File: _typing.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (428 lines) | stat: -rw-r--r-- 15,950 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# Taking reference from official Python typing
# https://github.com/python/cpython/blob/master/Lib/typing.py

import collections
import functools
import numbers
import sys

from torch.utils.data.datapipes._hook_iterator import hook_iterator, _SnapshotState
from typing import (Any, Dict, Iterator, Generic, List, Set, Tuple, TypeVar, Union,
                    get_type_hints)
from typing import _eval_type, _tp_cache, _type_check, _type_repr  # type: ignore[attr-defined]
from typing import ForwardRef

# TODO: Use TypeAlias when Python 3.6 is deprecated
# Please check [Note: TypeMeta and TypeAlias]
# In case of metaclass conflict due to ABCMeta or _ProtocolMeta
# For Python 3.9, only Protocol in typing uses metaclass
from abc import ABCMeta
from typing import _GenericAlias  # type: ignore[attr-defined, no-redef]

class GenericMeta(ABCMeta):  # type: ignore[no-redef]
    pass


class Integer(numbers.Integral):
    pass


class Boolean(numbers.Integral):
    pass


# Python 'type' object is not subscriptable
# Tuple[int, List, dict] -> valid
# tuple[int, list, dict] -> invalid
# Map Python 'type' to abstract base class
TYPE2ABC = {
    bool: Boolean,
    int: Integer,
    float: numbers.Real,
    complex: numbers.Complex,
    dict: Dict,
    list: List,
    set: Set,
    tuple: Tuple,
    None: type(None),
}


def issubtype(left, right, recursive=True):
    r"""
    Check if the left-side type is a subtype of the right-side type.
    If any of type is a composite type like `Union` and `TypeVar` with
    bounds, it would be expanded into a list of types and check all
    of left-side types are subtypes of either one from right-side types.
    """
    left = TYPE2ABC.get(left, left)
    right = TYPE2ABC.get(right, right)

    if right is Any or left == right:
        return True

    if isinstance(right, _GenericAlias):
        if getattr(right, '__origin__', None) is Generic:
            return True

    if right == type(None):
        return False

    # Right-side type
    constraints = _decompose_type(right)

    if len(constraints) == 0 or Any in constraints:
        return True

    if left is Any:
        return False

    # Left-side type
    variants = _decompose_type(left)

    # all() will return True for empty variants
    if len(variants) == 0:
        return False

    return all(_issubtype_with_constraints(variant, constraints, recursive) for variant in variants)


def _decompose_type(t, to_list=True):
    if isinstance(t, TypeVar):
        if t.__bound__ is not None:
            ts = [t.__bound__]
        else:
            # For T_co, __constraints__ is ()
            ts = list(t.__constraints__)
    elif hasattr(t, '__origin__') and t.__origin__ == Union:
        ts = t.__args__
    else:
        if not to_list:
            return None
        ts = [t]
    # Ignored: Generator has incompatible item type "object"; expected "Type[Any]"
    ts = list(TYPE2ABC.get(_t, _t) for _t in ts)  # type: ignore[misc]
    return ts


def _issubtype_with_constraints(variant, constraints, recursive=True):
    r"""
    Check if the variant is a subtype of either one from constraints.
    For composite types like `Union` and `TypeVar` with bounds, they
    would be expanded for testing.
    """
    if variant in constraints:
        return True

    # [Note: Subtype for Union and TypeVar]
    # Python typing is able to flatten Union[Union[...]] or Union[TypeVar].
    # But it couldn't flatten the following scenarios:
    #   - Union[int, TypeVar[Union[...]]]
    #   - TypeVar[TypeVar[...]]
    # So, variant and each constraint may be a TypeVar or a Union.
    # In these cases, all of inner types from the variant are required to be
    # extraced and verified as a subtype of any constraint. And, all of
    # inner types from any constraint being a TypeVar or a Union are
    # also required to be extracted and verified if the variant belongs to
    # any of them.

    # Variant
    vs = _decompose_type(variant, to_list=False)

    # Variant is TypeVar or Union
    if vs is not None:
        return all(_issubtype_with_constraints(v, constraints, recursive) for v in vs)

    # Variant is not TypeVar or Union
    if hasattr(variant, '__origin__') and variant.__origin__ is not None:
        v_origin = variant.__origin__
        # In Python-3.9 typing library untyped generics do not have args
        v_args = getattr(variant, "__args__", None)
    else:
        v_origin = variant
        v_args = None

    # Constraints
    for constraint in constraints:
        cs = _decompose_type(constraint, to_list=False)

        # Constraint is TypeVar or Union
        if cs is not None:
            if _issubtype_with_constraints(variant, cs, recursive):
                return True
        # Constraint is not TypeVar or Union
        else:
            # __origin__ can be None for plain list, tuple, ... in Python 3.6
            if hasattr(constraint, '__origin__') and constraint.__origin__ is not None:
                c_origin = constraint.__origin__
                if v_origin == c_origin:
                    if not recursive:
                        return True
                    # In Python-3.9 typing library untyped generics do not have args
                    c_args = getattr(constraint, "__args__", None)
                    if c_args is None or len(c_args) == 0:
                        return True
                    if v_args is not None and len(v_args) == len(c_args) and \
                            all(issubtype(v_arg, c_arg) for v_arg, c_arg in zip(v_args, c_args)):
                        return True
            # Tuple[int] -> Tuple
            else:
                if v_origin == constraint:
                    return True

    return False


def issubinstance(data, data_type):
    if not issubtype(type(data), data_type, recursive=False):
        return False

    # In Python-3.9 typing library __args__ attribute is not defined for untyped generics
    dt_args = getattr(data_type, "__args__", None)
    if isinstance(data, tuple):
        if dt_args is None or len(dt_args) == 0:
            return True
        if len(dt_args) != len(data):
            return False
        return all(issubinstance(d, t) for d, t in zip(data, dt_args))
    elif isinstance(data, (list, set)):
        if dt_args is None or len(dt_args) == 0:
            return True
        t = dt_args[0]
        return all(issubinstance(d, t) for d in data)
    elif isinstance(data, dict):
        if dt_args is None or len(dt_args) == 0:
            return True
        kt, vt = dt_args
        return all(issubinstance(k, kt) and issubinstance(v, vt) for k, v in data.items())

    return True


# [Note: TypeMeta and TypeAlias]
# In order to keep compatibility for Python 3.6, use Meta for the typing.
# TODO: When PyTorch drops the support for Python 3.6, it can be converted
# into the Alias system and using `__class_getitem__` for DataPipe. The
# typing system will gain benefit of performance and resolving metaclass
# conflicts as elaborated in https://www.python.org/dev/peps/pep-0560/


class _DataPipeType:
    r"""
    Save type annotation in `param`
    """

    def __init__(self, param):
        self.param = param

    def __repr__(self):
        return _type_repr(self.param)

    def __eq__(self, other):
        if isinstance(other, _DataPipeType):
            return self.param == other.param
        return NotImplemented

    def __hash__(self):
        return hash(self.param)

    def issubtype(self, other):
        if isinstance(other.param, _GenericAlias):
            if getattr(other.param, '__origin__', None) is Generic:
                return True
        if isinstance(other, _DataPipeType):
            return issubtype(self.param, other.param)
        if isinstance(other, type):
            return issubtype(self.param, other)
        raise TypeError("Expected '_DataPipeType' or 'type', but found {}".format(type(other)))

    def issubtype_of_instance(self, other):
        return issubinstance(other, self.param)


# Default type for DataPipe without annotation
T_co = TypeVar('T_co', covariant=True)
_DEFAULT_TYPE = _DataPipeType(Generic[T_co])


class _DataPipeMeta(GenericMeta):
    r"""
    Metaclass for `DataPipe`. Add `type` attribute and `__init_subclass__` based
    on the type, and validate the return hint of `__iter__`.

    Note that there is subclass `_IterDataPipeMeta` specifically for `IterDataPipe`.
    """
    type: _DataPipeType

    def __new__(cls, name, bases, namespace, **kwargs):
        return super().__new__(cls, name, bases, namespace, **kwargs)  # type: ignore[call-overload]

        # TODO: the statements below are not reachable by design as there is a bug and typing is low priority for now.
        cls.__origin__ = None
        if 'type' in namespace:
            return super().__new__(cls, name, bases, namespace, **kwargs)  # type: ignore[call-overload]

        namespace['__type_class__'] = False
        #  For plain derived class without annotation
        for base in bases:
            if isinstance(base, _DataPipeMeta):
                return super().__new__(cls, name, bases, namespace, **kwargs)  # type: ignore[call-overload]

        namespace.update({'type': _DEFAULT_TYPE,
                          '__init_subclass__': _dp_init_subclass})
        return super().__new__(cls, name, bases, namespace, **kwargs)  # type: ignore[call-overload]

    def __init__(self, name, bases, namespace, **kwargs):
        super().__init__(name, bases, namespace, **kwargs)  # type: ignore[call-overload]

    # TODO: Fix isinstance bug
    @_tp_cache
    def _getitem_(self, params):
        if params is None:
            raise TypeError('{}[t]: t can not be None'.format(self.__name__))
        if isinstance(params, str):
            params = ForwardRef(params)
        if not isinstance(params, tuple):
            params = (params, )

        msg = "{}[t]: t must be a type".format(self.__name__)
        params = tuple(_type_check(p, msg) for p in params)

        if isinstance(self.type.param, _GenericAlias):
            orig = getattr(self.type.param, '__origin__', None)
            if isinstance(orig, type) and orig is not Generic:
                p = self.type.param[params]  # type: ignore[index]
                t = _DataPipeType(p)
                l = len(str(self.type)) + 2
                name = self.__name__[:-l]
                name = name + '[' + str(t) + ']'
                bases = (self,) + self.__bases__
                return self.__class__(name, bases,
                                      {'__init_subclass__': _dp_init_subclass,
                                       'type': t,
                                       '__type_class__': True})

        if len(params) > 1:
            raise TypeError('Too many parameters for {} actual {}, expected 1'.format(self, len(params)))

        t = _DataPipeType(params[0])

        if not t.issubtype(self.type):
            raise TypeError('Can not subclass a DataPipe[{}] from DataPipe[{}]'
                            .format(t, self.type))

        # Types are equal, fast path for inheritance
        if self.type == t:
            return self

        name = self.__name__ + '[' + str(t) + ']'
        bases = (self,) + self.__bases__

        return self.__class__(name, bases,
                              {'__init_subclass__': _dp_init_subclass,
                               '__type_class__': True,
                               'type': t})

    # TODO: Fix isinstance bug
    def _eq_(self, other):
        if not isinstance(other, _DataPipeMeta):
            return NotImplemented
        if self.__origin__ is None or other.__origin__ is None:  # type: ignore[has-type]
            return self is other
        return (self.__origin__ == other.__origin__  # type: ignore[has-type]
                and self.type == other.type)

    # TODO: Fix isinstance bug
    def _hash_(self):
        return hash((self.__name__, self.type))


class _IterDataPipeMeta(_DataPipeMeta):
    r"""
    Metaclass for `IterDataPipe` and inherits from `_DataPipeMeta`. Aad various functions for behaviors
    specific to `IterDataPipe`.
    """

    def __new__(cls, name, bases, namespace, **kwargs):

        if 'reset' in namespace:
            reset_func = namespace['reset']

            @functools.wraps(reset_func)
            def conditional_reset(*args, **kwargs):
                r"""
                Only execute DataPipe's `reset()` method if `_SnapshotState` is `Iterating` or `NotStarted`. This allows recently
                restored DataPipe to preserve its restored state during the initial `__iter__` call.
                """
                datapipe = args[0]
                if datapipe._snapshot_state in (_SnapshotState.Iterating, _SnapshotState.NotStarted):
                    # Reset `NotStarted` is necessary because the `source_datapipe` of a DataPipe might have
                    # already begun iterating.
                    datapipe._number_of_samples_yielded = 0
                    datapipe._fast_forward_iterator = None
                    reset_func(*args, **kwargs)
                datapipe._snapshot_state = _SnapshotState.Iterating

            namespace['reset'] = conditional_reset

        if '__iter__' in namespace:
            hook_iterator(namespace, 'enumerate(DataPipe)#{}'.format(name))
        return super().__new__(cls, name, bases, namespace, **kwargs)  # type: ignore[call-overload]


def _dp_init_subclass(sub_cls, *args, **kwargs):
    # Add function for datapipe instance to reinforce the type
    sub_cls.reinforce_type = reinforce_type

    # TODO:
    # - add global switch for type checking at compile-time

    # Ignore internal type class
    if getattr(sub_cls, '__type_class__', False):
        return

    # Check if the string type is valid
    if isinstance(sub_cls.type.param, ForwardRef):
        base_globals = sys.modules[sub_cls.__module__].__dict__
        try:
            param = _eval_type(sub_cls.type.param, base_globals, locals())
            sub_cls.type.param = param
        except TypeError as e:
            raise TypeError("{} is not supported by Python typing"
                            .format(sub_cls.type.param.__forward_arg__)) from e

    if '__iter__' in sub_cls.__dict__:
        iter_fn = sub_cls.__dict__['__iter__']
        hints = get_type_hints(iter_fn)
        if 'return' in hints:
            return_hint = hints['return']
            # Plain Return Hint for Python 3.6
            if return_hint == Iterator:
                return
            if not (hasattr(return_hint, '__origin__') and
                    (return_hint.__origin__ == Iterator or
                     return_hint.__origin__ == collections.abc.Iterator)):
                raise TypeError("Expected 'Iterator' as the return annotation for `__iter__` of {}"
                                ", but found {}".format(sub_cls.__name__, _type_repr(hints['return'])))
            data_type = return_hint.__args__[0]
            if not issubtype(data_type, sub_cls.type.param):
                raise TypeError("Expected return type of '__iter__' as a subtype of {}, but found {}"
                                " for {}".format(sub_cls.type, _type_repr(data_type), sub_cls.__name__))


def reinforce_type(self, expected_type):
    r"""
    Reinforce the type for DataPipe instance. And the 'expected_type' is required
    to be a subtype of the original type hint to restrict the type requirement
    of DataPipe instance.
    """
    if isinstance(expected_type, tuple):
        expected_type = Tuple[expected_type]
    _type_check(expected_type, msg="'expected_type' must be a type")

    if not issubtype(expected_type, self.type.param):
        raise TypeError("Expected 'expected_type' as subtype of {}, but found {}"
                        .format(self.type, _type_repr(expected_type)))

    self.type = _DataPipeType(expected_type)
    return self