File: worker.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (323 lines) | stat: -rw-r--r-- 13,313 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
r""""Contains definitions of the methods used by the _BaseDataLoaderIter workers.

These **needs** to be in global scope since Py2 doesn't support serializing
static methods.
"""

import torch
import random
import os
import queue
from dataclasses import dataclass
from torch._utils import ExceptionWrapper
from typing import Optional, Union
from . import signal_handling, MP_STATUS_CHECK_INTERVAL, IS_WINDOWS, HAS_NUMPY

if IS_WINDOWS:
    import ctypes
    from ctypes.wintypes import DWORD, BOOL, HANDLE

    # On Windows, the parent ID of the worker process remains unchanged when the manager process
    # is gone, and the only way to check it through OS is to let the worker have a process handle
    # of the manager and ask if the process status has changed.
    class ManagerWatchdog(object):
        def __init__(self):
            self.manager_pid = os.getppid()

            # mypy cannot detect this code is windows only
            self.kernel32 = ctypes.WinDLL('kernel32', use_last_error=True)  # type: ignore[attr-defined]
            self.kernel32.OpenProcess.argtypes = (DWORD, BOOL, DWORD)
            self.kernel32.OpenProcess.restype = HANDLE
            self.kernel32.WaitForSingleObject.argtypes = (HANDLE, DWORD)
            self.kernel32.WaitForSingleObject.restype = DWORD

            # Value obtained from https://msdn.microsoft.com/en-us/library/ms684880.aspx
            SYNCHRONIZE = 0x00100000
            self.manager_handle = self.kernel32.OpenProcess(SYNCHRONIZE, 0, self.manager_pid)

            if not self.manager_handle:
                raise ctypes.WinError(ctypes.get_last_error())  # type: ignore[attr-defined]

            self.manager_dead = False

        def is_alive(self):
            if not self.manager_dead:
                # Value obtained from https://msdn.microsoft.com/en-us/library/windows/desktop/ms687032.aspx
                self.manager_dead = self.kernel32.WaitForSingleObject(self.manager_handle, 0) == 0
            return not self.manager_dead
else:
    class ManagerWatchdog(object):  # type: ignore[no-redef]
        def __init__(self):
            self.manager_pid = os.getppid()
            self.manager_dead = False

        def is_alive(self):
            if not self.manager_dead:
                self.manager_dead = os.getppid() != self.manager_pid
            return not self.manager_dead

_worker_info = None


class WorkerInfo(object):
    __initialized = False

    def __init__(self, **kwargs):
        for k, v in kwargs.items():
            setattr(self, k, v)
        self.__keys = tuple(kwargs.keys())
        self.__initialized = True

    def __setattr__(self, key, val):
        if self.__initialized:
            raise RuntimeError("Cannot assign attributes to {} objects".format(self.__class__.__name__))
        return super(WorkerInfo, self).__setattr__(key, val)

    def __repr__(self):
        items = []
        for k in self.__keys:
            items.append('{}={}'.format(k, getattr(self, k)))
        return '{}({})'.format(self.__class__.__name__, ', '.join(items))


def get_worker_info():
    r"""Returns the information about the current
    :class:`~torch.utils.data.DataLoader` iterator worker process.

    When called in a worker, this returns an object guaranteed to have the
    following attributes:

    * :attr:`id`: the current worker id.
    * :attr:`num_workers`: the total number of workers.
    * :attr:`seed`: the random seed set for the current worker. This value is
      determined by main process RNG and the worker id. See
      :class:`~torch.utils.data.DataLoader`'s documentation for more details.
    * :attr:`dataset`: the copy of the dataset object in **this** process. Note
      that this will be a different object in a different process than the one
      in the main process.

    When called in the main process, this returns ``None``.

    .. note::
       When used in a :attr:`worker_init_fn` passed over to
       :class:`~torch.utils.data.DataLoader`, this method can be useful to
       set up each worker process differently, for instance, using ``worker_id``
       to configure the ``dataset`` object to only read a specific fraction of a
       sharded dataset, or use ``seed`` to seed other libraries used in dataset
       code.
    """
    return _worker_info


r"""Dummy class used to signal the end of an IterableDataset"""
@dataclass(frozen=True)
class _IterableDatasetStopIteration(object):
    worker_id: int

r"""Dummy class used to resume the fetching when worker reuse is enabled"""
@dataclass(frozen=True)
class _ResumeIteration(object):
    seed: Optional[int] = None

# The function `_generate_state` is adapted from `numpy.random.SeedSequence`
# from https://github.com/numpy/numpy/blob/main/numpy/random/bit_generator.pyx
# It's MIT licensed, here is the copyright:

# Copyright (c) 2015 Melissa E. O'Neill
# Copyright (c) 2019 NumPy Developers
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# This function generates an array of int32 as the seed for
# `numpy.random`, in order to prevent state collision due to same
# seed and algorithm for `numpy.random` and `random` modules.
# TODO: Implement `SeedSequence` like object for `torch.random`
def _generate_state(base_seed, worker_id):
    INIT_A = 0x43b0d7e5
    MULT_A = 0x931e8875
    INIT_B = 0x8b51f9dd
    MULT_B = 0x58f38ded
    MIX_MULT_L = 0xca01f9dd
    MIX_MULT_R = 0x4973f715
    XSHIFT = 4 * 8 // 2
    MASK32 = 0xFFFFFFFF

    entropy = [worker_id, base_seed & MASK32, base_seed >> 32, 0]
    pool = [0] * 4

    hash_const_A = INIT_A

    def hash(value):
        nonlocal hash_const_A
        value = (value ^ hash_const_A) & MASK32
        hash_const_A = (hash_const_A * MULT_A) & MASK32
        value = (value * hash_const_A) & MASK32
        value = (value ^ (value >> XSHIFT)) & MASK32
        return value

    def mix(x, y):
        result_x = (MIX_MULT_L * x) & MASK32
        result_y = (MIX_MULT_R * y) & MASK32
        result = (result_x - result_y) & MASK32
        result = (result ^ (result >> XSHIFT)) & MASK32
        return result

    # Add in the entropy to the pool.
    for i in range(len(pool)):
        pool[i] = hash(entropy[i])

    # Mix all bits together so late bits can affect earlier bits.
    for i_src in range(len(pool)):
        for i_dst in range(len(pool)):
            if i_src != i_dst:
                pool[i_dst] = mix(pool[i_dst], hash(pool[i_src]))

    hash_const_B = INIT_B
    state = []
    for i_dst in range(4):
        data_val = pool[i_dst]
        data_val = (data_val ^ hash_const_B) & MASK32
        hash_const_B = (hash_const_B * MULT_B) & MASK32
        data_val = (data_val * hash_const_B) & MASK32
        data_val = (data_val ^ (data_val >> XSHIFT)) & MASK32
        state.append(data_val)
    return state

def _worker_loop(dataset_kind, dataset, index_queue, data_queue, done_event,
                 auto_collation, collate_fn, drop_last, base_seed, init_fn, worker_id,
                 num_workers, persistent_workers, shared_seed):
    # See NOTE [ Data Loader Multiprocessing Shutdown Logic ] for details on the
    # logic of this function.

    try:
        # Initialize C side signal handlers for SIGBUS and SIGSEGV. Python signal
        # module's handlers are executed after Python returns from C low-level
        # handlers, likely when the same fatal signal had already happened
        # again.
        # https://docs.python.org/3/library/signal.html#execution-of-python-signal-handlers
        signal_handling._set_worker_signal_handlers()

        torch.set_num_threads(1)
        seed = base_seed + worker_id
        random.seed(seed)
        torch.manual_seed(seed)
        if HAS_NUMPY:
            np_seed = _generate_state(base_seed, worker_id)
            import numpy as np
            np.random.seed(np_seed)

        from torch.utils.data import IterDataPipe
        from torch.utils.data.graph_settings import apply_random_seed

        shared_rng = torch.Generator()
        if isinstance(dataset, IterDataPipe):
            assert shared_seed is not None
            shared_rng.manual_seed(shared_seed)
            dataset = apply_random_seed(dataset, shared_rng)

        global _worker_info
        _worker_info = WorkerInfo(id=worker_id, num_workers=num_workers,
                                  seed=seed, dataset=dataset)

        from torch.utils.data import _DatasetKind

        init_exception = None

        try:
            if init_fn is not None:
                init_fn(worker_id)

            fetcher = _DatasetKind.create_fetcher(dataset_kind, dataset, auto_collation, collate_fn, drop_last)
        except Exception:
            init_exception = ExceptionWrapper(
                where="in DataLoader worker process {}".format(worker_id))

        # When using Iterable mode, some worker can exit earlier than others due
        # to the IterableDataset behaving differently for different workers.
        # When such things happen, an `_IterableDatasetStopIteration` object is
        # sent over to the main process with the ID of this worker, so that the
        # main process won't send more tasks to this worker, and will send
        # `None` to this worker to properly exit it.
        #
        # Note that we cannot set `done_event` from a worker as it is shared
        # among all processes. Instead, we set the `iteration_end` flag to
        # signify that the iterator is exhausted. When either `done_event` or
        # `iteration_end` is set, we skip all processing step and just wait for
        # `None`.
        iteration_end = False

        watchdog = ManagerWatchdog()

        while watchdog.is_alive():
            try:
                r = index_queue.get(timeout=MP_STATUS_CHECK_INTERVAL)
            except queue.Empty:
                continue
            if isinstance(r, _ResumeIteration):
                # Acknowledge the main process
                data_queue.put((r, None))
                iteration_end = False

                if isinstance(dataset, IterDataPipe):
                    assert r.seed is not None
                    shared_rng.manual_seed(r.seed)
                    dataset = apply_random_seed(dataset, shared_rng)

                # Recreate the fetcher for worker-reuse policy
                fetcher = _DatasetKind.create_fetcher(
                    dataset_kind, dataset, auto_collation, collate_fn, drop_last)
                continue
            elif r is None:
                # Received the final signal
                assert done_event.is_set() or iteration_end
                break
            elif done_event.is_set() or iteration_end:
                # `done_event` is set. But I haven't received the final signal
                # (None) yet. I will keep continuing until get it, and skip the
                # processing steps.
                continue
            idx, index = r
            data: Union[_IterableDatasetStopIteration, ExceptionWrapper]
            if init_exception is not None:
                data = init_exception
                init_exception = None
            else:
                try:
                    data = fetcher.fetch(index)
                except Exception as e:
                    if isinstance(e, StopIteration) and dataset_kind == _DatasetKind.Iterable:
                        data = _IterableDatasetStopIteration(worker_id)
                        # Set `iteration_end`
                        #   (1) to save future `next(...)` calls, and
                        #   (2) to avoid sending multiple `_IterableDatasetStopIteration`s.
                        iteration_end = True
                    else:
                        # It is important that we don't store exc_info in a variable.
                        # `ExceptionWrapper` does the correct thing.
                        # See NOTE [ Python Traceback Reference Cycle Problem ]
                        data = ExceptionWrapper(
                            where="in DataLoader worker process {}".format(worker_id))
            data_queue.put((idx, data))
            del data, idx, index, r  # save memory
    except KeyboardInterrupt:
        # Main process will raise KeyboardInterrupt anyways.
        pass
    if done_event.is_set():
        data_queue.cancel_join_thread()
        data_queue.close()