1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
import argparse
import cProfile
import pstats
import sys
import os
from typing import Dict
import torch
from torch.autograd import profiler
from torch.utils.collect_env import get_env_info
def redirect_argv(new_argv):
sys.argv[:] = new_argv[:]
def compiled_with_cuda(sysinfo):
if sysinfo.cuda_compiled_version:
return 'compiled w/ CUDA {}'.format(sysinfo.cuda_compiled_version)
return 'not compiled w/ CUDA'
env_summary = """
--------------------------------------------------------------------------------
Environment Summary
--------------------------------------------------------------------------------
PyTorch {pytorch_version}{debug_str} {cuda_compiled}
Running with Python {py_version} and {cuda_runtime}
`{pip_version} list` truncated output:
{pip_list_output}
""".strip()
def run_env_analysis():
print('Running environment analysis...')
info = get_env_info()
result: Dict[str, str] = {}
debug_str = ''
if info.is_debug_build:
debug_str = ' DEBUG'
cuda_avail = ''
if info.is_cuda_available:
cuda = info.cuda_runtime_version
if cuda is not None:
cuda_avail = 'CUDA ' + cuda
else:
cuda = 'CUDA unavailable'
pip_version = info.pip_version
pip_list_output = info.pip_packages
if pip_list_output is None:
pip_list_output = 'Unable to fetch'
result = {
'debug_str': debug_str,
'pytorch_version': info.torch_version,
'cuda_compiled': compiled_with_cuda(info),
'py_version': '{}.{}'.format(sys.version_info[0], sys.version_info[1]),
'cuda_runtime': cuda_avail,
'pip_version': pip_version,
'pip_list_output': pip_list_output,
}
return env_summary.format(**result)
def run_cprofile(code, globs, launch_blocking=False):
print('Running your script with cProfile')
prof = cProfile.Profile()
prof.enable()
exec(code, globs, None)
prof.disable()
return prof
cprof_summary = """
--------------------------------------------------------------------------------
cProfile output
--------------------------------------------------------------------------------
""".strip()
def print_cprofile_summary(prof, sortby='tottime', topk=15):
print(cprof_summary)
cprofile_stats = pstats.Stats(prof).sort_stats(sortby)
cprofile_stats.print_stats(topk)
def run_autograd_prof(code, globs):
def run_prof(use_cuda=False):
with profiler.profile(use_cuda=use_cuda) as prof:
exec(code, globs, None)
return prof
print('Running your script with the autograd profiler...')
result = [run_prof(use_cuda=False)]
if torch.cuda.is_available():
result.append(run_prof(use_cuda=True))
else:
result.append(None)
return result
autograd_prof_summary = """
--------------------------------------------------------------------------------
autograd profiler output ({mode} mode)
--------------------------------------------------------------------------------
{description}
{cuda_warning}
{output}
""".strip()
def print_autograd_prof_summary(prof, mode, sortby='cpu_time', topk=15):
valid_sortby = ['cpu_time', 'cuda_time', 'cpu_time_total', 'cuda_time_total', 'count']
if sortby not in valid_sortby:
warn = ('WARNING: invalid sorting option for autograd profiler results: {}\n'
'Expected `cpu_time`, `cpu_time_total`, or `count`. '
'Defaulting to `cpu_time`.')
print(warn.format(sortby))
sortby = 'cpu_time'
if mode == 'CUDA':
cuda_warning = ('\n\tBecause the autograd profiler uses the CUDA event API,\n'
'\tthe CUDA time column reports approximately max(cuda_time, cpu_time).\n'
'\tPlease ignore this output if your code does not use CUDA.\n')
else:
cuda_warning = ''
sorted_events = sorted(prof.function_events,
key=lambda x: getattr(x, sortby), reverse=True)
topk_events = sorted_events[:topk]
result = {
'mode': mode,
'description': 'top {} events sorted by {}'.format(topk, sortby),
'output': torch.autograd.profiler_util._build_table(topk_events),
'cuda_warning': cuda_warning
}
print(autograd_prof_summary.format(**result))
descript = """
`bottleneck` is a tool that can be used as an initial step for debugging
bottlenecks in your program.
It summarizes runs of your script with the Python profiler and PyTorch\'s
autograd profiler. Because your script will be profiled, please ensure that it
exits in a finite amount of time.
For more complicated uses of the profilers, please see
https://docs.python.org/3/library/profile.html and
https://pytorch.org/docs/master/autograd.html#profiler for more information.
""".strip()
def parse_args():
parser = argparse.ArgumentParser(description=descript)
parser.add_argument('scriptfile', type=str,
help='Path to the script to be run. '
'Usually run with `python path/to/script`.')
parser.add_argument('args', type=str, nargs=argparse.REMAINDER,
help='Command-line arguments to be passed to the script.')
return parser.parse_args()
def cpu_time_total(autograd_prof):
return sum([event.cpu_time_total for event in autograd_prof.function_events])
def main():
args = parse_args()
# Customizable constants.
scriptfile = args.scriptfile
scriptargs = [] if args.args is None else args.args
scriptargs.insert(0, scriptfile)
cprofile_sortby = 'tottime'
cprofile_topk = 15
autograd_prof_sortby = 'cpu_time_total'
autograd_prof_topk = 15
redirect_argv(scriptargs)
sys.path.insert(0, os.path.dirname(scriptfile))
with open(scriptfile, 'rb') as stream:
code = compile(stream.read(), scriptfile, 'exec')
globs = {
'__file__': scriptfile,
'__name__': '__main__',
'__package__': None,
'__cached__': None,
}
print(descript)
env_summary = run_env_analysis()
if torch.cuda.is_available():
torch.cuda.init()
cprofile_prof = run_cprofile(code, globs)
autograd_prof_cpu, autograd_prof_cuda = run_autograd_prof(code, globs)
print(env_summary)
print_cprofile_summary(cprofile_prof, cprofile_sortby, cprofile_topk)
if not torch.cuda.is_available():
print_autograd_prof_summary(autograd_prof_cpu, 'CPU', autograd_prof_sortby, autograd_prof_topk)
return
# Print both the result of the CPU-mode and CUDA-mode autograd profilers
# if their execution times are very different.
cuda_prof_exec_time = cpu_time_total(autograd_prof_cuda)
if len(autograd_prof_cpu.function_events) > 0:
cpu_prof_exec_time = cpu_time_total(autograd_prof_cpu)
pct_diff = (cuda_prof_exec_time - cpu_prof_exec_time) / cuda_prof_exec_time
if abs(pct_diff) > 0.05:
print_autograd_prof_summary(autograd_prof_cpu, 'CPU', autograd_prof_sortby, autograd_prof_topk)
print_autograd_prof_summary(autograd_prof_cuda, 'CUDA', autograd_prof_sortby, autograd_prof_topk)
if __name__ == '__main__':
main()
|