        self.error_type = error_type
        self.error_regex = error_regex


class AliasInfo(object):
    """Class holds alias information. For example, torch.abs ->
    torch.absolute, torch.Tensor.absolute, torch.Tensor.absolute_
    """

    def __init__(self, alias_name):
        self.name = alias_name
        self.op = _getattr_qual(torch, alias_name)
        self.method_variant = getattr(torch.Tensor, alias_name, None)
        self.inplace_variant = getattr(torch.Tensor, alias_name + "_", None)

    def __call__(self, *args, **kwargs):
        return self.op(*args, **kwargs)


# Note [OpInfos]
# ~~~~~~~~~~~~~~
#
# The majority of this note was written shortly after the PyTorch 1.9 release.
# If you notice it's out-of-date or think it could be improved then please
# file an issue.
#
# See also: the OpInfo tracker (https://github.com/pytorch/pytorch/issues/54261)
# See also: "Writing Test Templates" in common_device_type.py to learn how to
#   parametrize a test template using OpInfos.
# See also: PyTorch's GitHub wiki on running and writing tests
#   https://github.com/pytorch/pytorch/wiki/Running-and-writing-tests
# See also: ModuleInfos, OpInfo's sister class, defined in common_modules.py
#
# An OpInfo is a collection of metadata related to a PyTorch operator. This
#   metadata is used to generate tests that validate properties of the operator,
#   like if it implements the correct gradient formula.
#
# WHY OPINFOS?
# ~~~~~~~~~~~~
#
# OpInfos are principally intended to do three things:
#
#   1) to allow systematic testing over all PyTorch's operators
#   2) to simplify operating testing by autogenerating many tests
#   3) to allow systems (like autograd, torchscript, fx, nnc...) to test
#        against every PyTorch operator
#
# All these goals are still a work in progress. Not every operator has an
#   OpInfo, and some operator tests that could be automatically generated
#   still have to be written manually.
#
# It's helpful to understand that OpInfos are both about test simplification and
#   modularity. PyTorch is a complicated framework with many interrelated systems,
#   too many for any one person to keep track of. An OpInfo can be thought of as the
#   interface between an operator implementer and those other systems. Instead of
#   requiring the implementer of torch.foo understand how to test its forward
#   mode AD or NNC support that's typically handled automatically just by
#   defining an OpInfo.
#
# It's often surprising to OpInfo writers that just implementing an OpInfo
#   typically can't verify an operator is actually implemented correctly:
#
# "If an OpInfo doesn't validate my op works as expected, what's the point
#     of it?"
#
# But the point of is the above. OpInfos are intended to let you focus on testing
#   the operator logic you're familiar with instead of having to write tests for
#   how the operator interacts with each of PyTorch's many systems.
#
# And, OK, it turns out that SOMETIMES just writing an OpInfo DOES
#   validate your op works as expected, but that's only in special
#   cases. See below for details.
#
# WHAT'S AN OPINFO?
# ~~~~~~~~~~~~~~~~~
#
# So what is an OpInfo? It's a Python class that describes an operator's properties,
#   like which dtypes it supports on the CPU and whether it has any aliases.
#   These properties can be divided into three categories:
#
#   1) Metadata describing the operator, like the operator's name and if it
#     "supports" the out kwarg.
#   2) Test directives, like "skips" that tell the test suite to skip some
#     tests.
#   3) A "sample inputs" function that generates valid inputs for the operator.
#
# OpInfo attributes are described in more detail below.
#
# THE SAMPLE INPUTS FUNCTION
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# The "sample inputs" function merits special elaboration. This function is
#   crucial to testing with OpInfos. A typical OpInfo test has to treat the operator
#   as a black box. There's no structure for the test to understand or exploit.
#   Without "sample inputs" it wouldn't even know how to call the OpInfo's
#   operator. The sample input function saves the day by providing different
#   "SampleInputs" that can be used to call the operator. A sample input
#   function should have the following signature:
#
#   def sample_inputs_foo(op_info, device, dtype, requires_grad, **kwargs):
#
#   And should return an iterable of SampleInputs (see the class description
#   above). Each SampleInput defines an "input", "args", "kwargs", an
#   "output_process_fn_grad" function, the "broadcasts_input" bool and a
#   "name".
#
#   All the "sample_inputs" functions are invoked within a `torch.no_grad()`
#   environment for efficiency and correctness. As such remember to set the
#   "requires_grad" flag on the inputs **after** performing any transformations
#   on them.
#
# The "input" is the first argument to the operator, or the tensor that
#   the method or inplace variants of the operator should be called on, and
#   should be on the requested device, of the requested dtype, and its
#   requires_grad attribute should be set to the requires_grad argument.
#
# "args" should contain positional arguments, and "kwargs" keyword arguments.
#
# "output_process_fn_grad" has an interesting name. It's a function that maps
#   the operator's output (when given the input, args, and kwargs) to the
#   portion of the output to gradcheck. For example, consider an operator
#   like torch.linalg.slogdet
#   (https://pytorch.org/docs/master/generated/torch.linalg.slogdet.html).
#   This operator returns a tuple of two tensors, but the first tensor
#   cannot be backwarded through. Its "output_process_fn_grad" filters
#   this output tuple to just the second argument, which we can call backward
#   on. Functions that produce a single tensor can ignore this argument.
#
# "broadcasts_input" is a bool indicated if the SampleInput causes the operator
#   to broadcast the "input" argument. This is important for tests to understand
#   because inplace variants of operations throw a runtime error if they
#   would broadcast their input arguments, so tests that work with inplace
#   variants filter SampleInputs that broadcast their input.
#
# "name" is a string that's just used for debugging. It appears when printing
#   the SampleInput.
#
# Sample inputs are designed to be used with many tests, some
#   that are very time consuming, so they should be a small
#   set with small tensors. An elaborated set of sample inputs
#   can be specified using the "reference_inputs_func" attribute.
#   The "reference inputs" for an operation are an extended
#   set of sample inputs that can more exhausively test an
#   operator. They are used by only a few tests that are careful
#   not to take too long to run. Adding reference inputs
#   is highly encouraged!
#
# THE (OPTIONAL) ERROR INPUTS FUNCTION
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# OpInfos may optionally specify "error inputs" through an error function. If
#   specified test_errors in test_ops.py will call the op with these inputs
#   and validate that the desired error is thrown.
#
# Error inputs automate a common testing pattern where multiple inputs are
#   passed to an operation and the errors they thrown are reviewed. Tests
#   written in this style should be ported to the new OpInfo pattern.
#
# Error inputs are specified using the ErrorInputs class, which contains
#   a SampleInput (see above) and data about the expected error.
#
# OPINFO FILE ORGANIZATION
# ~~~~~~~~~~~~~~~~~~~~~~~~
#
# All OpInfos are currently defined in this file. Most OpInfo tests are defined
#   in test_ops.py, but some system-specific tests are defined in those
#   systems' test files, and subclass-specific tests are defined in the test
#   file that corresponds to that subclass (see the below).
#   Expect a reorganization in the future.
#
# WHAT'S TESTED?
# ~~~~~~~~~~~~~~
#
# Every OpInfo in the op_db sequence has the following properties validated in
# test_ops.py:
#
#   - that its supported dtypes are specified correctly
#   - that the operation produces the same results when called with noncontiguous inputs
#   - that it supports the out= argument properly (if it allows out=),
#       see https://github.com/pytorch/pytorch/wiki/Developer-FAQ#how-does-out-work-in-pytorch
#   - that it works with the conjugate view bit properly
#   - that its function, method, and inplace variants perform the same operation
#       (that is, that torch.add, torch.Tensor.add, and torch.Tensor.add_ all
#       do the same thing).
#   - that its inplace variant preserves the input's storage
#   - that its gradient formula is implemented correctly, and that it supports
#       gradgrad and complex grad and gradgrad and forward mode AD properly for
#       the op's function and inplace variants (method variants are skipped
#       to reduce test time).
#   - that the operation performs the same operation when traced or scripted
#       using the jit
#   - that the operation is autodifferentiated by the jit as expected
#   - that the operator's aliases, if any, perform the same operation and that
#       the jit understands the alias
#   - that the operator throws the correct errors (if error_inputs is defined)
#   - that the operator produces the same results as a NumPy reference (if ref is defined)
#   - that the operator produces the same results as a NumPy reference on an extended
#       set of "reference inputs" (if both ref and reference_inputs_func are defined)
#       (NOTE: elementwise unary and elementwise binary OpInfos do this even if only
#         ref is defined, because they effectively autogenerate reference inputs)
#   - that the operator works on different CUDA devices
#
# Additional OpInfo tests are in test_jit_fuser_te.py, test_fx_experimental.py,
#   and test_fx.py. These tests validate that operators work with NNC and FX
#   as expected.
#
# For performance, some of the above tests may only run on the first
#   SampleInput returned by an OpInfo's sample input function.
#
# In addition to these tests, some subclasses (discussed in the next section)
#   define additional tests.
#
# Critically, as mentioned above, what's not necessarily tested is that the operator
#   works as expected. When implementing an OpInfo an engineer must still
#   typically write one or more tests validating the operator's behavior.
#   The exception to this is if reference testing is sufficient, or if
#   the operation belongs to an OpInfo subclass that has more exhaustive
#   operator testing. Elementwise unary and elementwise binary operators,
#   in particular, usually don't require additional testing beyond
#   writing an Opinfo.
#
#
# OPINFO (SUB)CLASSES
# ~~~~~~~~~~~~~~~~~~~
#
# In addition to the OpInfo base class there are several specialized OpInfo
#   subclasses. For example, the UnaryUfuncInfo subclass is used for
#   unary elementwise operations. These operations have a common structure
#   that test_unary_ufuncs.py exploits with additional automated testing.
#   The automated testing in test_unary_ufuncs.py is so thorough, comparing
#   the operator to a NumPy reference function on a plethora of values, that
#   just implementing an OpInfo for a unary elementwise operation is often
#   sufficient testing.
#
# The ForeachFuncInfo is another OpInfo subclass that is hyper-specialized to a
#   very unique class of operations. These OpInfos aren't included in the
#   op_db sequence and have their own tests.
#
# Other OpInfo subclasses, like SpectralFuncInfo, are just for convenience
# when writing OpInfos.
#
# TESTING A NEW OPERATOR
# ~~~~~~~~~~~~~~~~~~~~~~
#
# If you're adding a new operator to any of the following namespaces:
#   - torch
#   - torch.fft
#   - torch.linalg,
#   - torch.special
#   - torch.nn.functional
# then you should typically add an OpInfo for it.
#
# As mentioned a couple times above, implementing an OpInfo is not
#   usually sufficient testing (unless the operator is a unary or binary elementwise
#   operator). The OpInfo will only test the properties described in the
#   "WHAT'S TESTED" section. It DOES NOT necessarily verify that the operator is
#   implemented correctly.
#
# TIPS FOR WRITING AN OPINFO AND OPINFO TESTS
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# Writing an OpInfo can be a little daunting. Since the point of an OpInfo is to
#   be consumed by a variety of systems it can be hard to understand how to
#   deal with test failures or how to set the OpInfo metadata properly.
#
# Before adding an OpInfo it helps to look at other OpInfos. A sample inputs
#   function must be defined, and the operator's dtypes must be specified.
#   Once that's done you should run the operator's tests in test_ops.py
#   (these can be filtered using the "-k" argument in pytest). Tests that
#   fail should provide an error message that describes what to change about
#   your OpInfo. You don't need to worry about changing an OpInfo's default
#   values unless a test yells at you.
#
# Similarly, if you're writing a test that consumes OpInfos then it's critical
#   your test provides a clear error message describing what to do when it
#   fails. You should not assume the OpInfo implementer is familiar with your
#   system.
#
# If you see a confusing error message while developing an OpInfo then please
#   file an issue describing what happened.
#
# This trial-and-error approach to writing an OpInfo can be frustrating,
#   but it's probably necessary as long as OpInfos don't require
#   learning about all the systems that consume them. One thing that can help
#   is the get_supported_dtypes() function defined in utils.py. This
#   function can be used to programmatically specify the dtypes an operator
#   supports, and is especially useful if writing an OpInfo on a machine
#   without a CUDA device. See its documentation for more details.
#
# THE FUTURE OF OPINFOS AND OPINFO TESTING
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# In the future we expect OpInfo coverage to improve and cover
#   the great majority of PyTorch's (public) operators.
#

# Classes and methods for the operator database
@dataclass
class OpInfo(object):
    """Operator information and helper functions for acquiring it."""

    # the string name of the function
    name: str

    # An optional reference function that accepts ndarrays (AKA "NumPy arrays").
    # If given, the op will be compared with its reference on each of its sample inputs.
    ref: Optional[Callable] = None

    # the following metadata describes the operator, its variants, and its aliases, if any

    # iterable of aliases, e.g. ("absolute",) for torch.abs
    aliases: Iterable = None

    # additional string to include in the test name
    # this is useful when an op needs multiple OpInfos,
    # like divide does, often because it's really several
    # different ops behind the scenes
    variant_test_name: str = ""

    # the function variant of the operation, populated as torch.<name> if None
    op: Callable = None

    # allows the method variant of this operation to be specified as follows:
    # - if _NOTHING (default), then the OpInfo attempts to discover the variant using its name
    # - if None, then the OpInfo explicitly specifies is has no associated method
    # - if a Callable, then that callable should be the method associated with this operation
    method_variant: Callable = _NOTHING

    # allows the inplace variant of this operation to be specified as follows:
    # - if _NOTHING (default), then the OpInfo attempts to discover the variant using its name
    # - if None, then the OpInfo explicitly specifies is has no associated inplace variant
    # - if a Callable, then that callable should be the inplace variant associated with this operation
    inplace_variant: Callable = _NOTHING

    # allows the operator variant of this operation to be specified as follows:
    # - if _NOTHING (default), then the OpInfo attempts to discover the variant using its name
    # - if None, then the OpInfo explicitly specifies is has no associated operator
    # - if a Callable, then that callable should be the operator associated with this operation
    operator_variant: Callable = _NOTHING

    # allows the inplace operator variant of this operation to be specified as follows:
    # - if _NOTHING (default), then the OpInfo attempts to discover the variant using its name
    # - if None, then the OpInfo explicitly specifies is has no associated inplace operator
    # - if a Callable, then that callable should be the inplace operator associated with this operation
    inplace_operator_variant: Callable = _NOTHING

    # the following metadata are test directives for skipping or modifying tests

    # information about which tests to skip
    skips: Tuple = tuple()

    # decorators to apply to generated tests
    decorators: Tuple = tuple()

    # the following are pointers to functions to generate certain classes of inputs

    # function to generate sample inputs with strided layouts
    sample_inputs_func: Callable = None

    # function to generate a more thorough set of samples inputs with strided layouts
    reference_inputs_func: Callable = None

    # function to generate inputs that will throw errors
    error_inputs_func: Callable = None

    # function to generate sample inputs with sparse coo layouts
    sample_inputs_sparse_coo_func: Callable = None

    # function to generate sample inputs with sparse csr layouts
    sample_inputs_sparse_csr_func: Callable = None

    # function to generate sample inputs with sparse csc layouts
    sample_inputs_sparse_csc_func: Callable = None

    # function to generate sample inputs with sparse bsr layouts
    sample_inputs_sparse_bsr_func: Callable = None

    # function to generate sample inputs with sparse bsc layouts
    sample_inputs_sparse_bsc_func: Callable = None

    # the following metadata relates to dtype support and is tested for correctness in test_ops.py

    # dtypes this function works with on the CPU,
    # inherited by other device types that don't specify their own dtypes
    dtypes: _dispatch_dtypes = None

    # the following dtypesIf... options override the dtypes value on their respective device types

    # dtypes this function is expected to work with on CUDA
    dtypesIfCUDA: _dispatch_dtypes = None

    # dtypes this function is expected to work with on ROCM
    dtypesIfROCM: _dispatch_dtypes = None

    # backward dtypes this function is expected to work with
    backward_dtypes: _dispatch_dtypes = None

    # backward dtypes this function is expected to work with on CUDA
    backward_dtypesIfCUDA: _dispatch_dtypes = None

    # backward dtypes this function is expected to work with on ROCM
    backward_dtypesIfROCM: _dispatch_dtypes = None

    # the following metadata describes the operators out= support

    # whether the op supports the out kwarg
    # defaults to True, if the op does not allow the out kwarg or
    # supports it incorrectly then test_out in test_ops.py should fail
    supports_out: bool = True

    # the following metadata relates to autograd support
    # whether the operation supports backward mode AD
    # if true, gradient correctness is tested in test_ops.py
    # using the op's sample inputs
    supports_autograd: bool = True

    # whether the op supports second order gradients
    # if true, gradgrad correctness is tested in test_ops.py
    # defaults to support_autograd's value
    # TODO: rename this to supports_bwgrad_bwgrad to be consistent with below
    supports_gradgrad: bool = None

    # whether the ops supports second order gradients via
    # forward-over-reverse. If True, forward-over-reverse gradgrad correctness
    # is tested. If False, test that forward grad is not implemented.
    # Defaults to False.
    supports_fwgrad_bwgrad: bool = False

    # whether the operation supports inplace autograd
    # if true, tested in test_ops.py
    # defaults to supports_autograd's value
    supports_inplace_autograd: bool = None

    # Whether the operation support forward mode AD
    # If the value is True, we check that the gradients are correct
    # If the value is False, we test that forward grad is not implemented
    supports_forward_ad: bool = False

    # Whether the operation has a varargs variant
    # (e.g. functions like ones, zeros, methods like view, permute)
    supports_varargs: bool = False

    # wrapper function for gradcheck
    gradcheck_wrapper: Callable = lambda op, *args, **kwargs: op(*args, **kwargs)

    # whether to check batched grad when doing gradcheck
    # defaults to support_autograd's value
    check_batched_grad: bool = None

    # whether to check batched grad grad when doing gradgradcheck
    # default's to support_gradgrad's value
    check_batched_gradgrad: bool = None

    # whether to check batched forward grad when doing gradcheck
    # defaults to the value of `supports_forward_ad`
    check_batched_forward_grad: bool = None

    # whether to check batched forward grad when doing gradcheck
    # defaults to the value of `check_batched_forward_grad`
    check_inplace_batched_forward_grad: bool = None

    # tolerance for nondeterminism while performing gradcheck
    gradcheck_nondet_tol: float = 0.0

    # Whether to use the fast implmentation for gradcheck/gradgradcheck.
    # When set to None, defers to the default value provided by the wrapper
    # function around gradcheck (testing._internal.common_utils.gradcheck)
    gradcheck_fast_mode: bool = None

    # the following metadata relates to JIT support and is tested for correctness in test_ops.py

    # name of the corresponding aten:: operator
    aten_name: str = None

    # if this is a composite implicit autograd op, the decomposed op
    decomp_aten_name: Optional[str] = None

    # name of the corresponding aten:: operator for backwards
    aten_backward_name: Optional[str] = None

    # if a op's aten::node is expected to be symbolically autodiffed
    assert_autodiffed: bool = False

    # a list of strings with node names that are expected to be in a
    # DifferentiableGraph when autodiffed. Ex: ['aten::add', 'aten::mm'],
    # default is populated to be ['aten::(name of Python operator)']
    autodiff_nonfusible_nodes: List[str] = None

    # a list of strings with node names that are expected to be in FusionGroups
    # inside of DifferentiableGraphs when this operation is autodiffed.
    # Ex: ['aten::add', 'aten::mm'], defaults to an empty list
    # Note: currently no ops use fusible nodes
    autodiff_fusible_nodes: List[str] = None

    # the following metadata relates to sparse support and is used in test_sparse.py

    # whether the op supports sparse inputs
    supports_sparse: bool = False

    # only run tracing tests
    supports_scripting: bool = True

    # if the operator can be traced
    supports_tracing: bool = True

    # the following metadata relates to sparse csr support and is used in test_sparse_csr.py

    # whether the op supports sparse csr inputs
    supports_sparse_csr: bool = False
    # whether the op supports sparse csc inputs
    supports_sparse_csc: bool = False
    # whether the op supports sparse bsr inputs
    supports_sparse_bsr: bool = False
    # whether the op supports sparse bsc inputs
    supports_sparse_bsc: bool = False

    # the following metadata relates to complex support and is checked in test_ops.py

    test_conjugated_samples: bool = True

    test_neg_view: bool = True

    # assert that jit shape analysis fully propagates shape
    assert_jit_shape_analysis: bool = False

    # the following metadata relates to ExpandedWeights support and is checked in test_expanded_weights.py

    supports_expanded_weight: bool = False

    is_factory_function: bool = False

    def __post_init__(self):
        self._original_opinfo_args = asdict(self).copy()

        assert self.dtypes is not None, "OpInfo for {0} has no dtypes!".format(
            self.name
        )

        dtypes_args = (self.dtypes, self.dtypesIfCUDA, self.dtypesIfROCM)

        # Validates the dtypes are generated from the dispatch-related functions
        for dtype_list in dtypes_args:
            assert isinstance(dtype_list, (_dispatch_dtypes, type(None)))

        if self.aten_name is None:
            self.aten_name = self.name

        # Attribute to verify dynamic_dtypes are used.
        self.dynamic_dtypes = any(
            map(
                lambda dtypes: isinstance(dtypes, utils._dynamic_dispatch_dtypes),
                dtypes_args,
            )
        )

        if self.dynamic_dtypes:
            # Make sure `dtyesIfCUDA` is dynamic, if dynamic dispatch is used for CPU
            # This is because, below we set dtypesIfCUDA to dtypes if they are None.
            assert isinstance(self.dtypesIfCUDA, utils._dynamic_dispatch_dtypes), (
                f"To use dynamic dypes for operator {self.name}, "
                "acquire the dtypes dynamically for argument `dtypesIfCUDA`."
                "This is to ensure that CUDA dtypes are acquired correctly as they"
                "differ from CPU dtypes occasionally"
            )

        self.dtypes = set(self.dtypes)

        # NOTE: backward dtypes must be acquired before forward dtypes
        #   since they fallback to explicit (not implicit!) specifications of
        #   forward dtypes
        self.backward_dtypesIfROCM = (
            set(self.backward_dtypesIfROCM)
            if self.backward_dtypesIfROCM is not None
            else (
                self.backward_dtypesIfCUDA
                if self.backward_dtypesIfCUDA is not None
                else self.backward_dtypes
                if self.backward_dtypes is not None
                else self.dtypesIfROCM
                if self.dtypesIfROCM is not None
                else self.dtypesIfCUDA
                if self.dtypesIfCUDA is not None
                else self.dtypes
            )
        )
        self.backward_dtypesIfCUDA = (
            set(self.backward_dtypesIfCUDA)
            if self.backward_dtypesIfCUDA is not None
            else (
                self.backward_dtypes
                if self.backward_dtypes is not None
                else self.dtypesIfCUDA
                if self.dtypesIfCUDA is not None
                else self.dtypes
            )
        )
        self.backward_dtypes = (
            set(self.backward_dtypes)
            if self.backward_dtypes is not None
            else self.dtypes
        )

        self.dtypesIfCUDA = (
            set(self.dtypesIfCUDA) if self.dtypesIfCUDA is not None else self.dtypes
        )
        self.dtypesIfROCM = (
            set(self.dtypesIfROCM)
            if self.dtypesIfROCM is not None
            else self.dtypesIfCUDA
        )

        # NOTE: if the op is unspecified it is assumed to be under the torch namespace
        if not self.op:
            self.op = _getattr_qual(torch, self.name)

        if self.method_variant is _NOTHING:
            self.method_variant = getattr(torch.Tensor, self.name, None)

        # attributes like real, imag are not callable
        if not callable(self.method_variant):
            self.method_variant = None

        if self.inplace_variant is _NOTHING:
            inplace_name = self.name + "_"
            self.inplace_variant = getattr(torch.Tensor, inplace_name, None)

        if self.operator_variant is _NOTHING:
            self.operator_variant = getattr(operator, self.name, None)

        if self.inplace_operator_variant is _NOTHING:
            # Note: operator.i<op> will use operator.<op> and assign the result to the lhs when no
            # __i<op>__ method is found. This results in the appearance of an inplace operator variant which
            # does not have the correct inplace behavior. To avoid this, we guard automatic detection of the inplace
            # operator with a check that an inplace variant exists.
            if self.inplace_variant is not None:
                inplace_operator_name = "i" + self.name
                self.inplace_operator_variant = getattr(
                    operator, inplace_operator_name, None
                )
            else:
                self.inplace_operator_variant = None

        self.decorators = (*self.decorators, *self.skips)

        # We run the sampling functions without tracking the gradiends of the creation of inputs
        self.sample_inputs_func = torch.no_grad()(self.sample_inputs_func)
        self.sample_inputs_sparse_coo_func = torch.no_grad()(
            self.sample_inputs_sparse_coo_func
        )
        self.sample_inputs_sparse_csr_func = torch.no_grad()(
            self.sample_inputs_sparse_csr_func
        )
        self.sample_inputs_sparse_csc_func = torch.no_grad()(
            self.sample_inputs_sparse_csc_func
        )
        self.sample_inputs_sparse_bsr_func = torch.no_grad()(
            self.sample_inputs_sparse_bsr_func
        )
        self.sample_inputs_sparse_bsc_func = torch.no_grad()(
            self.sample_inputs_sparse_bsc_func
        )
        if self.reference_inputs_func is not None:
            self.reference_inputs_func = torch.no_grad()(self.reference_inputs_func)

        if not self.autodiff_fusible_nodes:
            self.autodiff_fusible_nodes = []

        if self.autodiff_nonfusible_nodes is None:
            self.autodiff_nonfusible_nodes = ["aten::" + self.name]

        # Autograd support

        # Autograd flags that depend on backward AD only
        # - If setting has been explicitly set, raise error if inconsistent
        if self.supports_gradgrad is None:
            self.supports_gradgrad = self.supports_autograd
        else:
            assert not (self.supports_gradgrad and not self.supports_autograd), (
                "supports_gradgrad refines the part of autograd is supported, so it should "
                "not be set if supports_autograd is False"
            )
        if self.check_batched_grad is None:
            self.check_batched_grad = self.supports_autograd or self.supports_forward_ad
        else:
            assert not (
                self.check_batched_grad
                and not (self.supports_autograd or self.supports_forward_ad)
            ), (
                "check_batched_grad refines the part of autograd that will be checked (by gradcheck), so "
                "it should not be set if supports_autograd is False"
            )
        if self.check_batched_gradgrad is None:
            self.check_batched_gradgrad = self.supports_gradgrad
        else:
            assert not (self.check_batched_gradgrad and not self.supports_gradgrad), (
                "check_batched_gradgrad refines the part of autograd that will be checked (by "
                "gradgradcheck), so it should not be set if either supports_gradgrad or supports_autograd "
                "is False."
            )
        if self.check_batched_forward_grad is None:
            self.check_batched_forward_grad = self.supports_forward_ad
        else:
            assert not (
                self.check_batched_forward_grad and not self.supports_forward_ad
            ), (
                "check_batched_forward_grad should only be used when supports_forward_ad "
                "is True. It is used to disable the test in the specific cases "
                "where the op supports forward ad but fails to compute "
                "batched forward grad."
            )

        if self.check_inplace_batched_forward_grad is None:
            self.check_inplace_batched_forward_grad = self.check_batched_forward_grad
        else:
            assert not (
                self.check_inplace_batched_forward_grad
                and not self.check_batched_forward_grad
            ), (
                "check_batched_forward_grad should only be used when check_batched_forward_grad "
                "is True. It is used to disable the test in the specific cases "
                "where the op supports batched forward grad but fails to compute batched forward "
                "grad for the inplace variant of the op."
            )

        assert not (self.supports_fwgrad_bwgrad and not self.supports_autograd), (
            "supports_fwgrad_bwgrad enables forward-over-backward gradgrad checks and should only be "
            "True if backward ad is also checked, i.e., supports_forward_ad should be True.",
            self.name,
        )

        # Autograd flags that depend on both forward AD and backward AD
        if self.supports_inplace_autograd is None:
            self.supports_inplace_autograd = (
                self.supports_autograd or self.supports_forward_ad
            )
        else:
            assert not (
                self.supports_inplace_autograd
                and not self.supports_autograd
                and not self.supports_forward_ad
            ), (
                "supports_inplace_autograd refines the part of autograd that is supported, so "
                "it should not be set if both supports_autograd and supports_forward_ad are False"
            )

        if self.aliases is not None:
            self.aliases = tuple(AliasInfo(a) for a in self.aliases)  # type: ignore[assignment]
        else:
            self.aliases = ()

    def __call__(self, *args, **kwargs):
        """Calls the function variant of the operator."""
        return self.op(*args, **kwargs)

    def __str__(self):
        return dataclass_repr(self)

    def get_op(self):
        """Returns the function variant of the operator, torch.<op_name>."""
        return self.op

    def get_method(self):
        """Returns the method variant of the operator, torch.Tensor.<op_name>.
        Returns None if the operator has no method variant.
        """
        return self.method_variant

    def get_inplace(self):
        """Returns the inplace variant of the operator, torch.Tensor.<op_name>_.
        Returns None if the operator has no inplace variant.
        """
        return self.inplace_variant

    def get_operator(self):
        """Returns operator variant of the operator, e.g. operator.neg
        Returns None if the operator has no operator variant.
        """
        return self.operator_variant

    def get_inplace_operator(self):
        """Returns the inplace operator variant of the operator, e.g operator.iadd
        Returns None if the operator has no inplace operator variant"""
        return self.inplace_operator_variant

    def conjugate_sample_inputs(self, device, dtype, requires_grad=False, **kwargs):
        """Returns an iterable of SampleInputs but with the tensor input or first
        tensor in a sequence input conjugated.
        """

        samples = self.sample_inputs_func(self, device, dtype, requires_grad, **kwargs)
        conj_samples = list(samples)

        def conjugate(tensor):
            _requires_grad = tensor.requires_grad
            tensor = tensor.conj()
            return tensor.requires_grad_(_requires_grad)

        for i, sample in enumerate(samples):
            sample = conj_samples[i]
            # Note: it is assumed that the input here is either a tensor or tensorlist
            if isinstance(sample.input, torch.Tensor):
                sample.input = conjugate(sample.input)
            else:
                sample.input[0] = conjugate(sample.input[0])

        return tuple(conj_samples)

    def sample_inputs(self, device, dtype, requires_grad=False, **kwargs):
        """
        Returns an iterable of SampleInputs.

        These samples should be sufficient to test the function works correctly
        with autograd, TorchScript, etc.
        """
        samples = self.sample_inputs_func(self, device, dtype, requires_grad, **kwargs)

        if kwargs.get("include_conjugated_inputs", False):
            conj_samples = self.conjugate_sample_inputs(
                device, dtype, requires_grad, **kwargs
            )
            samples_list = list(samples)
            samples_list.extend(conj_samples)
            samples = tuple(samples_list)

        return samples

    def reference_inputs(self, device, dtype, requires_grad=False, **kwargs):
        """
        Returns an iterable of SampleInputs.

        Distinct from sample_inputs() above because this returns an expanded set
        of inputs when reference_inputs_func is defined. If undefined this returns
        the sample inputs.
        """
        if self.reference_inputs_func is None:
            return self.sample_inputs_func(self, device, dtype, requires_grad, **kwargs)

        if kwargs.get("include_conjugated_inputs", False):
            raise NotImplementedError

        return self.reference_inputs_func(self, device, dtype, requires_grad, **kwargs)

    def error_inputs(self, device, **kwargs):
        """
        Returns an iterable of ErrorInputs.
        """
        return self.error_inputs_func(self, device, **kwargs)

    def sample_inputs_sparse_coo(self, device, dtype, requires_grad=False, **kwargs):
        """Returns an iterable of SampleInputs that contain inputs with sparse
        coo layout.
        """
        return self.sample_inputs_sparse_coo_func(
            self, device, dtype, requires_grad, **kwargs
        )

    def sample_inputs_sparse_csr(self, device, dtype, requires_grad=False, **kwargs):
        """Returns an iterable of SampleInputs that contain inputs with sparse
        csr layout.
        """
        return self.sample_inputs_sparse_csr_func(
            self, device, dtype, requires_grad, **kwargs
        )

    def sample_inputs_sparse_csc(self, device, dtype, requires_grad=False, **kwargs):
        """Returns an iterable of SampleInputs that contain inputs with sparse
        csc layout.
        """
        return self.sample_inputs_sparse_csc_func(
            self, device, dtype, requires_grad, **kwargs
        )

    def sample_inputs_sparse_bsr(self, device, dtype, requires_grad=False, **kwargs):
        """Returns an iterable of SampleInputs that contain inputs with sparse
        bsr layout.
        """
        return self.sample_inputs_sparse_bsr_func(
            self, device, dtype, requires_grad, **kwargs
        )

    def sample_inputs_sparse_bsc(self, device, dtype, requires_grad=False, **kwargs):
        """Returns an iterable of SampleInputs that contain inputs with sparse
        bsc layout.
        """
        return self.sample_inputs_sparse_bsc_func(
            self, device, dtype, requires_grad, **kwargs
        )

    def get_decorators(self, test_class, test_name, device, dtype):
        """Returns the decorators targeting the given test."""
        result = []
        for decorator in self.decorators:
            if isinstance(decorator, DecorateInfo):
                if decorator.is_active(test_class, test_name, device, dtype):
                    result.extend(decorator.decorators)
            else:
                result.append(decorator)
        return result

    def supported_dtypes(self, device_type):
        if device_type == "cpu":
            return self.dtypes
        if device_type == "cuda":
            return self.dtypesIfROCM if TEST_WITH_ROCM else self.dtypesIfCUDA
        else:
            return self.dtypes

    def supported_backward_dtypes(self, device_type):
        if not self.supports_autograd:
            return set()

        backward_dtypes = None
        if device_type == "cpu":
            backward_dtypes = self.backward_dtypes
        elif device_type == "cuda":
            backward_dtypes = (
                self.backward_dtypesIfROCM
                if TEST_WITH_ROCM
                else self.backward_dtypesIfCUDA
            )
        else:
            backward_dtypes = self.backward_dtypes

        allowed_backward_dtypes = floating_and_complex_types_and(
            torch.bfloat16, torch.float16, torch.complex32
        )
        return set(allowed_backward_dtypes).intersection(backward_dtypes)

    def supports_dtype(self, dtype, device_type):
        return dtype in self.supported_dtypes(device_type)

    @property
    def formatted_name(self):
        """Returns a formatted full name for this OpInfo that can be used in test names."""
        variant = (
            "_" + self.variant_test_name.replace(".", "_")
            if self.variant_test_name
            else ""
        )
        return "{}{}".format(self.name.replace(".", "_"), variant)


def _generate_reduction_inputs(device, dtype, requires_grad, **kwargs):
    """Generates input tensors for testing reduction operators"""
    yield make_tensor([], dtype=dtype, device=device, requires_grad=requires_grad)
    yield make_tensor([2], dtype=dtype, device=device, requires_grad=requires_grad)
    yield make_tensor([3, 5], dtype=dtype, device=device, requires_grad=requires_grad)
    yield make_tensor(
        [3, 2, 1, 2], dtype=dtype, device=device, requires_grad=requires_grad
    )


def _generate_reduction_kwargs(ndim, supports_multiple_dims=True):
    """Generates a subset of all valid dim and keepdim kwargs given ndim that
    is appropriate for testing reduction operators.
    """

    # Test default dim and keepdim
    yield {}

    # Test reducing inner and outer most dimensions
    yield {"dim": 0, "keepdim": True}
    yield {"dim": -1, "keepdim": False}

    # Test reducing middle dimension
    if ndim > 2:
        yield {"dim": ndim // 2, "keepdim": True}

    if supports_multiple_dims:
        # Test reducing all dimensions
        yield {"dim": tuple(range(ndim)), "keepdim": False}

        # Test reducing both first and last dimensions
        if ndim > 1:
            yield {"dim": (0, -1), "keepdim": True}

        # Test reducing every other dimension starting with the second
        if ndim > 3:
            yield {"dim": tuple(range(1, ndim, 2)), "keepdim": False}


def sample_inputs_reduction(op_info, device, dtype, requires_grad, **kwargs):
    """Sample inputs for reduction operators."""

    # TODO(@heitorschueroff) Once all reduction operators are using
    # ReductionOpInfo use op_info.supports_multiple_dims directly.
    supports_multiple_dims: bool = kwargs.get("supports_multiple_dims", True)

    # TODO(@heitorschueroff) Once all reduction operators are using ReductionOpInfo
    # use op_info.generate_args_kwargs directly.
    generate_args_kwargs = kwargs.get(
        "generate_args_kwargs", lambda *args, **kwargs: (yield tuple(), {})
    )

    for t in _generate_reduction_inputs(device, dtype, requires_grad):
        for reduction_kwargs in _generate_reduction_kwargs(
            t.ndim, supports_multiple_dims
        ):
            for args, kwargs in generate_args_kwargs(t, **reduction_kwargs):
                kwargs.update(reduction_kwargs)
                yield SampleInput(
                    t.detach().requires_grad_(requires_grad), args=args, kwargs=kwargs
                )


# NOTE [Reductions]:
#
# For testing purposes, we relax the definition of a reduction operator
# as defined in the docstring below. We do this to capture operators with
# a similar API so they can be tested automatically. However...
#
# Strictly speaking a reduction operator is an operator that can reduce an
# array to a single scalar value and that can be computed from the partial
# result of reducing subarrays. This usually means that the reduction operation
# should be commutative and associative. This definition is important when it
# comes to implementation as it determines how a reduction can be parallelized.
#
# For example, many summary statistics such as median, mode and quantile cannot
# be computed from partial results because these are sorting and counting based
# algorithms that need information that would be lost in the reduced value.
class ReductionOpInfo(OpInfo):
    """Reduction operator information.

    An operator is a reduction operator if it reduces one or more dimensions of
    the input tensor to a single value. Reduction operators must implement the
    following signature:

    - `op(input, *args, *, dim=None, keepdim=False, **kwargs) -> Tensor`

    ReductionOpInfo tests that reduction operators implement a consistent API.
    Optional features such as reducing over multiple dimensions are captured in
    the optional keyword parameters of the ReductionOpInfo constructor.

    If a reduction operator does not yet implement the full required API of
    reduction operators, this should be documented by xfailing the failing
    tests rather than adding optional parameters to ReductionOpInfo.

    NOTE
    The API for reduction operators has not yet been finalized and some
    requirements may change.

    See tests in test/test_reductions.py
    """

    def __init__(
        self,
        name,
        *,
        # The identity value for the operator if it has one.
        identity: Optional[Any] = None,
        # The nan policy for the operator if it implements one.
        # - propagate: NaN values are propagated to the output
        # - omit: NaN values are discarded during the reduction
        nan_policy: Optional[str] = None,
        # Whether the operator supports reducing multiple dimensions.
        supports_multiple_dims: bool = True,
        # Whether the operator promotes integral to floating point dtypes.
        promotes_int_to_float: bool = False,
        # Whether the operator promotes all integral dtypes to int64.
        promotes_int_to_int64: bool = False,
        # If a specific dtype is given, then the operator always returns that
        # dtype irrespective of the input dtype. If None, the operator returns
        # the dtype according to the type promotion rules above.
        result_dtype: Optional[torch.dtype] = None,
        # Casts complex results to real (e.g. linalg.norm or torch.var)
        complex_to_real: bool = False,
        # ReductionOpInfo tests generate their own input, dim and keepdim
        # arguments and call this function to generate tuples of extra args and
        # kwargs to use when calling the op. This is required for operators that
        # have other required parameters besides the input tensor.
        generate_args_kwargs: Callable = lambda t, dim=None, keepdim=False: (
            yield tuple(),
            {},
        ),
        # Options from the OpInfo base class
        **kwargs,
    ):
        self._original_reduction_args = locals().copy()
        assert nan_policy in (None, "propagate", "omit")

        # These are mutually exclusive options
        assert not (result_dtype and promotes_int_to_float)
        assert not (result_dtype and promotes_int_to_int64)
        assert not (result_dtype and complex_to_real)
        assert not (promotes_int_to_float and promotes_int_to_int64)

        # Default sample_inputs_func for ReductionOpInfo which augments sample
        # inputs from sample_inputs_reduction with the args and kwargs from
        # generate_args_kwargs. This is only used if sample_inputs_func is None.
        def sample_inputs_func(*args, **kwargs):
            kwargs["supports_multiple_dims"] = supports_multiple_dims
            kwargs["generate_args_kwargs"] = generate_args_kwargs
            yield from sample_inputs_reduction(*args, **kwargs)

        # Override OpInfo defaults and call base class __init__
        kwargs.setdefault("inplace_variant", None)
        kwargs.setdefault("sample_inputs_func", sample_inputs_func)
        super().__init__(name, **kwargs)

        self.identity = identity
        self.nan_policy = nan_policy
        self.supports_multiple_dims = supports_multiple_dims
        self.promotes_int_to_float = promotes_int_to_float
        self.promotes_int_to_int64 = promotes_int_to_int64
        self.complex_to_real = complex_to_real
        self.result_dtype = result_dtype
        self.generate_args_kwargs = generate_args_kwargs


# The base reference input generation for elementwise binary operations
def _reference_inputs_elementwise_binary(
    op, device, dtype, requires_grad, exclude_zero, **kwargs
):
    yield from op.sample_inputs_func(op, device, dtype, requires_grad, **kwargs)
    yield from generate_elementwise_binary_tensors(
        op,
        device=device,
        dtype=dtype,
        requires_grad=requires_grad,
        exclude_zero=exclude_zero,
    )
    if dtype is not torch.bool:
        yield from generate_elementwise_binary_small_value_tensors(
            op, device=device, dtype=dtype, requires_grad=requires_grad
        )
    if dtype not in (torch.bool, torch.uint8, torch.int8):
        yield from generate_elementwise_binary_large_value_tensors(
            op, device=device, dtype=dtype, requires_grad=requires_grad
        )
    yield from generate_elementwise_binary_broadcasting_tensors(
        op,
        device=device,
        dtype=dtype,
        requires_grad=requires_grad,
        exclude_zero=exclude_zero,
    )
    yield from generate_elementwise_binary_with_scalar_samples(
        op, device=device, dtype=dtype, requires_grad=requires_grad
    )

    yield from generate_elementwise_binary_with_scalar_and_type_promotion_samples(
        op, device=device, dtype=dtype, requires_grad=requires_grad
    )

    if dtype.is_floating_point or dtype.is_complex:
        yield from generate_elementwise_binary_extremal_value_tensors(
            op, device=device, dtype=dtype, requires_grad=requires_grad
        )


# Note that these references inputs use scalars for the SampleInput.input value,
#   and many tests require SampleInput.input be a tensor or a list of tensors
def reference_inputs_elementwise_binary(op, device, dtype, requires_grad, **kwargs):
    if hasattr(op, "rhs_make_tensor_kwargs"):
        exclude_zero = op.rhs_make_tensor_kwargs.get("exclude_zero", False)

    gen = partial(
        _reference_inputs_elementwise_binary,
        op,
        device,
        dtype,
        requires_grad,
        exclude_zero,
        **kwargs,
    )

    # yields "normal" samples
    yield from gen()

    # yields noncontiguous samples
    for sample in gen():
        yield sample.noncontiguous()

    yield from generate_elementwise_binary_noncontiguous_tensors(
        op,
        device=device,
        dtype=dtype,
        requires_grad=requires_grad,
        exclude_zero=exclude_zero,
    )

    yield from generate_elementwise_binary_arbitrarily_strided_tensors(
        op,
        device=device,
        dtype=dtype,
        requires_grad=requires_grad,
        exclude_zero=exclude_zero,
    )


# A functional that extends an elementwise binary operator's bespoke error inputs
#   with generic error inputs for the class of elementwise binary operations
def make_error_inputs_elementwise_binary(error_inputs_func):
    def error_inputs_func_wrapper(op, device, **kwargs):
        if error_inputs_func is not None:
            yield from error_inputs_func(op, device, **kwargs)

        if not op.supports_rhs_python_scalar:
            si = SampleInput(torch.tensor((1, 2, 3), device=device), args=(2,))
            yield ErrorInput(si, error_type=Exception, error_regex="")

        if not op.supports_one_python_scalar:
            si = SampleInput(2, args=(torch.tensor((1, 2, 3), device=device),))
            yield ErrorInput(si, error_type=Exception, error_regex="")

        if (
            not kwargs.get("skip_two_python_scalars", False)
            and not op.supports_two_python_scalars
        ):
            si = SampleInput(2, args=(3,))
            yield ErrorInput(si, error_type=Exception, error_regex="")

    return error_inputs_func_wrapper


# The following functions and classes are for testing elementwise binary operators.

# Returns a generator of pairs of contiguous tensors on the requested device
#   and with the requested dtype.
#
# This function is intended to test the non-vectorized and vectorized code
#   paths of elementwise binary functions, as well as their handling of odd tensor
#   sizes (like zero-dim tensors and tensors with zero elements).
#
# Each iterable will include an a tensor with no elements,
#   zero dim (scalar) tensors, small 1D tensors, a medium 1D tensor, and
#   a large 2D tensor.
def generate_elementwise_binary_tensors(
    op, *, device, dtype, requires_grad=False, exclude_zero=False
):
    shapes = (
        # tensors with no elements
        (0,),
        (1, 0, 3),
        # zero dim (scalar) tensor
        (),
        # small 1D tensor
        (20,),
        # medium 1D tensor
        (812,),
        # large 2D tensor
        (1029, 917),
    )

    make_arg = partial(
        make_tensor,
        device=device,
        dtype=dtype,
        requires_grad=requires_grad,
        exclude_zero=exclude_zero,
    )
    for shape in shapes:
        lhs = make_arg(shape, **op.lhs_make_tensor_kwargs)
        rhs = make_arg(shape, **op.rhs_make_tensor_kwargs)
        yield SampleInput(lhs, args=(rhs,))


def generate_elementwise_binary_arbitrarily_strided_tensors(
    op, *, device, dtype, requires_grad=False, exclude_zero=False
):
    # shape, strides, offset
    strided_cases = (
        ((5, 6, 2), (1, 1, 7), 2),
        ((5, 5, 4), (1, 1, 7), 2),
        ((5, 5, 2), (4, 5, 7), 3),
        ((5, 5, 2), (5, 5, 7), 3),
        ((5, 5, 2), (5, 5, 5), 3),
        ((9, 5, 2), (0, 1, 7), 3),
    )

    make_arg = partial(
        make_tensor,
        device=device,
        dtype=dtype,
        requires_grad=requires_grad,
        exclude_zero=exclude_zero,
    )
    for shape, strides, offset in strided_cases:
        a = make_arg(
            500,
        ).as_strided(shape, strides, offset)
        b = make_arg(shape)
        yield SampleInput(a, args=(b,))


# Returns a generator of pairs of contiguous tensors on the requested device and with
#   the requested dtype.
#
# Unlike the previous function, the values in these tensors are specified manually.
def generate_elementwise_binary_small_value_tensors(
    op, *, device, dtype, requires_grad=False, exclude_zero=None
):
    if exclude_zero is None:
        if hasattr(op, "rhs_make_tensor_kwargs"):
            exclude_zero = op.rhs_make_tensor_kwargs.get("exclude_zero", False)

    # defines interesting values
    _unsigned_int_vals = (0, 1, 55, 127, 128, 190, 210, 220, 254)
    _int_vals = (0, -1, 1, -55, 55, -127, 127, -128)
    _float_vals = (
        0.0,
        -0.0,
        -0.001,
        0.001,
        -0.25,
        0.25,
        -1.0,
        1.0,
        -math.pi / 2,
        math.pi / 2,
        -math.pi + 0.00001,
        math.pi - 0.00001,
        -math.pi,
        math.pi,
        -math.pi - 0.00001,
        math.pi + 0.00001,
    )

    l_vals = []
    r_vals = []

    if dtype.is_floating_point:
        prod = product(_float_vals, _float_vals)
    elif dtype.is_complex:
        complex_vals = product(_float_vals, _float_vals)
        # Note the use of list is required here or the map generator will be
        #  emptied by the following product and it won't produce the desired cross-product
        complex_vals = list(map(lambda x: complex(*x), complex_vals))
        prod = product(complex_vals, complex_vals)
    elif dtype in (torch.int8, torch.int16, torch.int32, torch.int64):
        prod = product(_int_vals, _int_vals)
    elif dtype is torch.uint8:
        prod = product(_unsigned_int_vals, _unsigned_int_vals)
    else:
        raise ValueError("Unsupported dtype!")

    for l, r in prod:
        l_vals.append(l)
        if r == 0 and exclude_zero:
            r_vals.append(1)
        else:
            r_vals.append(r)

    lhs = torch.tensor(l_vals, device=device, dtype=dtype, requires_grad=requires_grad)
    rhs = torch.tensor(r_vals, device=device, dtype=dtype, requires_grad=requires_grad)

    yield SampleInput(lhs, args=(rhs,))


def generate_elementwise_binary_large_value_tensors(
    op, *, device, dtype, requires_grad=False
):
    _large_int_vals = (-1113, 1113, -10701, 10701)
    _large_float16_vals = (-501, 501, -1001.2, 1001.2, -13437.7, 13437.7)
    _large_float_vals = _large_float16_vals + (-4988429.2, 4988429.2, -1e20, 1e20)

    l_vals = []
    r_vals = []

    if dtype == torch.float16:
        prod = product(_large_float16_vals, _large_float16_vals)
    elif dtype.is_floating_point:
        prod = product(_large_float_vals, _large_float_vals)
    elif dtype.is_complex:
        complex_vals = product(_large_float_vals, _large_float_vals)
        # Note the use of list is required here or the map generator will be
        #  emptied by the following product and it won't produce the desired cross-product
        complex_vals = list(map(lambda x: complex(*x), complex_vals))
        prod = product(complex_vals, complex_vals)
    elif dtype in (torch.int16, torch.int32, torch.int64):
        prod = product(_large_int_vals, _large_int_vals)
    else:
        raise ValueError("Unsupported dtype!")

    for l, r in prod:
        l_vals.append(l)
        r_vals.append(r)

    lhs = torch.tensor(l_vals, device=device, dtype=dtype, requires_grad=requires_grad)
    rhs = torch.tensor(r_vals, device=device, dtype=dtype, requires_grad=requires_grad)

    yield SampleInput(lhs, args=(rhs,))


def generate_elementwise_binary_extremal_value_tensors(
    op, *, device, dtype, requires_grad=False
):
    _float_extremals = (float("inf"), float("-inf"), float("nan"))

    l_vals = []
    r_vals = []

    if dtype.is_floating_point:
        prod = product(_float_extremals, _float_extremals)
    elif dtype.is_complex:
        complex_vals = product(_float_extremals, _float_extremals)
        # Note the use of list is required here or the map generator will be
        #  emptied by the following product and it won't produce the desired cross-product
        complex_vals = list(map(lambda x: complex(*x), complex_vals))
        prod = product(complex_vals, complex_vals)
    else:
        raise ValueError("Unsupported dtype!")

    for l, r in prod:
        l_vals.append(l)
        r_vals.append(r)

    lhs = torch.tensor(l_vals, device=device, dtype=dtype, requires_grad=requires_grad)
    rhs = torch.tensor(r_vals, device=device, dtype=dtype, requires_grad=requires_grad)

    yield SampleInput(lhs, args=(rhs,))

    # Test case for NaN propagation
    nan = (
        float("nan") if dtype.is_floating_point else complex(float("nan"), float("nan"))
    )
    lhs = make_tensor(
        (128, 128), device=device, dtype=dtype, requires_grad=requires_grad
    )
    lhs.flatten()[::3] = nan
    rhs = make_tensor(
        (128, 128), device=device, dtype=dtype, requires_grad=requires_grad
    )
    rhs.flatten()[::3] = nan

    yield SampleInput(lhs, args=(rhs,))


# Returns a generator of pairs of contiguous and noncontiguous tensors that
#   require broadcasting
def generate_elementwise_binary_broadcasting_tensors(
    op, *, device, dtype, requires_grad=False, exclude_zero=False
):
    shapes = (
        ((1,), ()),
        ((2,), ()),
        ((1,), (2,)),
        ((2, 1), (2,)),
        ((1, 2), (2,)),
        ((3, 2), (2,)),
        ((1, 3, 2), (2,)),
        ((1, 3, 2), (3, 2)),
        ((3, 1, 2), (3, 2)),
        ((2, 3, 2), ()),
        ((3, 1, 2), (1, 3, 2)),
    )

    make_arg = partial(
        make_tensor,
        device=device,
        dtype=dtype,
        requires_grad=requires_grad,
        exclude_zero=exclude_zero,
    )
    for shape, noncontiguous in product(shapes, [True, False]):
        shape_lhs, shape_rhs = shape
        lhs = make_arg(
            shape_lhs, noncontiguous=noncontiguous, **op.lhs_make_tensor_kwargs
        )
        rhs = make_arg(
            shape_rhs, noncontiguous=noncontiguous, **op.rhs_make_tensor_kwargs
        )

        yield SampleInput(lhs, args=(rhs,), broadcasts_input=True)


# Returns a generator of pairs of contiguous tensors and scalars
def generate_elementwise_binary_with_scalar_samples(
    op, *, device, dtype, requires_grad=False
):
    make_arg = partial(
        make_tensor, device=device, dtype=dtype, requires_grad=requires_grad
    )

    shapes = ((), (3,), (5, 3), (0, 1, 3), (1, 5))
    if op.supports_rhs_python_scalar:
        for shape in shapes:
            lhs = make_arg(shape, **op.lhs_make_tensor_kwargs)
            rhs = make_arg(shape, **op.rhs_make_tensor_kwargs)
            lhs_scalar = make_arg((), **op.lhs_make_tensor_kwargs).item()
            rhs_scalar = make_arg((), **op.rhs_make_tensor_kwargs).item()

            yield SampleInput(lhs, args=(rhs_scalar,))

        # Extends with scalar lhs
        if op.supports_one_python_scalar:
            yield SampleInput(lhs_scalar, args=(rhs,))

    if op.supports_two_python_scalars:
        lhs_scalar = make_arg((), **op.lhs_make_tensor_kwargs).item()
        rhs_scalar = make_arg((), **op.rhs_make_tensor_kwargs).item()

        yield SampleInput(lhs_scalar, args=(rhs_scalar,))


# Returns a generator of pairs of contiguous tensors and 0d tensos and scalars and type promotion
def generate_elementwise_binary_with_scalar_and_type_promotion_samples(
    op, *, device, dtype, requires_grad=False
):
    # add these samples only for logical and comparison ops, arithmetic ops are not happy about extremal scalars
    if op.name in (
        "eq",
        "ne",
        "gt",
        "ge",
        "lt",
        "le",
        "logical_and",
        "logical_or",
        "logical_xor",
    ):
        make_arg = partial(
            make_tensor, device=device, dtype=dtype, requires_grad=requires_grad
        )
        shape = (
            23,
        )  # this shape is big enough to trigger vectorization, and has non-vectorized tail
        values = (float("nan"), float("inf"), -float("inf"))
        scalar_tensors = tuple(torch.tensor(val) for val in values)
        if op.supports_rhs_python_scalar:
            lhs = make_arg(shape, **op.lhs_make_tensor_kwargs)
            rhs = make_arg(shape, **op.rhs_make_tensor_kwargs)
            for scalar in values + scalar_tensors:
                yield SampleInput(lhs, args=(scalar,))
                # Extends with scalar lhs
                if op.supports_one_python_scalar:
                    yield SampleInput(scalar, args=(rhs,))


# Returns a generator of pairs of noncontiguous tensors
def generate_elementwise_binary_noncontiguous_tensors(
    op, *, device, dtype, requires_grad=False, exclude_zero=False
):
    make_arg = partial(
        make_tensor,
        device=device,
        dtype=dtype,
        requires_grad=requires_grad,
        exclude_zero=exclude_zero,
    )

    # Generic noncontiguity
    lhs = make_arg((1026,), noncontiguous=True, **op.lhs_make_tensor_kwargs)
    rhs = make_arg((1026,), noncontiguous=True, **op.rhs_make_tensor_kwargs)

    yield SampleInput(lhs.clone(), args=(rhs.clone(),))
    yield SampleInput(lhs.contiguous(), args=(rhs,))

    # Transposed
    lhs = make_arg((789, 357), **op.lhs_make_tensor_kwargs)
    rhs = make_arg((789, 357), **op.rhs_make_tensor_kwargs)

    yield SampleInput(lhs.T, args=(rhs.T,))

    # More noncontiguity
    shapes = ((5, 7), (1024,))

    for shape in shapes:
        lhs = make_arg(shape, **op.lhs_make_tensor_kwargs)
        rhs = make_arg(shape, **op.rhs_make_tensor_kwargs)

        lhs_non_contig = torch.empty(shape + (2,), device=device, dtype=dtype)[..., 0]
        lhs_non_contig.copy_(lhs)

        rhs_non_contig = torch.empty(shape + (2,), device=device, dtype=dtype)[..., 0]
        rhs_non_contig.copy_(rhs)

        yield SampleInput(lhs_non_contig.clone(), args=(rhs_non_contig.clone(),))
        yield SampleInput(lhs_non_contig.contiguous(), args=(rhs_non_contig,))

    # Noncontiguous indices
    shape = (2, 2, 1, 2)
    lhs = make_arg(shape, **op.lhs_make_tensor_kwargs)
    rhs = make_arg(shape, **op.rhs_make_tensor_kwargs)

    lhs_non_contig = lhs[:, 1, ...]
    rhs_non_contig = rhs[:, 1, ...]

    yield SampleInput(lhs_non_contig.clone(), args=(rhs_non_contig.clone(),))
    yield SampleInput(lhs_non_contig.contiguous(), args=(rhs_non_contig,))

    # Expanded tensors
    shapes = ((1, 3), (1, 7), (5, 7))

    for shape in shapes:
        lhs = make_arg(shape, **op.lhs_make_tensor_kwargs)
        rhs = make_arg(shape, **op.rhs_make_tensor_kwargs)

        lhs_non_contig = lhs.expand(3, -1, -1)
        rhs_non_contig = rhs.expand(3, -1, -1)

        yield SampleInput(lhs_non_contig, args=(rhs_non_contig,))


# Sample inputs for elementwise binary operators, like add
def sample_inputs_elementwise_binary(op, device, dtype, requires_grad, **kwargs):
    _M = S if kwargs.get("small_inputs_only", False) else M
    _S = XS if kwargs.get("small_inputs_only", False) else S

    if hasattr(op, "rhs_make_tensor_kwargs"):
        exclude_zero = op.rhs_make_tensor_kwargs.get("exclude_zero", False)

    make_arg = partial(
        make_tensor,
        device=device,
        dtype=dtype,
        requires_grad=requires_grad,
        exclude_zero=exclude_zero,
    )

    shapes = (
        ((), ()),
        ((_S,), ()),
        ((_S, 1), (_S,)),
        ((_M, _S), ()),
        ((_S, _M, _S), (_M, _S)),
        ((_S, _M, _S), (_S, _M, _S)),
        ((_M, 1, _S), (_M, _S)),
        ((_M, 1, _S), (1, _M, _S)),
        ((0, 1, XS), (0, _M, XS)),
    )

    sample_kwargs = kwargs.get("sample_kwargs", {})

    for shape_lhs, shape_rhs in shapes:
        lhs = make_arg(shape_lhs, **op.lhs_make_tensor_kwargs)
        rhs = make_arg(shape_rhs, **op.rhs_make_tensor_kwargs)
        broadcasts_input = shape_lhs != torch.broadcast_shapes(shape_lhs, shape_rhs)

        yield SampleInput(
            lhs, args=(rhs,), kwargs=sample_kwargs, broadcasts_input=broadcasts_input
        )


# Metadata class for binary "universal functions (ufuncs)" that accept two
# tensor and have common properties
class BinaryUfuncInfo(OpInfo):
    """Operator information for 'universal binary functions (binary ufuncs).'
    These are functions of two tensors with common properties like:
      - they are elementwise functions
      - the output shape is determined by the input shape
      - they typically have method and inplace variants
      - they typically support the out kwarg
      - they typically have NumPy or SciPy references
    See NumPy's universal function documentation
    (https://numpy.org/doc/stable/reference/ufuncs.html) for more details
    about the concept of ufuncs.
    """

    def __init__(
        self,
        name,
        *,
        sample_inputs_func=sample_inputs_elementwise_binary,
        reference_inputs_func=reference_inputs_elementwise_binary,
        error_inputs_func=None,
        lhs_make_tensor_kwargs=None,
        rhs_make_tensor_kwargs=None,
        promotes_int_to_float=False,  # Set to true if the op promotes integer inputs to float
        always_returns_bool=False,  # Set to true if the op always returns bool tensors
        supports_rhs_python_scalar=True,  # Whether the operator allows Tensor x scalar inputs
        supports_one_python_scalar=False,  # Whether the operator allows scalar x tensor and tensor x scalar inputs
        supports_two_python_scalars=False,  # Whether the operator allows scalar x scalar inputs
        **kwargs,
    ):

        self._original_binary_ufunc_args = locals().copy()

        # Elementwise binary operations perform the equivalent of test_numpy_refs
        #   in test_binary_ufuncs, but with additional test granularity. So the
        #   generic test_ops.py test is skipped because it's redundant.
        common_skips = (
            DecorateInfo(
                unittest.skip("Skipping redundant test."),
                "TestCommon",
                "test_numpy_refs",
            ),
        )
        kwargs["skips"] = kwargs.get("skips", tuple()) + common_skips
        super(BinaryUfuncInfo, self).__init__(
            name,
            sample_inputs_func=sample_inputs_func,
            reference_inputs_func=reference_inputs_func,
            error_inputs_func=make_error_inputs_elementwise_binary(error_inputs_func),
            **kwargs,
        )

        # [lr]hs_make_tensor_kwargs are part of the OpInfo to be able to dynamically generate valid samples later on.
        if lhs_make_tensor_kwargs is None:
            lhs_make_tensor_kwargs = {}
        self.lhs_make_tensor_kwargs = lhs_make_tensor_kwargs

        if rhs_make_tensor_kwargs is None:
            rhs_make_tensor_kwargs = {}
        self.rhs_make_tensor_kwargs = rhs_make_tensor_kwargs

        self.promotes_int_to_float = promotes_int_to_float
        self.always_returns_bool = always_returns_bool
        self.supports_rhs_python_scalar = supports_rhs_python_scalar
        self.supports_one_python_scalar = supports_one_python_scalar
        self.supports_two_python_scalars = supports_two_python_scalars

        if self.supports_two_python_scalars:
            self.supports_one_python_scalar = True

        if self.supports_one_python_scalar:
            assert (
                supports_rhs_python_scalar
            ), "Can't support lhs and rhs Python scalars but not rhs scalars!"


# The following functions and classes are for testing elementwise unary operators.
def sample_inputs_elementwise_unary(
    op_info, device, dtype, requires_grad, op_kwargs=None, **kwargs
):
    if not op_kwargs:
        op_kwargs = {}

    _L = S if kwargs.get("small_inputs_only", False) else L

    low, high = op_info.domain
    low = low if low is None else low + op_info._domain_eps
    high = high if high is None else high - op_info._domain_eps
    if (
        op_info.supports_sparse_csr
        or op_info.supports_sparse_csc
        or op_info.supports_sparse_bsr
        or op_info.supports_sparse_bsc
    ):
        # Tensors with dim=2 for sparse compressed testing
        yield SampleInput(
            make_tensor(
                (_L, _L),
                device=device,
                dtype=dtype,
                low=low,
                high=high,
                requires_grad=requires_grad,
            ),
            kwargs=op_kwargs,
        )
    else:
        # Creates a 1D, empty, and scalar tensor
        for shape in ((_L,), (1, 0, 3), ()):
            yield SampleInput(
                make_tensor(
                    shape,
                    device=device,
                    dtype=dtype,
                    low=low,
                    high=high,
                    requires_grad=requires_grad,
                ),
                kwargs=op_kwargs,
            )


# Replace values satisfying condition with a safe value. This is used to block
# out values the could cause singularity like tan(pi/2)
def _replace_values_in_tensor(tensor, condition, safe_value):
    mask = condition(tensor)
    tensor.masked_fill_(mask, safe_value)


# Helper to create a unary elementwise tensor with valid inputs
def _make_unary_elementwise_tensor(shape, *, op, dtype, **kwargs):
    low, high = op.domain
    low = low if low is None else low + op._domain_eps
    high = high if high is None else high - op._domain_eps

    a = make_tensor(shape, low=low, high=high, dtype=dtype, **kwargs)

    if op.reference_numerics_filter is not None and dtype is not torch.bool:
        condition, safe_value = op.reference_numerics_filter
        _replace_values_in_tensor(a, condition, safe_value)

    return a


# Restricts the values in the tensor to the domain of the
# given elementwise unary operator
def _filter_unary_elementwise_tensor(a, *, op):
    # short-circuits for boolean tensors
    if a.dtype is torch.bool:
        return a

    low, high = op.domain
    low = low if low is None else low + op._domain_eps
    high = high if high is None else high - op._domain_eps

    if a.dtype is torch.uint8 and low is not None:
        low = max(low, 0)

    if not a.dtype.is_floating_point and not a.dtype.is_complex:
        low = math.ceil(low) if low is not None else None
        high = math.floor(high) if high is not None else None

    if op.reference_numerics_filter is not None:
        condition, safe_value = op.reference_numerics_filter
        _replace_values_in_tensor(a, condition, safe_value)

    if low is not None or high is not None:
        if a.dtype.is_complex:
            a.real.clamp_(low, high)
            a.imag.clamp_(low, high)
        else:
            a.clamp_(min=low, max=high)

    return a


def generate_elementwise_unary_tensors(op, *, device, dtype, requires_grad, **kwargs):

    # Special-cases bool
    if dtype is torch.bool:
        tensors = (
            torch.empty(0, device=device, dtype=torch.bool),
            torch.tensor(True, device=device),
            torch.tensor(False, device=device),
            torch.tensor((True, False), device=device),
            make_tensor((812,), device=device, dtype=dtype),
            make_tensor((1029, 917), device=device, dtype=dtype),
        )
        for a in tensors:
            yield SampleInput(a, kwargs=op.sample_kwargs(device, dtype, a)[0])

    shapes = (
        (1029, 917),
        (812,),
        # Empty sizes
        (0,),
        (0, 3, 3),
        (1, 0, 5),
        (6, 0, 0, 0),
        (3, 0, 1, 0),
    )

    make_arg = partial(
        _make_unary_elementwise_tensor,
        op=op,
        device=device,
        dtype=dtype,
        requires_grad=requires_grad,
    )
    for shape in shapes:
        a = make_arg(shape)
        yield SampleInput(a, kwargs=op.sample_kwargs(device, dtype, a)[0])


def generate_elementwise_unary_small_value_tensors(
    op, *, device, dtype, requires_grad=False
):
    for sample in generate_elementwise_binary_small_value_tensors(
        op, device=device, dtype=dtype, requires_grad=requires_grad
    ):
        a = _filter_unary_elementwise_tensor(sample.input, op=op)
        yield SampleInput(a, kwargs=op.sample_kwargs(device, dtype, a)[0])


def generate_elementwise_unary_large_value_tensors(
    op, *, device, dtype, requires_grad=False
):
    for sample in generate_elementwise_binary_large_value_tensors(
        op, device=device, dtype=dtype, requires_grad=requires_grad
    ):
        a = _filter_unary_elementwise_tensor(sample.input, op=op)
        yield SampleInput(sample.input, kwargs=op.sample_kwargs(device, dtype, a)[0])


def generate_elementwise_unary_extremal_value_tensors(
    op, *, device, dtype, requires_grad=False
):
    for sample in generate_elementwise_binary_extremal_value_tensors(
        op, device=device, dtype=dtype, requires_grad=requires_grad
    ):
        yield SampleInput(
            sample.input, kwargs=op.sample_kwargs(device, dtype, sample.input)[0]
        )


def generate_elementwise_unary_noncontiguous_tensors(
    op, *, device, dtype, requires_grad=False
):
    low, high = op.domain
    low = low if low is None else low + op._domain_eps
    high = high if high is None else high - op._domain_eps

    make_arg = partial(
        _make_unary_elementwise_tensor,
        op=op,
        device=device,
        dtype=dtype,
        requires_grad=requires_grad,
    )

    # Generic noncontiguity
    t = make_arg((1026,), noncontiguous=True)
    yield SampleInput(t, kwargs=op.sample_kwargs(device, dtype, t)[0])

    # Transposed
    t = make_arg((1024, 1024)).T
    yield SampleInput(t, kwargs=op.sample_kwargs(device, dtype, t)[0])

    # Expanded tensors
    shapes = ((1, 3), (1, 7), (5, 7))

    for shape in shapes:
        t = make_arg(shape)
        t_non_contig = t.expand(3, -1, -1)
        yield SampleInput(
            t_non_contig, kwargs=op.sample_kwargs(device, dtype, t_non_contig)[0]
        )


def generate_elementwise_unary_arbitrarily_strided_tensors(
    op, *, device, dtype, requires_grad=False
):
    # shape, strides, offset
    strided_cases = (
        ((5, 6, 2), (1, 1, 7), 2),
        ((5, 5, 4), (1, 1, 7), 2),
        ((5, 5, 2), (4, 5, 7), 3),
        ((5, 5, 2), (5, 5, 7), 3),
        ((5, 5, 2), (5, 5, 5), 3),
        ((9, 5, 2), (0, 1, 7), 3),
    )

    make_arg = partial(
        make_tensor, device=device, dtype=dtype, requires_grad=requires_grad
    )
    for shape, strides, offset in strided_cases:
        a = make_arg(
            500,
        ).as_strided(shape, strides, offset)
        yield SampleInput(a, kwargs=op.sample_kwargs(device, dtype, a)[0])


# Reuses the elementwise binary generators for consistency
# TODO: in the future generalize the reference generators to handle n-ary elementwise operations
def _reference_inputs_elementwise_unary(op, device, dtype, requires_grad, **kwargs):
    yield from op.sample_inputs_func(op, device, dtype, requires_grad, **kwargs)

    yield from generate_elementwise_unary_tensors(
        op, device=device, dtype=dtype, requires_grad=requires_grad, **kwargs
    )

    if dtype is not torch.bool:
        yield from generate_elementwise_unary_small_value_tensors(
            op, device=device, dtype=dtype, requires_grad=requires_grad, **kwargs
        )
    if dtype not in (torch.bool, torch.uint8, torch.int8) and (
        op.handles_large_floats
        or (not dtype.is_floating_point and not dtype.is_complex)
    ):
        yield from generate_elementwise_unary_large_value_tensors(
            op, device=device, dtype=dtype, requires_grad=requires_grad, **kwargs
        )

    if dtype.is_floating_point or (
        op.handles_complex_extremal_values and dtype.is_complex
    ):
        yield from generate_elementwise_unary_extremal_value_tensors(
            op, device=device, dtype=dtype, requires_grad=requires_grad, **kwargs
        )


def reference_inputs_elementwise_unary(op, device, dtype, requires_grad, **kwargs):
    gen = partial(
        _reference_inputs_elementwise_unary, op, device, dtype, requires_grad, **kwargs
    )

    # yields "normal" samples
    yield from gen()

    # yields noncontiguous samples
    for sample in gen():
        yield sample.noncontiguous()

    yield from generate_elementwise_unary_noncontiguous_tensors(
        op, device=device, dtype=dtype, requires_grad=requires_grad, **kwargs
    )

    yield from generate_elementwise_unary_arbitrarily_strided_tensors(
        op, device=device, dtype=dtype, requires_grad=requires_grad, **kwargs
    )


# Metadata class for unary "universal functions (ufuncs)" that accept a single
# tensor and have common properties like:
class UnaryUfuncInfo(OpInfo):
    """Operator information for 'universal unary functions (unary ufuncs).'
    These are functions of a single tensor with common properties like:
      - they are elementwise functions
      - the input shape is the output shape
      - they typically have method and inplace variants
      - they typically support the out kwarg
      - they typically have NumPy or SciPy references
    See NumPy's universal function documentation
    (https://numpy.org/doc/1.18/reference/ufuncs.html) for more details
    about the concept of ufuncs.
    """

    def __init__(
        self,
        name,  # the string name of the function
        *,
        dtypes=floating_types(),
        domain=(None, None),  # the [low, high) domain of the function
        handles_complex_extremal_values=True,  # whether the op correctly handles extremal values (like nan/inf)
        handles_large_floats=True,  # whether the op correctly handles large float values (like 1e20)
        supports_complex_to_float=False,  # op supports casting from complex input to real output safely eg. angle
        sample_inputs_func=sample_inputs_elementwise_unary,
        reference_inputs_func=reference_inputs_elementwise_unary,
        sample_kwargs=lambda device, dtype, input: ({}, {}),
        reference_numerics_filter=None,  # Filters values in the range of the domain specified above but that should not be tested
        **kwargs,
    ):
        self._original_unary_ufunc_args = locals().copy()

        super().__init__(
            name,
            dtypes=dtypes,
            sample_inputs_func=sample_inputs_func,
            reference_inputs_func=reference_inputs_func,
            **kwargs,
        )
        self.domain = domain
        self.handles_complex_extremal_values = handles_complex_extremal_values
        self.handles_large_floats = handles_large_floats
        self.supports_complex_to_float = supports_complex_to_float
        self.reference_numerics_filter = reference_numerics_filter

        # test_unary_ufuncs.py generates its own inputs to test the consistency
        # of the operator on sliced tensors, non-contig tensors, etc.
        # `sample_kwargs` is a utility function to provide kwargs
        # along with those inputs if required (eg. clamp).
        # It should return two dictionaries, first holding kwarg for
        # torch operator and second one for reference NumPy operator.
        self.sample_kwargs = sample_kwargs

        # Epsilon to ensure grad and gradgrad checks don't test values
        #   outside a function's domain.
        self._domain_eps = 1e-5


def sample_inputs_spectral_ops(self, device, dtype, requires_grad=False, **kwargs):
    is_fp16_or_chalf = dtype == torch.complex32 or dtype == torch.half
    if not is_fp16_or_chalf:
        nd_tensor = partial(
            make_tensor,
            (S, S + 1, S + 2),
            device=device,
            dtype=dtype,
            requires_grad=requires_grad,
        )
        oned_tensor = partial(
            make_tensor, (31,), device=device, dtype=dtype, requires_grad=requires_grad
        )
    else:
        # cuFFT supports powers of 2 for half and complex half precision
        # NOTE: For hfft, hfft2, hfftn, irfft, irfft2, irfftn with default args
        # where output_size n=2*(input_size - 1), we make sure that logical fft size is a power of two
        low = None
        high = None
        if self.name in ["fft.hfft", "fft.irfft", "_refs.fft.hfft", "_refs.fft.irfft"]:
            shapes = ((2, 9, 9), (33,))
        elif self.name in [
            "fft.hfft2",
            "fft.irfft2",
            "_refs.fft.hfft2",
            "_refs.fft.irfft2",
        ]:
            shapes = ((2, 8, 9), (33,))
        elif self.name in [
            "fft.hfftn",
            "fft.irfftn",
            "_refs.fft.hfftn",
            "_refs.fft.irfftn",
        ]:
            shapes = ((2, 2, 33), (33,))
            # Adjusting the limits because the test would be flaky due to over-saturation of float16
            # See: https://github.com/pytorch/pytorch/pull/81416
            low = -1.0
            high = 1.0
        else:
            shapes = ((2, 8, 16), (32,))
        nd_tensor = partial(
            make_tensor,
            shapes[0],
            device=device,
            low=low,
            high=high,
            dtype=dtype,
            requires_grad=requires_grad,
        )
        oned_tensor = partial(
            make_tensor,
            shapes[1],
            device=device,
            low=low,
            high=high,
            dtype=dtype,
            requires_grad=requires_grad,
        )

    if self.ndimensional == SpectralFuncType.ND:
        return [
            SampleInput(
                nd_tensor(),
                kwargs=dict(
                    s=(3, 10) if not is_fp16_or_chalf else (4, 8),
                    dim=(1, 2),
                    norm="ortho",
                ),
            ),
            SampleInput(nd_tensor(), kwargs=dict(norm="ortho")),
            SampleInput(nd_tensor(), kwargs=dict(s=(8,))),
            SampleInput(oned_tensor()),
            *(
                SampleInput(nd_tensor(), kwargs=dict(dim=dim))
                for dim in [-1, -2, -3, (0, -1)]
            ),
        ]
    elif self.ndimensional == SpectralFuncType.TwoD:
        return [
            SampleInput(
                nd_tensor(),
                kwargs=dict(
                    s=(3, 10) if not is_fp16_or_chalf else (4, 8),
                    dim=(1, 2),
                    norm="ortho",
                ),
            ),
            SampleInput(nd_tensor(), kwargs=dict(norm="ortho")),
            SampleInput(
                nd_tensor(), kwargs=dict(s=(6, 8) if not is_fp16_or_chalf else (4, 8))
            ),
            SampleInput(nd_tensor(), kwargs=dict(dim=0)),
            SampleInput(nd_tensor(), kwargs=dict(dim=(0, -1))),
            SampleInput(nd_tensor(), kwargs=dict(dim=(-3, -2, -1))),
        ]
    else:
        return [
            SampleInput(
                nd_tensor(),
                kwargs=dict(n=10 if not is_fp16_or_chalf else 8, dim=1, norm="ortho"),
            ),
            SampleInput(nd_tensor(), kwargs=dict(norm="ortho")),
            SampleInput(nd_tensor(), kwargs=dict(n=7 if not is_fp16_or_chalf else 8)),
            SampleInput(oned_tensor()),
            *(SampleInput(nd_tensor(), kwargs=dict(dim=dim)) for dim in [-1, -2, -3]),
        ]


SpectralFuncType = Enum("SpectralFuncType", ("OneD", "TwoD", "ND"))


# Metadata class for Fast Fourier Transforms in torch.fft.
class SpectralFuncInfo(OpInfo):
    """Operator information for torch.fft transforms."""

    def __init__(
        self,
        name,  # the string name of the function
        *,
        ref=None,  # Reference implementation (probably in np.fft namespace)
        dtypes=floating_and_complex_types(),
        ndimensional: SpectralFuncType,
        sample_inputs_func=sample_inputs_spectral_ops,
        decorators=None,
        **kwargs,
    ):

        self._original_spectral_func_args = dict(locals()).copy()
        self._original_spectral_func_args.update(kwargs)

        decorators = list(decorators) if decorators is not None else []
        decorators += [
            skipCPUIfNoFFT,
            DecorateInfo(
                toleranceOverride({torch.chalf: tol(4e-2, 4e-2)}),
                "TestCommon",
                "test_complex_half_reference_testing",
            ),
        ]

        super().__init__(
            name=name,
            dtypes=dtypes,
            decorators=decorators,
            sample_inputs_func=sample_inputs_func,
            **kwargs,
        )
        self.ref = ref
        self.ndimensional = ndimensional


class ShapeFuncInfo(OpInfo):
    """Early version of a specialized OpInfo for Shape manipulating operations like tile and roll"""

    def __init__(
        self,
        name,  # the string name of the function
        *,
        ref,  # a reference function
        dtypes=floating_types(),
        dtypesIfCUDA=None,
        dtypesIfROCM=None,
        sample_inputs_func=None,
        **kwargs,
    ):
        super(ShapeFuncInfo, self).__init__(
            name,
            dtypes=dtypes,
            dtypesIfCUDA=dtypesIfCUDA,
            dtypesIfROCM=dtypesIfROCM,
            sample_inputs_func=sample_inputs_func,
            **kwargs,
        )
        self.ref = ref


def sample_inputs_foreach(
    self, device, dtype, N, *, noncontiguous=False, same_size=False, low=None, high=None
):
    if same_size:
        return [
            make_tensor((N, N), dtype=dtype, device=device, noncontiguous=noncontiguous)
            for _ in range(N)
        ]
    else:
        return [
            make_tensor(
                (N - i, N - i), dtype=dtype, device=device, noncontiguous=noncontiguous
            )
            for i in range(N)
        ]


def get_foreach_method_names(name):
    # get torch inplace reference function
    op_name = "_foreach_" + name
    inplace_op_name = op_name + "_"

    op = getattr(torch, op_name, None)
    inplace_op = getattr(torch, inplace_op_name, None)

    ref = getattr(torch, name, None)
    ref_inplace = getattr(torch.Tensor, name + "_", None)
    return op, inplace_op, ref, ref_inplace


class ForeachFuncInfo(OpInfo):
    """Early version of a specialized OpInfo for foreach functions"""

    def __init__(
        self,
        name,
        dtypes=floating_and_complex_types(),
        dtypesIfCUDA=floating_and_complex_types_and(torch.half),
        dtypesIfROCM=None,
        supports_alpha_param=False,
        sample_inputs_func=sample_inputs_foreach,
        **kwargs,
    ):
        super().__init__(
            "_foreach_" + name,
            dtypes=dtypes,
            dtypesIfCUDA=dtypesIfCUDA,
            dtypesIfROCM=dtypesIfROCM,
            sample_inputs_func=sample_inputs_func,
            **kwargs,
        )

        (
            foreach_method,
            foreach_method_inplace,
            torch_ref_method,
            torch_ref_inplace,
        ) = get_foreach_method_names(name)
        self.method_variant = foreach_method
        self.inplace_variant = foreach_method_inplace
        self.ref = torch_ref_method
        self.ref_inplace = torch_ref_inplace
        self.supports_alpha_param = supports_alpha_param

        if name == "norm":
            self.ref = torch.linalg.vector_norm


def gradcheck_wrapper_hermitian_input(op, input, *args, **kwargs):
    """Gradcheck wrapper for functions that take Hermitian matrices as input.

    They require a modified function because the finite-difference algorithm
    for calculating derivatives does not preserve the Hermitian property of the input.
    """
    return op(input + input.mH, *args, **kwargs)


def gradcheck_wrapper_triangular_input(op, *args, upper=False, idx=0, **kwargs):
    """Gradcheck wrapper for functions that take lower or upper triangular matrices as input.

    They require a modified function because the finite-difference algorithm
    for calculating derivatives does not preserve the triangular property of the input.
    `idx` is used to specific which `args[idx]` is to be triangularized.
    """
    triangular_arg = args[idx].triu() if upper else args[idx].tril()
    return op(*args[:idx], triangular_arg, *args[idx + 1 :], upper, **kwargs)


def gradcheck_wrapper_triangular_input_real_positive_diagonal(
    op, *args, upper=False, idx=0, **kwargs
):
    """Gradcheck wrapper for functions that take lower/upper triangular matrices
    with real and positive diagonals, for example, cholesky-like operations.
    """
    arg = args[idx]
    arg_diag = arg.diagonal(0, -2, -1)
    arg_diag_embed = torch.diag_embed(arg_diag)
    id_diag_tensor = torch.ones_like(arg_diag)
    id_tensor = torch.diag_embed(id_diag_tensor)
    # new_arg = arg - diag(arg) + I
    new_arg = arg - arg_diag_embed + id_tensor
    return gradcheck_wrapper_triangular_input(
        op, *args[:idx], new_arg, *args[idx + 1 :], upper=upper, idx=idx, **kwargs
    )


def gradcheck_wrapper_masked_operation(op, input, *args, **kwargs):
    """Gradcheck wrapper for masked operations.

    When mask is specified, replaces masked-out elements with zeros.

    Use for operations that produce non-finite masked-out elements,
    for instance, for minimum and maximum reductions.
    """
    output = op(input, *args, **kwargs)
    mask = kwargs.get("mask")
    if mask is not None:
        output_mask = torch.masked._output_mask(op, input, *args, **kwargs)
        output = torch.where(output_mask, output, output.new_zeros([]))
    return output


def gradcheck_wrapper_masked_pointwise_operation(op, input, *args, **kwargs):
    """Gradcheck wrapper for masked pointwise operations. Assumes that the result
    will be masked iff both tensors are masked at a specific index

    When mask is specified, replaces masked-out elements with zeros.

    Use for operations that produce non-finite masked-out elements,
    for instance, for minimum and maximum reductions.
    """
    output = op(input, *args, **kwargs)
    input_mask = kwargs.get("input_mask")
    other_mask = kwargs.get("other_mask")
    if input_mask is not None and other_mask is not None:
        combined_mask = torch.logical_and(input_mask, other_mask)
        new_kwargs = dict(mask=combined_mask, **kwargs)
        output_mask = torch.masked._input_mask(input, *args, **new_kwargs)
        output = torch.where(output_mask, output, output.new_zeros([]))
    return output


def clone_sample(sample, **kwargs):
    """
    Given a SampleInput, this function analyzes its input, args and kwargs,
    and produces a copy with each non-Tensor entry being copied by reference,
    and with each Tensor entry cloned with `t.clone().requires_grad_(t.requires_grad)`
    """

    def clone_tensor(t):
        if isinstance(t, torch.Tensor):
            return t.detach().clone().requires_grad_(t.requires_grad)
        else:
            return t

    sample_kwargs = kwargs if kwargs else sample.kwargs

    return SampleInput(
        clone_tensor(sample.input),
        args=tuple(map(clone_tensor, sample.args)),
        kwargs=dict(((k, clone_tensor(v)) for k, v in sample_kwargs.items())),
    )