File: README.md

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (105 lines) | stat: -rw-r--r-- 5,169 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
The [`datapipes`](https://github.com/pytorch/pytorch/tree/master/torch/utils/data/datapipes) folder holds the implementation of the `IterDataPipe` and `MapDataPipe`.

This document serves as an entry point for DataPipe implementation.

## Implementing DataPipe
For the sake of an example, let us implement an `IterDataPipe` to apply a callable over data under [`iter`](https://github.com/pytorch/pytorch/tree/master/torch/utils/data/datapipes/iter).
For `MapDataPipe`, please take reference from files in [map](https://github.com/pytorch/pytorch/tree/master/torch/utils/data/datapipes/map) folder and implement the corresponding `__getitem__` method.

### Naming
The naming convention for DataPipe is Operation-er and with suffix of `IterDataPipe` because each DataPipe behaves like a container to apply the operation to data yielded from the source DataPipe.
And, when importing the DataPipe into `iter` module under `datapipes`, each DataPipe will be aliased as Op-er without the suffix of `IterDataPipe`.
Please check [`__init__.py`](https://github.com/pytorch/pytorch/blob/master/torch/utils/data/datapipes/iter/__init__.py) in `iter` module for how we aliasing each DataPipe class.
Like the example of `IterDataPipe` to map a function, we are going to name it as `MapperIterDataPipe` and alias it as `iter.Mapper` under `datapipes`.

### Constructor
As DataSet now constructed by a stack of DataPipe-s, each DataPipe normally takes a source DataPipe as the first argument.
```py
class MapperIterDataPipe(IterDataPipe):
    def __init__(self, dp, fn):
        super().__init__()
        self.dp = dp
        self.fn = fn
```
Note:
- Avoid loading data from the source DataPipe in `__init__` function, in order to support lazy data loading and save memory.
- If `IterDataPipe` instance holds data in memory, please be ware of the in-place modification of data. When second iterator is created from the instance, the data may have already changed. Please take [`IterableWrapper`](https://github.com/pytorch/pytorch/blob/master/torch/utils/data/datapipes/iter/utils.py) class as reference to `deepcopy` data for each iterator.

### Iterator
For `IterDataPipe`, an `__iter__` function is needed to consume data from the source `IterDataPipe` then apply operation over the data before yield.
```py
class MapperIterDataPipe(IterDataPipe):
    ...

    def __iter__(self):
        for d in self.dp:
            yield self.fn(d)
```

### Length
In the most common cases, as the example of `MapperIterDataPipe` above, the `__len__` method of DataPipe should return the length of source DataPipe.
```py
class MapperIterDataPipe(IterDataPipe):
    ...

    def __len__(self):
        return len(self.dp)
```
Note that `__len__` method is optional for `IterDataPipe`.
Like `CSVParserIterDataPipe` in the [Using DataPipe sector](#using-datapipe), `__len__` is not implemented because the size of each file streams is unknown for us before loading it.

Besides, in some special cases, `__len__` method can be provided, but it would either return an integer length or raise Error depending on the arguments of DataPipe.
And, the Error is required to be `TypeError` to support Python's build-in functions like `list(dp)`.
Please check NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ] for detailed reason in PyTorch.

### Registering DataPipe with functional API
Each DataPipe can be registered to support functional API using the decorator `functional_datapipe`.
```py
@functional_datapipe("map")
class MapperIterDataPipe(IterDataPipe):
    ...
```
Then, the stack of DataPipe can be constructed in functional-programming manner.
```py
>>> import torch.utils.data.datapipes as dp
>>> datapipes1 = dp.iter.FileOpener(['a.file', 'b.file']).map(fn=decoder).shuffle().batch(2)

>>> datapipes2 = dp.iter.FileOpener(['a.file', 'b.file'])
>>> datapipes2 = dp.iter.Mapper(datapipes2)
>>> datapipes2 = dp.iter.Shuffler(datapipes2)
>>> datapipes2 = dp.iter.Batcher(datapipes2, 2)
```
In the above example, `datapipes1` and `datapipes2` represent the exact same stack of `IterDataPipe`-s.

## Using DataPipe
For example, we want to load data from CSV files with the following data pipeline:
- List all csv files
- Load csv files
- Parse csv file and yield rows

To support the above pipeline, `CSVParser` is registered as `parse_csv_files` to consume file streams and expand them as rows.
```py
@functional_datapipe("parse_csv_files")
class CSVParserIterDataPipe(IterDataPipe):
    def __init__(self, dp, **fmtparams):
        self.dp = dp
        self.fmtparams = fmtparams

    def __iter__(self):
        for filename, stream in self.dp:
            reader = csv.reader(stream, **self.fmtparams)
            for row in reader:
                yield filename, row
```
Then, the pipeline can be assembled as following:
```py
>>> import torch.utils.data.datapipes as dp

>>> FOLDER = 'path/2/csv/folder'
>>> datapipe = dp.iter.FileLister([FOLDER]).filter(fn=lambda filename: filename.endswith('.csv'))
>>> datapipe = dp.iter.FileOpener(datapipe, mode='rt')
>>> datapipe = datapipe.parse_csv_files(delimiter=' ')

>>> for d in datapipe: # Start loading data
...     pass
```