1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
import argparse
import datetime
import itertools as it
import multiprocessing
import multiprocessing.dummy
import os
import queue
import pickle
import shutil
import subprocess
import sys
import tempfile
import threading
import time
from typing import Tuple, Dict
from . import blas_compare_setup
MIN_RUN_TIME = 1
NUM_REPLICATES = 20
NUM_THREAD_SETTINGS = (1, 2, 4)
RESULT_FILE = os.path.join(blas_compare_setup.WORKING_ROOT, "blas_results.pkl")
SCRATCH_DIR = os.path.join(blas_compare_setup.WORKING_ROOT, "scratch")
BLAS_CONFIGS = (
("MKL (2020.3)", blas_compare_setup.MKL_2020_3, None),
("MKL (2020.0)", blas_compare_setup.MKL_2020_0, None),
("OpenBLAS", blas_compare_setup.OPEN_BLAS, None)
)
_RESULT_FILE_LOCK = threading.Lock()
_WORKER_POOL: queue.Queue[Tuple[str, str, int]] = queue.Queue()
def clear_worker_pool():
while not _WORKER_POOL.empty():
_, result_file, _ = _WORKER_POOL.get_nowait()
os.remove(result_file)
if os.path.exists(SCRATCH_DIR):
shutil.rmtree(SCRATCH_DIR)
def fill_core_pool(n: int):
clear_worker_pool()
os.makedirs(SCRATCH_DIR)
# Reserve two cores so that bookkeeping does not interfere with runs.
cpu_count = multiprocessing.cpu_count() - 2
# Adjacent cores sometimes share cache, so we space out single core runs.
step = max(n, 2)
for i in range(0, cpu_count, step):
core_str = f"{i}" if n == 1 else f"{i},{i + n - 1}"
_, result_file = tempfile.mkstemp(suffix=".pkl", prefix=SCRATCH_DIR)
_WORKER_POOL.put((core_str, result_file, n))
def _subprocess_main(seed=0, num_threads=1, sub_label="N/A", result_file=None, env=None):
import torch
from torch.utils.benchmark import Timer
conda_prefix = os.getenv("CONDA_PREFIX")
assert conda_prefix
if not torch.__file__.startswith(conda_prefix):
raise ValueError(
f"PyTorch mismatch: `import torch` resolved to `{torch.__file__}`, "
f"which is not in the correct conda env: {conda_prefix}"
)
torch.manual_seed(seed)
results = []
for n in [4, 8, 16, 32, 64, 128, 256, 512, 1024, 7, 96, 150, 225]:
dtypes = (("Single", torch.float32), ("Double", torch.float64))
shapes = (
# Square MatMul
((n, n), (n, n), "(n x n) x (n x n)", "Matrix-Matrix Product"),
# Matrix-Vector product
((n, n), (n, 1), "(n x n) x (n x 1)", "Matrix-Vector Product"),
)
for (dtype_name, dtype), (x_shape, y_shape, shape_str, blas_type) in it.product(dtypes, shapes):
t = Timer(
stmt="torch.mm(x, y)",
label=f"torch.mm {shape_str} {blas_type} ({dtype_name})",
sub_label=sub_label,
description=f"n = {n}",
env=os.path.split(env or "")[1] or None,
globals={
"x": torch.rand(x_shape, dtype=dtype),
"y": torch.rand(y_shape, dtype=dtype),
},
num_threads=num_threads,
).blocked_autorange(min_run_time=MIN_RUN_TIME)
results.append(t)
if result_file is not None:
with open(result_file, "wb") as f:
pickle.dump(results, f)
def run_subprocess(args):
seed, env, sub_label, extra_env_vars = args
core_str = None
try:
core_str, result_file, num_threads = _WORKER_POOL.get()
with open(result_file, "wb"):
pass
env_vars: Dict[str, str] = {
"PATH": os.getenv("PATH") or "",
"PYTHONPATH": os.getenv("PYTHONPATH") or "",
# NumPy
"OMP_NUM_THREADS": str(num_threads),
"MKL_NUM_THREADS": str(num_threads),
"NUMEXPR_NUM_THREADS": str(num_threads),
}
env_vars.update(extra_env_vars or {})
subprocess.run(
f"source activate {env} && "
f"taskset --cpu-list {core_str} "
f"python {os.path.abspath(__file__)} "
"--DETAIL_in_subprocess "
f"--DETAIL_seed {seed} "
f"--DETAIL_num_threads {num_threads} "
f"--DETAIL_sub_label '{sub_label}' "
f"--DETAIL_result_file {result_file} "
f"--DETAIL_env {env}",
env=env_vars,
stdout=subprocess.PIPE,
shell=True
)
with open(result_file, "rb") as f:
result_bytes = f.read()
with _RESULT_FILE_LOCK, \
open(RESULT_FILE, "ab") as f:
f.write(result_bytes)
except KeyboardInterrupt:
pass # Handle ctrl-c gracefully.
finally:
if core_str is not None:
_WORKER_POOL.put((core_str, result_file, num_threads))
def _compare_main():
results = []
with open(RESULT_FILE, "rb") as f:
while True:
try:
results.extend(pickle.load(f))
except EOFError:
break
from torch.utils.benchmark import Compare
comparison = Compare(results)
comparison.trim_significant_figures()
comparison.colorize()
comparison.print()
def main():
with open(RESULT_FILE, "wb"):
pass
for num_threads in NUM_THREAD_SETTINGS:
fill_core_pool(num_threads)
workers = _WORKER_POOL.qsize()
trials = []
for seed in range(NUM_REPLICATES):
for sub_label, env, extra_env_vars in BLAS_CONFIGS:
env_path = os.path.join(blas_compare_setup.WORKING_ROOT, env)
trials.append((seed, env_path, sub_label, extra_env_vars))
n = len(trials)
with multiprocessing.dummy.Pool(workers) as pool:
start_time = time.time()
for i, r in enumerate(pool.imap(run_subprocess, trials)):
n_trials_done = i + 1
time_per_result = (time.time() - start_time) / n_trials_done
eta = int((n - n_trials_done) * time_per_result)
print(f"\r{i + 1} / {n} ETA:{datetime.timedelta(seconds=eta)}".ljust(80), end="")
sys.stdout.flush()
print(f"\r{n} / {n} Total time: {datetime.timedelta(seconds=int(time.time() - start_time))}")
print()
# Any env will do, it just needs to have torch for benchmark utils.
env_path = os.path.join(blas_compare_setup.WORKING_ROOT, BLAS_CONFIGS[0][1])
subprocess.run(
f"source activate {env_path} && "
f"python {os.path.abspath(__file__)} "
"--DETAIL_in_compare",
shell=True
)
if __name__ == "__main__":
# These flags are for subprocess control, not controlling the main loop.
parser = argparse.ArgumentParser()
parser.add_argument("--DETAIL_in_subprocess", action="store_true")
parser.add_argument("--DETAIL_in_compare", action="store_true")
parser.add_argument("--DETAIL_seed", type=int, default=None)
parser.add_argument("--DETAIL_num_threads", type=int, default=None)
parser.add_argument("--DETAIL_sub_label", type=str, default="N/A")
parser.add_argument("--DETAIL_result_file", type=str, default=None)
parser.add_argument("--DETAIL_env", type=str, default=None)
args = parser.parse_args()
if args.DETAIL_in_subprocess:
try:
_subprocess_main(
args.DETAIL_seed,
args.DETAIL_num_threads,
args.DETAIL_sub_label,
args.DETAIL_result_file,
args.DETAIL_env,
)
except KeyboardInterrupt:
pass # Handle ctrl-c gracefully.
elif args.DETAIL_in_compare:
_compare_main()
else:
main()
|