1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
_pandas = None
_WITH_PANDAS = None
def _try_import_pandas() -> bool:
try:
import pandas # type: ignore[import]
global _pandas
_pandas = pandas
return True
except ImportError:
return False
# pandas used only for prototyping, will be shortly replaced with TorchArrow
def _with_pandas() -> bool:
global _WITH_PANDAS
if _WITH_PANDAS is None:
_WITH_PANDAS = _try_import_pandas()
return _WITH_PANDAS
class PandasWrapper:
@classmethod
def create_dataframe(cls, data, columns):
if not _with_pandas():
raise Exception("DataFrames prototype requires pandas to function")
return _pandas.DataFrame(data, columns=columns) # type: ignore[union-attr]
@classmethod
def is_dataframe(cls, data):
if not _with_pandas():
return False
return isinstance(data, _pandas.core.frame.DataFrame) # type: ignore[union-attr]
@classmethod
def is_column(cls, data):
if not _with_pandas():
return False
return isinstance(data, _pandas.core.series.Series) # type: ignore[union-attr]
@classmethod
def iterate(cls, data):
if not _with_pandas():
raise Exception("DataFrames prototype requires pandas to function")
for d in data.itertuples(index=False):
yield d
@classmethod
def concat(cls, buffer):
if not _with_pandas():
raise Exception("DataFrames prototype requires pandas to function")
return _pandas.concat(buffer) # type: ignore[union-attr]
@classmethod
def get_item(cls, data, idx):
if not _with_pandas():
raise Exception("DataFrames prototype requires pandas to function")
return data[idx: idx + 1]
@classmethod
def get_len(cls, df):
if not _with_pandas():
raise Exception("DataFrames prototype requires pandas to function")
return len(df.index)
@classmethod
def get_columns(cls, df):
if not _with_pandas():
raise Exception("DataFrames prototype requires pandas to function")
return list(df.columns.values.tolist())
# When you build own implementation just override it with dataframe_wrapper.set_df_wrapper(new_wrapper_class)
default_wrapper = PandasWrapper
def get_df_wrapper():
return default_wrapper
def set_df_wrapper(wrapper):
global default_wrapper
default_wrapper = wrapper
def create_dataframe(data, columns=None):
wrapper = get_df_wrapper()
return wrapper.create_dataframe(data, columns)
def is_dataframe(data):
wrapper = get_df_wrapper()
return wrapper.is_dataframe(data)
def get_columns(data):
wrapper = get_df_wrapper()
return wrapper.get_columns(data)
def is_column(data):
wrapper = get_df_wrapper()
return wrapper.is_column(data)
def concat(buffer):
wrapper = get_df_wrapper()
return wrapper.concat(buffer)
def iterate(data):
wrapper = get_df_wrapper()
return wrapper.iterate(data)
def get_item(data, idx):
wrapper = get_df_wrapper()
return wrapper.get_item(data, idx)
def get_len(df):
wrapper = get_df_wrapper()
return wrapper.get_len(df)
|