1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
|
# -*- coding: utf-8 -*-
"""End-to-end example to test a PR for regressions:
$ python -m examples.end_to_end --pr 39850
$ python -m examples.end_to_end --pr 39967
$ python -m examples.end_to_end --pr 39744
NOTE:
This example assumes that you have and environment prefixed with
`ref_`, and another prefixed with `pr_` for the PR
in question. (e.g. `ref_39850` and `pr_39850`).
A helper script (examples/prepare_e2e.sh) is provided to build
the required environments with the correct configuration.
"""
import argparse
import itertools as it
import multiprocessing
import multiprocessing.dummy
import os
import pickle
import queue
import subprocess
import tempfile
import textwrap
import numpy as np
import torch
from torch.utils.benchmark.op_fuzzers import unary
from torch.utils.benchmark import Timer, Measurement
from typing import Dict, Tuple, List
_MAIN, _SUBPROCESS = "main", "subprocess"
_PR_ENV_TEMPLATE = "pr_{pr}"
_REF_ENV_TEMPLATE = "ref_{pr}"
_PR_LIST = (
# Optimize topk performance for tensor with a large dimension size
"39850",
# Migrate `var` & `std` to ATen
"39967",
# Introducing (Const)StridedRandomAccessor + CompositeRandomAccessor + migrate `sort` to ATen (CPU)
"39744",
)
_CPU, _GPU = "cpu", "gpu"
_MIN_RUN_SEC = 1
_REPLICATES = {
_CPU: 5, # CPU has a higher variance.
_GPU: 1,
}
_RUNS_PER_LOOP = 3
_NUM_LOOPS = {
_CPU: 32,
_GPU: 64,
}
_DEVICES_TO_TEST = {
"39850": {_CPU: False, _GPU: True},
"39967": {_CPU: True, _GPU: True},
"39744": {_CPU: True, _GPU: True},
}
_AVAILABLE_GPUS = queue.Queue[int]()
_DTYPES_TO_TEST = {
"39850": ("int8", "float32", "float64"),
"39967": ("float32", "float64"),
"39744": ("int8", "float32", "float64"),
}
_DTYPE_STR_TO_DTYPE = {
"float64": torch.float64,
"float32": torch.float32,
"int8": torch.int8,
}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--pr", type=str, default=_PR_LIST[0], choices=_PR_LIST)
parser.add_argument("--num_gpus", type=int, default=None)
parser.add_argument("--test_variance", action="store_true")
# (Implementation details)
parser.add_argument("--DETAIL_context", type=str, choices=(_MAIN, _SUBPROCESS), default=_MAIN)
parser.add_argument("--DETAIL_device", type=str, choices=(_CPU, _GPU), default=None)
parser.add_argument("--DETAIL_env", type=str, default=None)
parser.add_argument("--DETAIL_result_file", type=str, default=None)
parser.add_argument("--DETAIL_seed", type=int, default=None)
args = parser.parse_args()
if args.num_gpus is None:
args.num_gpus = torch.cuda.device_count()
return args
_SUBPROCESS_CMD_TEMPLATE = (
"source activate {source_env} && python -m examples.end_to_end "
"--pr {pr} "
"--DETAIL_context subprocess "
"--DETAIL_device {device} "
"--DETAIL_env {env} "
"--DETAIL_result_file {result_file} "
"--DETAIL_seed {seed}"
)
def construct_stmt_and_label(pr, params):
if pr == "39850":
k0, k1, k2, dim = [params[i] for i in ["k0", "k1", "k2", "dim"]]
state = np.random.RandomState(params["random_value"])
topk_dim = state.randint(low=0, high=dim)
dim_size = [k0, k1, k2][topk_dim]
k = max(int(np.floor(2 ** state.uniform(low=0, high=np.log2(dim_size)))), 1)
return f"torch.topk(x, dim={topk_dim}, k={k})", "topk"
if pr == "39967":
return "torch.std(x)", "std"
if pr == "39744":
state = np.random.RandomState(params["random_value"])
sort_dim = state.randint(low=0, high=params["dim"])
return f"torch.sort(x, dim={sort_dim})", "sort"
raise ValueError("Unknown PR")
def subprocess_main(args):
seed = args.DETAIL_seed
cuda = (args.DETAIL_device == _GPU)
with open(args.DETAIL_result_file, "ab") as f:
for dtype_str in _DTYPES_TO_TEST[args.pr]:
dtype = _DTYPE_STR_TO_DTYPE[dtype_str]
iterator = unary.UnaryOpFuzzer(
seed=seed, dtype=dtype, cuda=cuda).take(_RUNS_PER_LOOP)
for i, (tensors, tensor_parameters, params) in enumerate(iterator):
params["dtype_str"] = dtype_str
stmt, label = construct_stmt_and_label(args.pr, params)
timer = Timer(
stmt=stmt,
globals=tensors,
label=label,
description=f"[{i}, seed={seed}] ({dtype_str}), stmt = {stmt}",
env=args.DETAIL_env,
)
measurement = timer.blocked_autorange(min_run_time=_MIN_RUN_SEC)
measurement.metadata = {
"tensor_parameters": tensor_parameters,
"params": params,
}
print(measurement)
pickle.dump(measurement, f)
def _main(args):
pools, map_iters, finished_counts = {}, {}, {}
pr = args.pr
envs = (_REF_ENV_TEMPLATE.format(pr=pr), _PR_ENV_TEMPLATE.format(pr=pr))
# We initialize both pools at the start so that they run simultaneously
# if applicable
if _DEVICES_TO_TEST[args.pr][_GPU]:
finished_counts[_GPU] = 0
for i in range(args.num_gpus):
_AVAILABLE_GPUS.put(i)
pools[_GPU] = multiprocessing.dummy.Pool(args.num_gpus)
trials = [
(seed, envs, pr, True, finished_counts, args.test_variance)
for seed in range(_NUM_LOOPS[_GPU])] * _REPLICATES[_GPU]
map_iters[_GPU] = pools[_GPU].imap(map_fn, trials)
if _DEVICES_TO_TEST[args.pr][_CPU]:
finished_counts[_CPU] = 0
cpu_workers = int(multiprocessing.cpu_count() / 3)
pools[_CPU] = multiprocessing.dummy.Pool(cpu_workers)
trials = [
(seed, envs, pr, False, finished_counts, args.test_variance)
for seed in range(_NUM_LOOPS[_CPU])] * _REPLICATES[_CPU]
map_iters[_CPU] = pools[_CPU].imap(map_fn, trials)
results = []
for map_iter in map_iters.values():
for r in map_iter:
results.append(r)
progress = [
f"{k}: {v} / {_NUM_LOOPS[k] * _REPLICATES[k]}"
for k, v in finished_counts.items()]
print(f"\r{(' ' * 10).join(progress)}", end="")
print()
for pool in pools.values():
pool.close()
process_results(results, args.test_variance)
# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
# == Data processing and string formatting ====================================
# /////////////////////////////////////////////////////////////////////////////
def merge(measurements):
if not measurements:
return None
states = [m.__getstate__() for m in measurements]
for k in states[0].keys():
if k in ("number_per_run", "times", "metadata"):
continue
assert all(s[k] == states[0][k] for s in states)
numbers_per_run = {m.number_per_run for m in measurements}
n = numbers_per_run.pop() if len(numbers_per_run) == 1 else 1
merged_state = states[0]
times = [[t / m.number_per_run * n for t in m.times] for m in measurements]
merged_state["times"] = list(it.chain(*times))
merged_state["number_per_run"] = n
merged_state["metadata"] = states[0]["metadata"]
return Measurement(**merged_state)
def process_results(results, test_variance):
paired_results: Dict[Tuple[str, str, int, bool, int], List] = {}
for (seed, use_gpu), result_batch in results:
for r in result_batch:
key = (r.label, r.description, r.num_threads, use_gpu, seed)
paired_results.setdefault(key, [[], []])
index = 0 if r.env.startswith("ref") else 1
paired_results[key][index].append(r)
paired_results = {
key: [merge(r_ref_list), merge(r_pr_list)]
for key, (r_ref_list, r_pr_list) in paired_results.items()
}
flagged_for_removal = set()
for key, (r_ref, r_pr) in paired_results.items():
if any(r is None or r.has_warnings for r in (r_ref, r_pr)):
flagged_for_removal.add(key)
paired_results = {
k: v for k, v in paired_results.items()
if k not in flagged_for_removal
}
print(f"{len(flagged_for_removal)} samples were culled, {len(paired_results)} remain")
gpu_results = [(k, v) for k, v in paired_results.items() if k[3]]
cpu_results = [(k, v) for k, v in paired_results.items() if not k[3]]
if cpu_results:
construct_table(cpu_results, "CPU", test_variance)
if gpu_results:
construct_table(gpu_results, "GPU", test_variance)
def construct_table(results, device_str, test_variance):
device_str = f"== {device_str} {' (Variance Test)' if test_variance else ''} ".ljust(40, "=")
print(f"{'=' * 40}\n{device_str}\n{'=' * 40}\n")
results = sorted((
(key, (r_ref, r_pr), r_pr.median / r_ref.median - 1)
for key, (r_ref, r_pr) in results
), key=lambda i: i[2])
n = len(results)
n_regressed = len([i for i in results if i[2] > 0.05])
n_improved = len([i for i in results if i[2] < -0.05])
n_unchanged = n - n_improved - n_regressed
legends = ["Improved (>5%):", "Regressed (>5%):", "Within 5%:"]
for legend, count in zip(legends, [n_improved, n_regressed, n_unchanged]):
print(f"{legend:<17} {count:>6} ({count / len(results) * 100:>3.0f}%)")
keys_to_print = (
{i[0] for i in results[20:30]} |
{i[0] for i in results[int(n // 2 - 5):int(n // 2 + 5)]} |
{i[0] for i in results[-30:-20]}
)
ellipsis_after = {results[29][0], results[int(n // 2 + 4)][0]}
column_labels = (
f"Relative Δ Absolute Δ | numel{'':>8}dtype{'':>14}"
f"shape{'':>10}steps{'':>10}layout{'':>7}task specific\n{'=' * 126}"
)
_, result_log_file = tempfile.mkstemp(suffix=".log")
with open(result_log_file, "wt") as f:
f.write(f"{device_str}\n\n{column_labels}\n")
print(f"\n{column_labels}\n[First twenty omitted (these tend to be noisy) ]")
for key, (r_ref, r_pr), rel_diff in results:
row = row_str(rel_diff, r_pr.median - r_ref.median, r_ref)
f.write(f"{row}\n")
if key in keys_to_print:
print(row)
if key in ellipsis_after:
print("...")
print("[Last twenty omitted (these tend to be noisy) ]")
print(textwrap.dedent("""
steps:
Indicates that `x` is sliced from a larger Tensor. For instance, if
shape is [12, 4] and steps are [2, 1], then a larger Tensor of size
[24, 4] was created, and then x = base_tensor[::2, ::1]. Omitted if
all elements are ones.
layout:
Indicates that `x` is not contiguous due to permutation. Invoking
`x.permute(layout)` (e.g. x.permute((2, 0, 1)) if layout = [2, 0, 1])
would produce a Tensor with physical memory layout matching logical
memory layout. (Though still not contiguous if `steps` contains
non-one elements.)
"""))
print(f"\nComplete results in: {result_log_file}")
def row_str(rel_diff, diff_seconds, measurement):
params = measurement.metadata["params"]
tensor_parameters = measurement.metadata["tensor_parameters"]
dim = params["dim"]
x_numel = tensor_parameters["x"]["numel"]
steps = [params[f"x_step_{i}"] for i in range(dim)]
order = tensor_parameters['x']["order"]
order = str("" if all(i == j for i, j in zip(order, range(dim))) else order)
task_specific = ""
if measurement.stmt.startswith("torch.topk"):
dim_str, k_str = measurement.stmt[:-1].replace("torch.topk(x, ", "").split(", ")
task_specific = f"{dim_str}, {k_str:<8}"
elif measurement.stmt.startswith("torch.std"):
pass
elif measurement.stmt.startswith("torch.sort"):
task_specific = measurement.stmt[:-1].replace("torch.sort(x, ", "")
return (
f"{rel_diff * 100:>5.0f}% {abs(diff_seconds) * 1e6:>11.1f} us{'':>6}|"
f"{x_numel:>12} {params['dtype_str']:>10} "
f"{str([params[f'k{i}'] for i in range(dim)]):>17} "
f"{str(steps) if not all(i == 1 for i in steps) else '':>12} {order:>12}"
f"{'':>8}{task_specific}"
)
# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
# == Subprocess and environment management ====================================
# /////////////////////////////////////////////////////////////////////////////
def read_results(result_file: str):
output = []
with open(result_file, "rb") as f:
while True:
try:
output.append(pickle.load(f))
except EOFError:
break
return output
def run(cmd, cuda_visible_devices=""):
return subprocess.run(
cmd,
env={
"CUDA_VISIBLE_DEVICES": str(cuda_visible_devices),
"PATH": os.getenv("PATH", ""),
},
stdout=subprocess.PIPE,
shell=True
)
def test_source(envs):
"""Ensure that subprocess"""
for env in envs:
result = run(f"source activate {env}")
if result.returncode != 0:
raise ValueError(f"Failed to source environment `{env}`")
def map_fn(args):
seed, envs, pr, use_gpu, finished_counts, test_variance = args
gpu = _AVAILABLE_GPUS.get() if use_gpu else None
try:
_, result_file = tempfile.mkstemp(suffix=".pkl")
for env in envs:
cmd = _SUBPROCESS_CMD_TEMPLATE.format(
source_env=envs[0] if test_variance else env,
env=env, pr=pr, device=_GPU if use_gpu else _CPU,
result_file=result_file, seed=seed,
)
run(cmd=cmd, cuda_visible_devices=gpu if use_gpu else "")
finished_counts[_GPU if use_gpu else _CPU] += 1
return (seed, use_gpu), read_results(result_file)
except KeyboardInterrupt:
pass # Handle ctrl-c gracefully.
finally:
if gpu is not None:
_AVAILABLE_GPUS.put(gpu)
if os.path.exists(result_file):
os.remove(result_file)
def main(args):
test_source([
_REF_ENV_TEMPLATE.format(pr=args.pr),
_PR_ENV_TEMPLATE.format(pr=args.pr),
])
_main(args)
if __name__ == "__main__":
args = parse_args()
if args.DETAIL_context == "main":
main(args)
if args.DETAIL_context == "subprocess":
try:
subprocess_main(args)
except KeyboardInterrupt:
pass # Handle ctrl-c gracefully.
|