1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
# This base template ("datapipe.pyi.in") is generated from mypy stubgen with minimal editing for code injection
# The output file will be "datapipe.pyi". This is executed as part of torch/CMakeLists.txt
# Note that, for mypy, .pyi file takes precedent over .py file, such that we must define the interface for other
# classes/objects here, even though we are not injecting extra code into them at the moment.
from torch.utils.data.datapipes._typing import _DataPipeMeta, _IterDataPipeMeta
from torch.utils.data.datapipes._hook_iterator import _SnapshotState
from typing import Any, Callable, Dict, Generic, Iterator, List, Optional, TypeVar, Union
from torch.utils.data import Dataset, IterableDataset, default_collate
T_co = TypeVar('T_co', covariant=True)
T = TypeVar('T')
UNTRACABLE_DATAFRAME_PIPES: Any
class MapDataPipe(Dataset[T_co], metaclass=_DataPipeMeta):
functions: Dict[str, Callable] = ...
reduce_ex_hook: Optional[Callable] = ...
getstate_hook: Optional[Callable] = ...
str_hook: Optional[Callable] = ...
repr_hook: Optional[Callable] = ...
def __getattr__(self, attribute_name: Any): ...
@classmethod
def register_function(cls, function_name: Any, function: Any) -> None: ...
@classmethod
def register_datapipe_as_function(cls, function_name: Any, cls_to_register: Any): ...
def __getstate__(self): ...
def __reduce_ex__(self, *args: Any, **kwargs: Any): ...
@classmethod
def set_getstate_hook(cls, hook_fn: Any) -> None: ...
@classmethod
def set_reduce_ex_hook(cls, hook_fn: Any) -> None: ...
${MapDataPipeMethods}
class IterDataPipe(IterableDataset[T_co], metaclass=_IterDataPipeMeta):
functions: Dict[str, Callable] = ...
reduce_ex_hook: Optional[Callable] = ...
getstate_hook: Optional[Callable] = ...
str_hook: Optional[Callable] = ...
repr_hook: Optional[Callable] = ...
_number_of_samples_yielded: int = ...
_snapshot_state: _SnapshotState = _SnapshotState.Iterating
_fast_forward_iterator: Optional[Iterator] = ...
def __getattr__(self, attribute_name: Any): ...
@classmethod
def register_function(cls, function_name: Any, function: Any) -> None: ...
@classmethod
def register_datapipe_as_function(cls, function_name: Any, cls_to_register: Any, enable_df_api_tracing: bool = ...): ...
def __getstate__(self): ...
def __reduce_ex__(self, *args: Any, **kwargs: Any): ...
@classmethod
def set_getstate_hook(cls, hook_fn: Any) -> None: ...
@classmethod
def set_reduce_ex_hook(cls, hook_fn: Any) -> None: ...
${IterDataPipeMethods}
class DFIterDataPipe(IterDataPipe):
def _is_dfpipe(self): ...
class _DataPipeSerializationWrapper:
def __init__(self, datapipe): ...
def __getstate__(self): ...
def __setstate__(self, state): ...
def __len__(self): ...
class _IterDataPipeSerializationWrapper(_DataPipeSerializationWrapper, IterDataPipe):
def __iter__(self): ...
class _MapDataPipeSerializationWrapper(_DataPipeSerializationWrapper, MapDataPipe):
def __getitem__(self, idx): ...
class DataChunk(list, Generic[T]):
def __init__(self, items):
super().__init__(items)
self.items = items
def as_str(self, indent=''):
res = indent + "[" + ", ".join(str(i) for i in iter(self)) + "]"
return res
def __iter__(self) -> Iterator[T]:
for i in super().__iter__():
yield i
def raw_iterator(self) -> T: # type: ignore[misc]
for i in self.items:
yield i
|