1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
# Taking reference from official Python typing
# https://github.com/python/cpython/blob/master/Lib/typing.py
import collections
import functools
import numbers
import sys
from torch.utils.data.datapipes._hook_iterator import hook_iterator, _SnapshotState
from typing import (Any, Dict, Iterator, Generic, List, Set, Tuple, TypeVar, Union,
get_type_hints)
from typing import _eval_type, _tp_cache, _type_check, _type_repr # type: ignore[attr-defined]
from typing import ForwardRef
# TODO: Use TypeAlias when Python 3.6 is deprecated
# Please check [Note: TypeMeta and TypeAlias]
# In case of metaclass conflict due to ABCMeta or _ProtocolMeta
# For Python 3.9, only Protocol in typing uses metaclass
from abc import ABCMeta
from typing import _GenericAlias # type: ignore[attr-defined, no-redef]
class GenericMeta(ABCMeta): # type: ignore[no-redef]
pass
class Integer(numbers.Integral):
pass
class Boolean(numbers.Integral):
pass
# Python 'type' object is not subscriptable
# Tuple[int, List, dict] -> valid
# tuple[int, list, dict] -> invalid
# Map Python 'type' to abstract base class
TYPE2ABC = {
bool: Boolean,
int: Integer,
float: numbers.Real,
complex: numbers.Complex,
dict: Dict,
list: List,
set: Set,
tuple: Tuple,
None: type(None),
}
def issubtype(left, right, recursive=True):
r"""
Check if the left-side type is a subtype of the right-side type.
If any of type is a composite type like `Union` and `TypeVar` with
bounds, it would be expanded into a list of types and check all
of left-side types are subtypes of either one from right-side types.
"""
left = TYPE2ABC.get(left, left)
right = TYPE2ABC.get(right, right)
if right is Any or left == right:
return True
if isinstance(right, _GenericAlias):
if getattr(right, '__origin__', None) is Generic:
return True
if right == type(None):
return False
# Right-side type
constraints = _decompose_type(right)
if len(constraints) == 0 or Any in constraints:
return True
if left is Any:
return False
# Left-side type
variants = _decompose_type(left)
# all() will return True for empty variants
if len(variants) == 0:
return False
return all(_issubtype_with_constraints(variant, constraints, recursive) for variant in variants)
def _decompose_type(t, to_list=True):
if isinstance(t, TypeVar):
if t.__bound__ is not None:
ts = [t.__bound__]
else:
# For T_co, __constraints__ is ()
ts = list(t.__constraints__)
elif hasattr(t, '__origin__') and t.__origin__ == Union:
ts = t.__args__
else:
if not to_list:
return None
ts = [t]
# Ignored: Generator has incompatible item type "object"; expected "Type[Any]"
ts = list(TYPE2ABC.get(_t, _t) for _t in ts) # type: ignore[misc]
return ts
def _issubtype_with_constraints(variant, constraints, recursive=True):
r"""
Check if the variant is a subtype of either one from constraints.
For composite types like `Union` and `TypeVar` with bounds, they
would be expanded for testing.
"""
if variant in constraints:
return True
# [Note: Subtype for Union and TypeVar]
# Python typing is able to flatten Union[Union[...]] or Union[TypeVar].
# But it couldn't flatten the following scenarios:
# - Union[int, TypeVar[Union[...]]]
# - TypeVar[TypeVar[...]]
# So, variant and each constraint may be a TypeVar or a Union.
# In these cases, all of inner types from the variant are required to be
# extraced and verified as a subtype of any constraint. And, all of
# inner types from any constraint being a TypeVar or a Union are
# also required to be extracted and verified if the variant belongs to
# any of them.
# Variant
vs = _decompose_type(variant, to_list=False)
# Variant is TypeVar or Union
if vs is not None:
return all(_issubtype_with_constraints(v, constraints, recursive) for v in vs)
# Variant is not TypeVar or Union
if hasattr(variant, '__origin__') and variant.__origin__ is not None:
v_origin = variant.__origin__
# In Python-3.9 typing library untyped generics do not have args
v_args = getattr(variant, "__args__", None)
else:
v_origin = variant
v_args = None
# Constraints
for constraint in constraints:
cs = _decompose_type(constraint, to_list=False)
# Constraint is TypeVar or Union
if cs is not None:
if _issubtype_with_constraints(variant, cs, recursive):
return True
# Constraint is not TypeVar or Union
else:
# __origin__ can be None for plain list, tuple, ... in Python 3.6
if hasattr(constraint, '__origin__') and constraint.__origin__ is not None:
c_origin = constraint.__origin__
if v_origin == c_origin:
if not recursive:
return True
# In Python-3.9 typing library untyped generics do not have args
c_args = getattr(constraint, "__args__", None)
if c_args is None or len(c_args) == 0:
return True
if v_args is not None and len(v_args) == len(c_args) and \
all(issubtype(v_arg, c_arg) for v_arg, c_arg in zip(v_args, c_args)):
return True
# Tuple[int] -> Tuple
else:
if v_origin == constraint:
return True
return False
def issubinstance(data, data_type):
if not issubtype(type(data), data_type, recursive=False):
return False
# In Python-3.9 typing library __args__ attribute is not defined for untyped generics
dt_args = getattr(data_type, "__args__", None)
if isinstance(data, tuple):
if dt_args is None or len(dt_args) == 0:
return True
if len(dt_args) != len(data):
return False
return all(issubinstance(d, t) for d, t in zip(data, dt_args))
elif isinstance(data, (list, set)):
if dt_args is None or len(dt_args) == 0:
return True
t = dt_args[0]
return all(issubinstance(d, t) for d in data)
elif isinstance(data, dict):
if dt_args is None or len(dt_args) == 0:
return True
kt, vt = dt_args
return all(issubinstance(k, kt) and issubinstance(v, vt) for k, v in data.items())
return True
# [Note: TypeMeta and TypeAlias]
# In order to keep compatibility for Python 3.6, use Meta for the typing.
# TODO: When PyTorch drops the support for Python 3.6, it can be converted
# into the Alias system and using `__class_getitem__` for DataPipe. The
# typing system will gain benefit of performance and resolving metaclass
# conflicts as elaborated in https://www.python.org/dev/peps/pep-0560/
class _DataPipeType:
r"""
Save type annotation in `param`
"""
def __init__(self, param):
self.param = param
def __repr__(self):
return _type_repr(self.param)
def __eq__(self, other):
if isinstance(other, _DataPipeType):
return self.param == other.param
return NotImplemented
def __hash__(self):
return hash(self.param)
def issubtype(self, other):
if isinstance(other.param, _GenericAlias):
if getattr(other.param, '__origin__', None) is Generic:
return True
if isinstance(other, _DataPipeType):
return issubtype(self.param, other.param)
if isinstance(other, type):
return issubtype(self.param, other)
raise TypeError("Expected '_DataPipeType' or 'type', but found {}".format(type(other)))
def issubtype_of_instance(self, other):
return issubinstance(other, self.param)
# Default type for DataPipe without annotation
T_co = TypeVar('T_co', covariant=True)
_DEFAULT_TYPE = _DataPipeType(Generic[T_co])
class _DataPipeMeta(GenericMeta):
r"""
Metaclass for `DataPipe`. Add `type` attribute and `__init_subclass__` based
on the type, and validate the return hint of `__iter__`.
Note that there is subclass `_IterDataPipeMeta` specifically for `IterDataPipe`.
"""
type: _DataPipeType
def __new__(cls, name, bases, namespace, **kwargs):
return super().__new__(cls, name, bases, namespace, **kwargs) # type: ignore[call-overload]
# TODO: the statements below are not reachable by design as there is a bug and typing is low priority for now.
cls.__origin__ = None
if 'type' in namespace:
return super().__new__(cls, name, bases, namespace, **kwargs) # type: ignore[call-overload]
namespace['__type_class__'] = False
# For plain derived class without annotation
for base in bases:
if isinstance(base, _DataPipeMeta):
return super().__new__(cls, name, bases, namespace, **kwargs) # type: ignore[call-overload]
namespace.update({'type': _DEFAULT_TYPE,
'__init_subclass__': _dp_init_subclass})
return super().__new__(cls, name, bases, namespace, **kwargs) # type: ignore[call-overload]
def __init__(self, name, bases, namespace, **kwargs):
super().__init__(name, bases, namespace, **kwargs) # type: ignore[call-overload]
# TODO: Fix isinstance bug
@_tp_cache
def _getitem_(self, params):
if params is None:
raise TypeError('{}[t]: t can not be None'.format(self.__name__))
if isinstance(params, str):
params = ForwardRef(params)
if not isinstance(params, tuple):
params = (params, )
msg = "{}[t]: t must be a type".format(self.__name__)
params = tuple(_type_check(p, msg) for p in params)
if isinstance(self.type.param, _GenericAlias):
orig = getattr(self.type.param, '__origin__', None)
if isinstance(orig, type) and orig is not Generic:
p = self.type.param[params] # type: ignore[index]
t = _DataPipeType(p)
l = len(str(self.type)) + 2
name = self.__name__[:-l]
name = name + '[' + str(t) + ']'
bases = (self,) + self.__bases__
return self.__class__(name, bases,
{'__init_subclass__': _dp_init_subclass,
'type': t,
'__type_class__': True})
if len(params) > 1:
raise TypeError('Too many parameters for {} actual {}, expected 1'.format(self, len(params)))
t = _DataPipeType(params[0])
if not t.issubtype(self.type):
raise TypeError('Can not subclass a DataPipe[{}] from DataPipe[{}]'
.format(t, self.type))
# Types are equal, fast path for inheritance
if self.type == t:
return self
name = self.__name__ + '[' + str(t) + ']'
bases = (self,) + self.__bases__
return self.__class__(name, bases,
{'__init_subclass__': _dp_init_subclass,
'__type_class__': True,
'type': t})
# TODO: Fix isinstance bug
def _eq_(self, other):
if not isinstance(other, _DataPipeMeta):
return NotImplemented
if self.__origin__ is None or other.__origin__ is None: # type: ignore[has-type]
return self is other
return (self.__origin__ == other.__origin__ # type: ignore[has-type]
and self.type == other.type)
# TODO: Fix isinstance bug
def _hash_(self):
return hash((self.__name__, self.type))
class _IterDataPipeMeta(_DataPipeMeta):
r"""
Metaclass for `IterDataPipe` and inherits from `_DataPipeMeta`. Aad various functions for behaviors
specific to `IterDataPipe`.
"""
def __new__(cls, name, bases, namespace, **kwargs):
if 'reset' in namespace:
reset_func = namespace['reset']
@functools.wraps(reset_func)
def conditional_reset(*args, **kwargs):
r"""
Only execute DataPipe's `reset()` method if `_SnapshotState` is `Iterating` or `NotStarted`. This allows recently
restored DataPipe to preserve its restored state during the initial `__iter__` call.
"""
datapipe = args[0]
if datapipe._snapshot_state in (_SnapshotState.Iterating, _SnapshotState.NotStarted):
# Reset `NotStarted` is necessary because the `source_datapipe` of a DataPipe might have
# already begun iterating.
datapipe._number_of_samples_yielded = 0
datapipe._fast_forward_iterator = None
reset_func(*args, **kwargs)
datapipe._snapshot_state = _SnapshotState.Iterating
namespace['reset'] = conditional_reset
if '__iter__' in namespace:
hook_iterator(namespace, 'enumerate(DataPipe)#{}'.format(name))
return super().__new__(cls, name, bases, namespace, **kwargs) # type: ignore[call-overload]
def _dp_init_subclass(sub_cls, *args, **kwargs):
# Add function for datapipe instance to reinforce the type
sub_cls.reinforce_type = reinforce_type
# TODO:
# - add global switch for type checking at compile-time
# Ignore internal type class
if getattr(sub_cls, '__type_class__', False):
return
# Check if the string type is valid
if isinstance(sub_cls.type.param, ForwardRef):
base_globals = sys.modules[sub_cls.__module__].__dict__
try:
param = _eval_type(sub_cls.type.param, base_globals, locals())
sub_cls.type.param = param
except TypeError as e:
raise TypeError("{} is not supported by Python typing"
.format(sub_cls.type.param.__forward_arg__)) from e
if '__iter__' in sub_cls.__dict__:
iter_fn = sub_cls.__dict__['__iter__']
hints = get_type_hints(iter_fn)
if 'return' in hints:
return_hint = hints['return']
# Plain Return Hint for Python 3.6
if return_hint == Iterator:
return
if not (hasattr(return_hint, '__origin__') and
(return_hint.__origin__ == Iterator or
return_hint.__origin__ == collections.abc.Iterator)):
raise TypeError("Expected 'Iterator' as the return annotation for `__iter__` of {}"
", but found {}".format(sub_cls.__name__, _type_repr(hints['return'])))
data_type = return_hint.__args__[0]
if not issubtype(data_type, sub_cls.type.param):
raise TypeError("Expected return type of '__iter__' as a subtype of {}, but found {}"
" for {}".format(sub_cls.type, _type_repr(data_type), sub_cls.__name__))
def reinforce_type(self, expected_type):
r"""
Reinforce the type for DataPipe instance. And the 'expected_type' is required
to be a subtype of the original type hint to restrict the type requirement
of DataPipe instance.
"""
if isinstance(expected_type, tuple):
expected_type = Tuple[expected_type]
_type_check(expected_type, msg="'expected_type' must be a type")
if not issubtype(expected_type, self.type.param):
raise TypeError("Expected 'expected_type' as subtype of {}, but found {}"
.format(self.type, _type_repr(expected_type)))
self.type = _DataPipeType(expected_type)
return self
|