1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
|
from typing import Any, Dict, List
from torch.utils.data.datapipes._decorator import functional_datapipe
from torch.utils.data.datapipes.datapipe import DFIterDataPipe, IterDataPipe
from torch.utils.data.datapipes.dataframe.structures import DataChunkDF
# TODO(VitalyFedyunin): Add error when two different traces get combined
__all__ = [
"Capture",
"CaptureA",
"CaptureAdd",
"CaptureCall",
"CaptureControl",
"CaptureDataFrame",
"CaptureDataFrameWithDataPipeOps",
"CaptureF",
"CaptureGetAttr",
"CaptureGetItem",
"CaptureInitial",
"CaptureLikeMock",
"CaptureMul",
"CaptureSetItem",
"CaptureSub",
"CaptureVariable",
"CaptureVariableAssign",
"DataFrameTracer",
"DataFrameTracedOps",
"disable_capture",
"get_val",
]
def disable_capture():
CaptureControl.disabled = True
class CaptureControl():
disabled = False
class DataFrameTracedOps(DFIterDataPipe):
def __init__(self, source_datapipe, output_var):
self.source_datapipe = source_datapipe
self.output_var = output_var
def __iter__(self):
for item in self.source_datapipe:
yield self.output_var.apply_ops(item)
# TODO(VitalyFedyunin): Extract this list from the DFIterDataPipe registred functions
DATAPIPES_OPS = ['_dataframes_as_tuples', 'groupby', '_dataframes_filter', 'map', 'to_datapipe',
'shuffle', 'concat', 'batch', '_dataframes_per_row', '_dataframes_concat', '_dataframes_shuffle']
UNIMPLEMENTED_ATTR = ['__deepcopy__', '__setstate__', 'is_shardable', 'apply_sharding']
class Capture(object):
# TODO: All operations are shared across entire InitialCapture, need to figure out what if we join two captures
def __init__(self, schema_df=None):
self.ctx = {'operations': [], 'variables': [], 'schema_df': schema_df}
def __str__(self):
return self._ops_str()
def _ops_str(self):
res = ""
for op in self.ctx['operations']:
if len(res) > 0:
res += "\n"
res += str(op)
return res
def __getstate__(self):
# TODO(VitalyFedyunin): Currently can't pickle (why?)
self.ctx['schema_df'] = None
for var in self.ctx['variables']:
var.calculated_value = None
state = {}
for item in self.__dict__:
state[item] = getattr(self, item)
return state
def __setstate__(self, state):
for k, v in state.items():
setattr(self, k, v)
def __getattr__(self, attrname):
if attrname == 'kwarg' or attrname == 'kwargs':
raise Exception('no kwargs!')
if attrname in ['__deepcopy__']:
raise AttributeError()
result = CaptureGetAttr(self, attrname, ctx=self.ctx)
return result
def __getitem__(self, key):
return CaptureGetItem(self, key, ctx=self.ctx)
def __setitem__(self, key, value):
self.ctx['operations'].append(
CaptureSetItem(self, key, value, ctx=self.ctx))
def __add__(self, add_val):
res = CaptureAdd(self, add_val, ctx=self.ctx)
var = CaptureVariable(res, ctx=self.ctx)
self.ctx['operations'].append(
CaptureVariableAssign(variable=var, value=res, ctx=self.ctx))
return var
def __sub__(self, add_val):
res = CaptureSub(self, add_val, ctx=self.ctx)
var = CaptureVariable(res, ctx=self.ctx)
self.ctx['operations'].append(
CaptureVariableAssign(variable=var, value=res, ctx=self.ctx))
return var
def __mul__(self, add_val):
res = CaptureMul(self, add_val, ctx=self.ctx)
var = CaptureVariable(res, ctx=self.ctx)
t = CaptureVariableAssign(variable=var, value=res, ctx=self.ctx)
self.ctx['operations'].append(t)
return var
def _is_context_empty(self):
return len(self.ctx['operations']) == 0 and len(self.ctx['variables']) == 0
def apply_ops_2(self, dataframe):
# TODO(VitalyFedyunin): Make this calculation thread safe (as currently it updates pointer)
self.ctx['variables'][0].calculated_value = dataframe
for op in self.ctx['operations']:
op.execute()
@property
def columns(self):
self.apply_ops_2(self.ctx['schema_df'])
value = self.execute()
return value.columns
# TODO(VitalyFedyunin): Add tests
# TODO(VitalyFedyunin): Need to join context if one of them are empty because we used capture
def __call__(self, *args, **kwargs):
# TODO: Check if args or kwargs have more than one different context
if self._is_context_empty():
# TODO: Allow CaptureA to take context from mock
for arg in args:
if isinstance(arg, Capture) and not arg._is_context_empty():
self.ctx = arg.ctx
break
if self._is_context_empty():
for k, v in kwargs.items():
if isinstance(k, Capture) and not k._is_context_empty():
self.ctx = k.ctx
break
if isinstance(v, Capture) and not v._is_context_empty():
self.ctx = v.ctx
break
res = CaptureCall(self, ctx=self.ctx, args=args, kwargs=kwargs)
var = CaptureVariable(None, ctx=self.ctx)
t = CaptureVariableAssign(ctx=self.ctx, variable=var, value=res)
self.ctx['operations'].append(t)
return var
class CaptureF(Capture):
def __init__(self, ctx=None, **kwargs):
if ctx is None:
self.ctx = {'operations': [], 'variables': []}
else:
self.ctx = ctx
self.kwargs = kwargs
class CaptureA(CaptureF):
def __str__(self):
return '{name}'.format(name=self.kwargs['name'])
def execute(self):
value = self.kwargs['real_attribute']
return value
class CaptureLikeMock():
def __init__(self, name):
import unittest.mock as mock
# TODO(VitalyFedyunin): Do not use provate function here, copy own implementation instead.
get_target, attribute = mock._get_target(name) # type: ignore[attr-defined]
self.get_target = get_target
self.attribute = attribute
self.name = name
def __enter__(self):
self.save = getattr(self.get_target(), self.attribute)
capt = CaptureA(name=self.name, real_attribute=self.save)
setattr(self.get_target(), self.attribute, capt)
def __exit__(self, *exc_info):
setattr(self.get_target(), self.attribute, self.save)
class CaptureCall(Capture):
def __init__(self, callable, ctx=None, **kwargs):
if ctx is None:
self.ctx = {'operations': [], 'variables': []}
else:
self.ctx = ctx
self.kwargs = kwargs
self.callable = callable
def __str__(self):
return "{callable}({args},{kwargs})".format(callable=self.callable, **self.kwargs)
def execute(self):
# TODO: VitalyFedyunin execute kwargs and maybe nestted structures
executed_args = []
for arg in self.kwargs['args']:
if isinstance(arg, Capture):
executed_args.append(arg.execute())
else:
executed_args.append(arg)
left = get_val(self.callable)
return left(*executed_args, **self.kwargs['kwargs'])
class CaptureVariableAssign(CaptureF):
def __str__(self):
variable = self.kwargs['variable']
value = self.kwargs['value']
return "{variable} = {value}".format(variable=variable, value=value)
def execute(self):
self.kwargs['variable'].calculated_value = self.kwargs['value'].execute()
class CaptureVariable(Capture):
# TODO(VitalyFedyunin): This should be atomic and thread safe
names_idx = 0
def __init__(self, value, ctx):
if CaptureControl.disabled:
raise Exception('Attempting to create capture variable with capture off')
self.ctx = ctx
self.value = value
self.name = 'var_%s' % CaptureVariable.names_idx
CaptureVariable.names_idx += 1
self.ctx['variables'].append(self)
def __str__(self):
return self.name
def execute(self):
return self.calculated_value
def apply_ops(self, dataframe):
# TODO(VitalyFedyunin): Make this calculation thread safe (as currently it updates pointer)
self.ctx['variables'][0].calculated_value = dataframe
for op in self.ctx['operations']:
op.execute()
return self.calculated_value
class CaptureGetItem(Capture):
def __init__(self, left, key, ctx):
self.ctx = ctx
self.left = left
self.key = key
def __str__(self):
return "%s[%s]" % (self.left, get_val(self.key))
def execute(self):
left = self.left.execute()
return left[self.key]
class CaptureSetItem(Capture):
def __init__(self, left, key, value, ctx):
self.ctx = ctx
self.left = left
self.key = key
self.value = value
def __str__(self):
return "%s[%s] = %s" % (self.left, get_val(self.key), self.value)
def execute(self):
left = self.left.execute()
value = self.value.execute()
left[self.key] = value
class CaptureAdd(Capture):
def __init__(self, left, right, ctx):
self.ctx = ctx
self.left = left
self.right = right
def __str__(self):
return "%s + %s" % (self.left, self.right)
def execute(self):
return get_val(self.left) + get_val(self.right)
class CaptureMul(Capture):
def __init__(self, left, right, ctx):
self.ctx = ctx
self.left = left
self.right = right
def __str__(self):
return "%s * %s" % (self.left, self.right)
def execute(self):
return get_val(self.left) * get_val(self.right)
class CaptureSub(Capture):
def __init__(self, left, right, ctx):
self.ctx = ctx
self.left = left
self.right = right
def __str__(self):
return "%s - %s" % (self.left, self.right)
def execute(self):
return get_val(self.left) - get_val(self.right)
class CaptureGetAttr(Capture):
def __init__(self, src, name, ctx):
self.ctx = ctx
self.src = src
self.name = name
def __str__(self):
return "%s.%s" % (self.src, self.name)
def execute(self):
val = get_val(self.src)
return getattr(val, self.name)
def get_val(capture):
if isinstance(capture, Capture):
return capture.execute()
elif isinstance(capture, str):
return '"%s"' % capture
else:
return capture
class CaptureInitial(CaptureVariable):
def __init__(self, schema_df=None):
new_ctx: Dict[str, List[Any]] = {'operations': [], 'variables': [], 'schema_df': schema_df}
super().__init__(None, new_ctx)
self.name = 'input_%s' % self.name
class CaptureDataFrame(CaptureInitial):
pass
class CaptureDataFrameWithDataPipeOps(CaptureDataFrame):
def as_datapipe(self):
return DataFrameTracedOps(
self.ctx['variables'][0].source_datapipe, self)
def raw_iterator(self):
return self.as_datapipe().__iter__()
def __iter__(self):
return iter(self._dataframes_as_tuples())
def batch(self, batch_size=10, drop_last: bool = False, wrapper_class=DataChunkDF):
dp = self._dataframes_per_row()._dataframes_concat(batch_size)
dp = dp.as_datapipe().batch(1, drop_last=drop_last, wrapper_class=wrapper_class)
dp._dp_contains_dataframe = True
return dp
def groupby(self,
group_key_fn,
*,
buffer_size=10000,
group_size=None,
guaranteed_group_size=None,
drop_remaining=False):
dp = self._dataframes_per_row()
dp = dp.as_datapipe().groupby(group_key_fn, buffer_size=buffer_size, group_size=group_size,
guaranteed_group_size=guaranteed_group_size, drop_remaining=drop_remaining)
return dp
def shuffle(self, *args, **kwargs):
return self._dataframes_shuffle(*args, **kwargs)
def filter(self, *args, **kwargs):
return self._dataframes_filter(*args, **kwargs)
def collate(self, *args, **kwargs):
raise Exception("Can't collate unbatched DataFrames stream")
def __getattr__(self, attrname): # ?
if attrname in UNIMPLEMENTED_ATTR:
raise AttributeError('Attemping to get ', attrname)
if attrname in DATAPIPES_OPS:
return (self.as_datapipe()).__getattr__(attrname)
return super().__getattr__(attrname)
@functional_datapipe('trace_as_dataframe')
class DataFrameTracer(CaptureDataFrameWithDataPipeOps, IterDataPipe):
source_datapipe = None
# TODO(VitalyFedyunin): Must implement all special functions of datapipes
def set_shuffle_settings(self, *args, **kwargs):
pass
def is_shardable(self):
return False
def __init__(self, source_datapipe, schema_df=None):
self.source_datapipe = source_datapipe
if schema_df is None:
schema_df = next(iter(self.source_datapipe))
super().__init__(schema_df=schema_df)
|