File: quantization_torch_package_models.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (31 lines) | stat: -rw-r--r-- 928 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import math

import torch
import torch.nn as nn


class LinearReluFunctionalChild(nn.Module):
    def __init__(self, N):
        super().__init__()
        self.w1 = nn.Parameter(torch.empty(N, N))
        self.b1 = nn.Parameter(torch.zeros(N))
        torch.nn.init.kaiming_uniform_(self.w1, a=math.sqrt(5))

    def forward(self, x):
        x = torch.nn.functional.linear(x, self.w1, self.b1)
        x = torch.nn.functional.relu(x)
        return x

class LinearReluFunctional(nn.Module):
    def __init__(self, N):
        super().__init__()
        self.child = LinearReluFunctionalChild(N)
        self.w1 = nn.Parameter(torch.empty(N, N))
        self.b1 = nn.Parameter(torch.zeros(N))
        torch.nn.init.kaiming_uniform_(self.w1, a=math.sqrt(5))

    def forward(self, x):
        x = self.child(x)
        x = torch.nn.functional.linear(x, self.w1, self.b1)
        x = torch.nn.functional.relu(x)
        return x