File: end_to_end.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (427 lines) | stat: -rw-r--r-- 14,653 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
# -*- coding: utf-8 -*-
"""End-to-end example to test a PR for regressions:

$ python -m examples.end_to_end --pr 39850
$ python -m examples.end_to_end --pr 39967
$ python -m examples.end_to_end --pr 39744

NOTE:
  This example assumes that you have and environment prefixed with
  `ref_`, and another prefixed with `pr_` for the PR
  in question. (e.g. `ref_39850` and `pr_39850`).

  A helper script (examples/prepare_e2e.sh) is provided to build
  the required environments with the correct configuration.
"""

import argparse
import itertools as it
import multiprocessing
import multiprocessing.dummy
import os
import pickle
import queue
import subprocess
import tempfile
import textwrap

import numpy as np
import torch
from torch.utils.benchmark.op_fuzzers import unary
from torch.utils.benchmark import Timer, Measurement
from typing import Dict, Tuple, List


_MAIN, _SUBPROCESS = "main", "subprocess"

_PR_ENV_TEMPLATE = "pr_{pr}"
_REF_ENV_TEMPLATE = "ref_{pr}"

_PR_LIST = (
    # Optimize topk performance for tensor with a large dimension size
    "39850",

    # Migrate `var` & `std` to ATen
    "39967",

    # Introducing (Const)StridedRandomAccessor + CompositeRandomAccessor + migrate `sort` to ATen (CPU)
    "39744",
)

_CPU, _GPU = "cpu", "gpu"
_MIN_RUN_SEC = 1
_REPLICATES = {
    _CPU: 5,  # CPU has a higher variance.
    _GPU: 1,
}
_RUNS_PER_LOOP = 3
_NUM_LOOPS = {
    _CPU: 32,
    _GPU: 64,
}

_DEVICES_TO_TEST = {
    "39850": {_CPU: False, _GPU: True},
    "39967": {_CPU: True, _GPU: True},
    "39744": {_CPU: True, _GPU: True},
}

_AVAILABLE_GPUS = queue.Queue[int]()
_DTYPES_TO_TEST = {
    "39850": ("int8", "float32", "float64"),
    "39967": ("float32", "float64"),
    "39744": ("int8", "float32", "float64"),
}
_DTYPE_STR_TO_DTYPE = {
    "float64": torch.float64,
    "float32": torch.float32,
    "int8": torch.int8,
}


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--pr", type=str, default=_PR_LIST[0], choices=_PR_LIST)
    parser.add_argument("--num_gpus", type=int, default=None)
    parser.add_argument("--test_variance", action="store_true")

    # (Implementation details)
    parser.add_argument("--DETAIL_context", type=str, choices=(_MAIN, _SUBPROCESS), default=_MAIN)
    parser.add_argument("--DETAIL_device", type=str, choices=(_CPU, _GPU), default=None)
    parser.add_argument("--DETAIL_env", type=str, default=None)
    parser.add_argument("--DETAIL_result_file", type=str, default=None)
    parser.add_argument("--DETAIL_seed", type=int, default=None)

    args = parser.parse_args()
    if args.num_gpus is None:
        args.num_gpus = torch.cuda.device_count()
    return args


_SUBPROCESS_CMD_TEMPLATE = (
    "source activate {source_env} && python -m examples.end_to_end "
    "--pr {pr} "
    "--DETAIL_context subprocess "
    "--DETAIL_device {device} "
    "--DETAIL_env {env} "
    "--DETAIL_result_file {result_file} "
    "--DETAIL_seed {seed}"
)


def construct_stmt_and_label(pr, params):
    if pr == "39850":
        k0, k1, k2, dim = [params[i] for i in ["k0", "k1", "k2", "dim"]]
        state = np.random.RandomState(params["random_value"])
        topk_dim = state.randint(low=0, high=dim)
        dim_size = [k0, k1, k2][topk_dim]
        k = max(int(np.floor(2 ** state.uniform(low=0, high=np.log2(dim_size)))), 1)

        return f"torch.topk(x, dim={topk_dim}, k={k})", "topk"

    if pr == "39967":
        return "torch.std(x)", "std"

    if pr == "39744":
        state = np.random.RandomState(params["random_value"])
        sort_dim = state.randint(low=0, high=params["dim"])
        return f"torch.sort(x, dim={sort_dim})", "sort"

    raise ValueError("Unknown PR")


def subprocess_main(args):
    seed = args.DETAIL_seed
    cuda = (args.DETAIL_device == _GPU)

    with open(args.DETAIL_result_file, "ab") as f:
        for dtype_str in _DTYPES_TO_TEST[args.pr]:
            dtype = _DTYPE_STR_TO_DTYPE[dtype_str]
            iterator = unary.UnaryOpFuzzer(
                seed=seed, dtype=dtype, cuda=cuda).take(_RUNS_PER_LOOP)
            for i, (tensors, tensor_parameters, params) in enumerate(iterator):
                params["dtype_str"] = dtype_str
                stmt, label = construct_stmt_and_label(args.pr, params)
                timer = Timer(
                    stmt=stmt,
                    globals=tensors,
                    label=label,
                    description=f"[{i}, seed={seed}] ({dtype_str}), stmt = {stmt}",
                    env=args.DETAIL_env,
                )

                measurement = timer.blocked_autorange(min_run_time=_MIN_RUN_SEC)
                measurement.metadata = {
                    "tensor_parameters": tensor_parameters,
                    "params": params,
                }
                print(measurement)
                pickle.dump(measurement, f)


def _main(args):
    pools, map_iters, finished_counts = {}, {}, {}
    pr = args.pr
    envs = (_REF_ENV_TEMPLATE.format(pr=pr), _PR_ENV_TEMPLATE.format(pr=pr))

    # We initialize both pools at the start so that they run simultaneously
    # if applicable
    if _DEVICES_TO_TEST[args.pr][_GPU]:
        finished_counts[_GPU] = 0
        for i in range(args.num_gpus):
            _AVAILABLE_GPUS.put(i)

        pools[_GPU] = multiprocessing.dummy.Pool(args.num_gpus)
        trials = [
            (seed, envs, pr, True, finished_counts, args.test_variance)
            for seed in range(_NUM_LOOPS[_GPU])] * _REPLICATES[_GPU]
        map_iters[_GPU] = pools[_GPU].imap(map_fn, trials)

    if _DEVICES_TO_TEST[args.pr][_CPU]:
        finished_counts[_CPU] = 0
        cpu_workers = int(multiprocessing.cpu_count() / 3)
        pools[_CPU] = multiprocessing.dummy.Pool(cpu_workers)
        trials = [
            (seed, envs, pr, False, finished_counts, args.test_variance)
            for seed in range(_NUM_LOOPS[_CPU])] * _REPLICATES[_CPU]
        map_iters[_CPU] = pools[_CPU].imap(map_fn, trials)

    results = []
    for map_iter in map_iters.values():
        for r in map_iter:
            results.append(r)
            progress = [
                f"{k}: {v} / {_NUM_LOOPS[k] * _REPLICATES[k]}"
                for k, v in finished_counts.items()]
            print(f"\r{(' ' * 10).join(progress)}", end="")
    print()

    for pool in pools.values():
        pool.close()

    process_results(results, args.test_variance)


# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
# == Data processing and string formatting ====================================
# /////////////////////////////////////////////////////////////////////////////
def merge(measurements):
    if not measurements:
        return None

    states = [m.__getstate__() for m in measurements]
    for k in states[0].keys():
        if k in ("number_per_run", "times", "metadata"):
            continue

        assert all(s[k] == states[0][k] for s in states)

    numbers_per_run = {m.number_per_run for m in measurements}
    n = numbers_per_run.pop() if len(numbers_per_run) == 1 else 1

    merged_state = states[0]
    times = [[t / m.number_per_run * n for t in m.times] for m in measurements]
    merged_state["times"] = list(it.chain(*times))
    merged_state["number_per_run"] = n
    merged_state["metadata"] = states[0]["metadata"]
    return Measurement(**merged_state)


def process_results(results, test_variance):
    paired_results: Dict[Tuple[str, str, int, bool, int], List] = {}
    for (seed, use_gpu), result_batch in results:
        for r in result_batch:
            key = (r.label, r.description, r.num_threads, use_gpu, seed)
            paired_results.setdefault(key, [[], []])
            index = 0 if r.env.startswith("ref") else 1
            paired_results[key][index].append(r)

    paired_results = {
        key: [merge(r_ref_list), merge(r_pr_list)]
        for key, (r_ref_list, r_pr_list) in paired_results.items()
    }

    flagged_for_removal = set()
    for key, (r_ref, r_pr) in paired_results.items():
        if any(r is None or r.has_warnings for r in (r_ref, r_pr)):
            flagged_for_removal.add(key)

    paired_results = {
        k: v for k, v in paired_results.items()
        if k not in flagged_for_removal
    }
    print(f"{len(flagged_for_removal)} samples were culled, {len(paired_results)} remain")

    gpu_results = [(k, v) for k, v in paired_results.items() if k[3]]
    cpu_results = [(k, v) for k, v in paired_results.items() if not k[3]]

    if cpu_results:
        construct_table(cpu_results, "CPU", test_variance)

    if gpu_results:
        construct_table(gpu_results, "GPU", test_variance)


def construct_table(results, device_str, test_variance):
    device_str = f"== {device_str} {' (Variance Test)' if test_variance else ''}  ".ljust(40, "=")
    print(f"{'=' * 40}\n{device_str}\n{'=' * 40}\n")
    results = sorted((
        (key, (r_ref, r_pr), r_pr.median / r_ref.median - 1)
        for key, (r_ref, r_pr) in results
    ), key=lambda i: i[2])

    n = len(results)
    n_regressed = len([i for i in results if i[2] > 0.05])
    n_improved = len([i for i in results if i[2] < -0.05])
    n_unchanged = n - n_improved - n_regressed
    legends = ["Improved  (>5%):", "Regressed (>5%):", "Within 5%:"]
    for legend, count in zip(legends, [n_improved, n_regressed, n_unchanged]):
        print(f"{legend:<17} {count:>6}  ({count / len(results) * 100:>3.0f}%)")

    keys_to_print = (
        {i[0] for i in results[20:30]} |
        {i[0] for i in results[int(n // 2 - 5):int(n // 2 + 5)]} |
        {i[0] for i in results[-30:-20]}
    )
    ellipsis_after = {results[29][0], results[int(n // 2 + 4)][0]}

    column_labels = (
        f"Relative Δ     Absolute Δ      |      numel{'':>8}dtype{'':>14}"
        f"shape{'':>10}steps{'':>10}layout{'':>7}task specific\n{'=' * 126}"
    )

    _, result_log_file = tempfile.mkstemp(suffix=".log")
    with open(result_log_file, "wt") as f:
        f.write(f"{device_str}\n\n{column_labels}\n")
        print(f"\n{column_labels}\n[First twenty omitted (these tend to be noisy) ]")
        for key, (r_ref, r_pr), rel_diff in results:
            row = row_str(rel_diff, r_pr.median - r_ref.median, r_ref)
            f.write(f"{row}\n")
            if key in keys_to_print:
                print(row)
            if key in ellipsis_after:
                print("...")
        print("[Last twenty omitted (these tend to be noisy) ]")

    print(textwrap.dedent("""
        steps:
            Indicates that `x` is sliced from a larger Tensor. For instance, if
            shape is [12, 4] and steps are [2, 1], then a larger Tensor of size
            [24, 4] was created, and then x = base_tensor[::2, ::1]. Omitted if
            all elements are ones.

        layout:
            Indicates that `x` is not contiguous due to permutation. Invoking
            `x.permute(layout)` (e.g. x.permute((2, 0, 1)) if layout = [2, 0, 1])
            would produce a Tensor with physical memory layout matching logical
            memory layout. (Though still not contiguous if `steps` contains
            non-one elements.)
        """))

    print(f"\nComplete results in: {result_log_file}")


def row_str(rel_diff, diff_seconds, measurement):
    params = measurement.metadata["params"]
    tensor_parameters = measurement.metadata["tensor_parameters"]

    dim = params["dim"]
    x_numel = tensor_parameters["x"]["numel"]
    steps = [params[f"x_step_{i}"] for i in range(dim)]
    order = tensor_parameters['x']["order"]
    order = str("" if all(i == j for i, j in zip(order, range(dim))) else order)

    task_specific = ""
    if measurement.stmt.startswith("torch.topk"):
        dim_str, k_str = measurement.stmt[:-1].replace("torch.topk(x, ", "").split(", ")
        task_specific = f"{dim_str}, {k_str:<8}"
    elif measurement.stmt.startswith("torch.std"):
        pass
    elif measurement.stmt.startswith("torch.sort"):
        task_specific = measurement.stmt[:-1].replace("torch.sort(x, ", "")

    return (
        f"{rel_diff * 100:>5.0f}%     {abs(diff_seconds) * 1e6:>11.1f} us{'':>6}|"
        f"{x_numel:>12}   {params['dtype_str']:>10}   "
        f"{str([params[f'k{i}'] for i in range(dim)]):>17}  "
        f"{str(steps) if not all(i == 1 for i in steps) else '':>12}  {order:>12}"
        f"{'':>8}{task_specific}"
    )


# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
# == Subprocess and environment management ====================================
# /////////////////////////////////////////////////////////////////////////////
def read_results(result_file: str):
    output = []
    with open(result_file, "rb") as f:
        while True:
            try:
                output.append(pickle.load(f))
            except EOFError:
                break
    return output


def run(cmd, cuda_visible_devices=""):
    return subprocess.run(
        cmd,
        env={
            "CUDA_VISIBLE_DEVICES": str(cuda_visible_devices),
            "PATH": os.getenv("PATH", ""),
        },
        stdout=subprocess.PIPE,
        shell=True
    )


def test_source(envs):
    """Ensure that subprocess"""
    for env in envs:
        result = run(f"source activate {env}")
        if result.returncode != 0:
            raise ValueError(f"Failed to source environment `{env}`")


def map_fn(args):
    seed, envs, pr, use_gpu, finished_counts, test_variance = args
    gpu = _AVAILABLE_GPUS.get() if use_gpu else None
    try:
        _, result_file = tempfile.mkstemp(suffix=".pkl")
        for env in envs:
            cmd = _SUBPROCESS_CMD_TEMPLATE.format(
                source_env=envs[0] if test_variance else env,
                env=env, pr=pr, device=_GPU if use_gpu else _CPU,
                result_file=result_file, seed=seed,
            )
            run(cmd=cmd, cuda_visible_devices=gpu if use_gpu else "")
        finished_counts[_GPU if use_gpu else _CPU] += 1
        return (seed, use_gpu), read_results(result_file)
    except KeyboardInterrupt:
        pass  # Handle ctrl-c gracefully.
    finally:
        if gpu is not None:
            _AVAILABLE_GPUS.put(gpu)
        if os.path.exists(result_file):
            os.remove(result_file)


def main(args):
    test_source([
        _REF_ENV_TEMPLATE.format(pr=args.pr),
        _PR_ENV_TEMPLATE.format(pr=args.pr),
    ])
    _main(args)


if __name__ == "__main__":
    args = parse_args()

    if args.DETAIL_context == "main":
        main(args)

    if args.DETAIL_context == "subprocess":
        try:
            subprocess_main(args)
        except KeyboardInterrupt:
            pass  # Handle ctrl-c gracefully.