File: streamreader.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (38 lines) | stat: -rw-r--r-- 1,401 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from typing import Tuple
from torch.utils.data.datapipes._decorator import functional_datapipe
from torch.utils.data.datapipes.datapipe import IterDataPipe

__all__ = ["StreamReaderIterDataPipe", ]


@functional_datapipe('read_from_stream')
class StreamReaderIterDataPipe(IterDataPipe[Tuple[str, bytes]]):
    r"""
    Given IO streams and their label names, yields bytes with label
    name in a tuple (functional name: ``read_from_stream``).

    Args:
        datapipe: Iterable DataPipe provides label/URL and byte stream
        chunk: Number of bytes to be read from stream per iteration.
            If ``None``, all bytes will be read util the EOF.

    Example:
        >>> # xdoctest: +SKIP
        >>> from torchdata.datapipes.iter import IterableWrapper, StreamReader
        >>> from io import StringIO
        >>> dp = IterableWrapper([("alphabet", StringIO("abcde"))])
        >>> list(StreamReader(dp, chunk=1))
        [('alphabet', 'a'), ('alphabet', 'b'), ('alphabet', 'c'), ('alphabet', 'd'), ('alphabet', 'e')]
    """
    def __init__(self, datapipe, chunk=None):
        self.datapipe = datapipe
        self.chunk = chunk

    def __iter__(self):
        for furl, stream in self.datapipe:
            while True:
                d = stream.read(self.chunk)
                if not d:
                    stream.close()
                    break
                yield (furl, d)