1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
import collections
import warnings
from functools import partial, wraps
from typing import Sequence
import numpy as np
import torch
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_dtype import (
_dispatch_dtypes,
all_types,
all_types_and,
all_types_and_complex,
all_types_and_complex_and,
all_types_and_half,
complex_types,
floating_and_complex_types,
floating_and_complex_types_and,
floating_types,
floating_types_and,
floating_types_and_half,
integral_types,
integral_types_and,
)
from torch.testing._internal.common_utils import torch_to_numpy_dtype_dict
COMPLETE_DTYPES_DISPATCH = (
all_types,
all_types_and_complex,
all_types_and_half,
floating_types,
floating_and_complex_types,
floating_types_and_half,
integral_types,
complex_types,
)
EXTENSIBLE_DTYPE_DISPATCH = (
all_types_and_complex_and,
floating_types_and,
floating_and_complex_types_and,
integral_types_and,
all_types_and,
)
# Better way to acquire devices?
DEVICES = ["cpu"] + (["cuda"] if TEST_CUDA else [])
class _dynamic_dispatch_dtypes(_dispatch_dtypes):
# Class to tag the dynamically generated types.
pass
def get_supported_dtypes(op, sample_inputs_fn, device_type):
# Returns the supported dtypes for the given operator and device_type pair.
assert device_type in ["cpu", "cuda"]
if not TEST_CUDA and device_type == "cuda":
warnings.warn(
"WARNING: CUDA is not available, empty_dtypes dispatch will be returned!"
)
return _dynamic_dispatch_dtypes(())
supported_dtypes = set()
for dtype in all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half):
try:
samples = sample_inputs_fn(op, device_type, dtype, False)
except RuntimeError:
# If `sample_inputs_fn` doesn't support sampling for a given
# `dtype`, we assume that the `dtype` is not supported.
# We raise a warning, so that user knows that this was the case
# and can investigate if there was an issue with the `sample_inputs_fn`.
warnings.warn(
f"WARNING: Unable to generate sample for device:{device_type} and dtype:{dtype}"
)
continue
# We assume the dtype is supported
# only if all samples pass for the given dtype.
supported = True
for sample in samples:
try:
op(sample.input, *sample.args, **sample.kwargs)
except RuntimeError as re:
# dtype is not supported
supported = False
break
if supported:
supported_dtypes.add(dtype)
return _dynamic_dispatch_dtypes(supported_dtypes)
def dtypes_dispatch_hint(dtypes):
# Function returns the appropriate dispatch function (from COMPLETE_DTYPES_DISPATCH and EXTENSIBLE_DTYPE_DISPATCH)
# and its string representation for the passed `dtypes`.
return_type = collections.namedtuple("return_type", "dispatch_fn dispatch_fn_str")
# CUDA is not available, dtypes will be empty.
if len(dtypes) == 0:
return return_type((), str(tuple()))
set_dtypes = set(dtypes)
for dispatch in COMPLETE_DTYPES_DISPATCH:
# Short circuit if we get an exact match.
if set(dispatch()) == set_dtypes:
return return_type(dispatch, dispatch.__name__ + "()")
chosen_dispatch = None
chosen_dispatch_score = 0.0
for dispatch in EXTENSIBLE_DTYPE_DISPATCH:
dispatch_dtypes = set(dispatch())
if not dispatch_dtypes.issubset(set_dtypes):
continue
score = len(dispatch_dtypes)
if score > chosen_dispatch_score:
chosen_dispatch_score = score
chosen_dispatch = dispatch
# If user passed dtypes which are lower than the lowest
# dispatch type available (not likely but possible in code path).
if chosen_dispatch is None:
return return_type((), str(dtypes))
return return_type(
partial(dispatch, *tuple(set(dtypes) - set(dispatch()))),
dispatch.__name__ + str(tuple(set(dtypes) - set(dispatch()))),
)
def is_dynamic_dtype_set(op):
# Detect if the OpInfo entry acquired dtypes dynamically
# using `get_supported_dtypes`.
return op.dynamic_dtypes
def str_format_dynamic_dtype(op):
fmt_str = """
OpInfo({name},
dtypes={dtypes},
dtypesIfCUDA={dtypesIfCUDA},
)
""".format(
name=op.name,
dtypes=dtypes_dispatch_hint(op.dtypes).dispatch_fn_str,
dtypesIfCUDA=dtypes_dispatch_hint(op.dtypesIfCUDA).dispatch_fn_str,
)
return fmt_str
def np_unary_ufunc_integer_promotion_wrapper(fn):
# Wrapper that passes PyTorch's default scalar
# type as an argument to the wrapped NumPy
# unary ufunc when given an integer input.
# This mimicks PyTorch's integer->floating point
# type promotion.
#
# This is necessary when NumPy promotes
# integer types to double, since PyTorch promotes
# integer types to the default scalar type.
# Helper to determine if promotion is needed
def is_integral(dtype):
return dtype in [
np.bool_,
bool,
np.uint8,
np.int8,
np.int16,
np.int32,
np.int64,
]
@wraps(fn)
def wrapped_fn(x):
# As the default dtype can change, acquire it when function is called.
# NOTE: Promotion in PyTorch is from integer types to the default dtype
np_dtype = torch_to_numpy_dtype_dict[torch.get_default_dtype()]
if is_integral(x.dtype):
return fn(x.astype(np_dtype))
return fn(x)
return wrapped_fn
def reference_reduction_numpy(f, supports_keepdims=True):
"""Wraps a NumPy reduction operator.
The wrapper function will forward dim, keepdim, mask, and identity
kwargs to the wrapped function as the NumPy equivalent axis,
keepdims, where, and initiak kwargs, respectively.
Args:
f: NumPy reduction operator to wrap
supports_keepdims (bool, optional): Whether the NumPy operator accepts
keepdims parameter. If it does not, the wrapper will manually unsqueeze
the reduced dimensions if it was called with keepdim=True. Defaults to True.
Returns:
Wrapped function
"""
@wraps(f)
def wrapper(x: np.ndarray, *args, **kwargs):
# Copy keys into a set
keys = set(kwargs.keys())
dim = kwargs.pop("dim", None)
keepdim = kwargs.pop("keepdim", False)
if "dim" in keys:
dim = tuple(dim) if isinstance(dim, Sequence) else dim
# NumPy reductions don't accept dim=0 for scalar inputs
# so we convert it to None if and only if dim is equivalent
if x.ndim == 0 and dim in {0, -1, (0,), (-1,)}:
kwargs["axis"] = None
else:
kwargs["axis"] = dim
if "keepdim" in keys and supports_keepdims:
kwargs["keepdims"] = keepdim
if "mask" in keys:
mask = kwargs.pop("mask")
if mask is not None:
assert mask.layout == torch.strided
kwargs["where"] = mask.cpu().numpy()
if "identity" in keys:
identity = kwargs.pop("identity")
if identity is not None:
if identity.dtype is torch.bfloat16:
identity = identity.cpu().to(torch.float32)
else:
identity = identity.cpu()
kwargs["initial"] = identity.numpy()
if "unbiased" in keys:
unbiased = kwargs.pop("unbiased")
if unbiased is not None:
kwargs["ddof"] = int(unbiased)
result = f(x, *args, **kwargs)
# Unsqueeze reduced dimensions if NumPy does not support keepdims
if keepdim and not supports_keepdims and x.ndim > 0:
dim = list(range(x.ndim)) if dim is None else dim
result = np.expand_dims(result, dim)
return result
return wrapper
|