File: datapipe.pyi.in

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (93 lines) | stat: -rw-r--r-- 3,540 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# This base template ("datapipe.pyi.in") is generated from mypy stubgen with minimal editing for code injection
# The output file will be "datapipe.pyi". This is executed as part of torch/CMakeLists.txt
# Note that, for mypy, .pyi file takes precedent over .py file, such that we must define the interface for other
# classes/objects here, even though we are not injecting extra code into them at the moment.

from torch.utils.data.datapipes._typing import _DataPipeMeta, _IterDataPipeMeta
from torch.utils.data.datapipes._hook_iterator import _SnapshotState
from typing import Any, Callable, Dict, Generic, Iterator, List, Optional, TypeVar, Union
from torch.utils.data import Dataset, IterableDataset, default_collate

T_co = TypeVar('T_co', covariant=True)
T = TypeVar('T')
UNTRACABLE_DATAFRAME_PIPES: Any


class MapDataPipe(Dataset[T_co], metaclass=_DataPipeMeta):
    functions: Dict[str, Callable] = ...
    reduce_ex_hook: Optional[Callable] = ...
    getstate_hook: Optional[Callable] = ...
    str_hook: Optional[Callable] = ...
    repr_hook: Optional[Callable] = ...
    def __getattr__(self, attribute_name: Any): ...
    @classmethod
    def register_function(cls, function_name: Any, function: Any) -> None: ...
    @classmethod
    def register_datapipe_as_function(cls, function_name: Any, cls_to_register: Any): ...
    def __getstate__(self): ...
    def __reduce_ex__(self, *args: Any, **kwargs: Any): ...
    @classmethod
    def set_getstate_hook(cls, hook_fn: Any) -> None: ...
    @classmethod
    def set_reduce_ex_hook(cls, hook_fn: Any) -> None: ...
    ${MapDataPipeMethods}


class IterDataPipe(IterableDataset[T_co], metaclass=_IterDataPipeMeta):
    functions: Dict[str, Callable] = ...
    reduce_ex_hook: Optional[Callable] = ...
    getstate_hook: Optional[Callable] = ...
    str_hook: Optional[Callable] = ...
    repr_hook: Optional[Callable] = ...
    _number_of_samples_yielded: int = ...
    _snapshot_state: _SnapshotState = _SnapshotState.Iterating
    _fast_forward_iterator: Optional[Iterator] = ...
    def __getattr__(self, attribute_name: Any): ...
    @classmethod
    def register_function(cls, function_name: Any, function: Any) -> None: ...
    @classmethod
    def register_datapipe_as_function(cls, function_name: Any, cls_to_register: Any, enable_df_api_tracing: bool = ...): ...
    def __getstate__(self): ...
    def __reduce_ex__(self, *args: Any, **kwargs: Any): ...
    @classmethod
    def set_getstate_hook(cls, hook_fn: Any) -> None: ...
    @classmethod
    def set_reduce_ex_hook(cls, hook_fn: Any) -> None: ...
    ${IterDataPipeMethods}


class DFIterDataPipe(IterDataPipe):
    def _is_dfpipe(self): ...


class _DataPipeSerializationWrapper:
    def __init__(self, datapipe): ...
    def __getstate__(self): ...
    def __setstate__(self, state): ...
    def __len__(self): ...


class _IterDataPipeSerializationWrapper(_DataPipeSerializationWrapper, IterDataPipe):
    def __iter__(self): ...


class _MapDataPipeSerializationWrapper(_DataPipeSerializationWrapper, MapDataPipe):
    def __getitem__(self, idx): ...


class DataChunk(list, Generic[T]):
    def __init__(self, items):
        super().__init__(items)
        self.items = items

    def as_str(self, indent=''):
        res = indent + "[" + ", ".join(str(i) for i in iter(self)) + "]"
        return res

    def __iter__(self) -> Iterator[T]:
        for i in super().__iter__():
            yield i

    def raw_iterator(self) -> T:  # type: ignore[misc]
        for i in self.items:
            yield i