1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
from collections import OrderedDict
import contextlib
from typing import Dict, Any
from tensorboard.compat.proto.config_pb2 import RunMetadata
from tensorboard.compat.proto.graph_pb2 import GraphDef
from tensorboard.compat.proto.step_stats_pb2 import StepStats, DeviceStepStats
from tensorboard.compat.proto.versions_pb2 import VersionDef
import torch
from ._proto_graph import node_proto
methods_OP = [
"attributeNames",
"hasMultipleOutputs",
"hasUses",
"inputs",
"kind",
"outputs",
"outputsSize",
"scopeName",
]
# Some additional methods to explure for methods_IO are
#
# 'unique' (type int)
# 'type' (type <Tensor<class 'torch._C.Type'>>)
#
# But the below are sufficient for now.
methods_IO = ["node", "offset", "debugName"]
GETATTR_KIND = "prim::GetAttr"
CLASSTYPE_KIND = "ClassType"
class NodeBase(object):
def __init__(
self,
debugName=None,
inputs=None,
scope=None,
tensor_size=None,
op_type="UnSpecified",
attributes="",
):
# TODO; Specify a __slots__ for this class or potentially
# used namedtuple instead
self.debugName = debugName
self.inputs = inputs
self.tensor_size = tensor_size
self.kind = op_type
self.attributes = attributes
self.scope = scope
def __repr__(self):
repr = []
repr.append(str(type(self)))
for m in dir(self):
if "__" not in m:
repr.append(
m + ": " + str(getattr(self, m)) + str(type(getattr(self, m)))
)
return "\n".join(repr) + "\n\n"
class NodePy(NodeBase):
def __init__(self, node_cpp, valid_methods):
super(NodePy, self).__init__(node_cpp)
valid_methods = valid_methods[:]
self.inputs = []
for m in valid_methods:
if m == "inputs" or m == "outputs":
list_of_node = list(getattr(node_cpp, m)())
io_unique_names = []
io_tensor_sizes = []
for n in list_of_node:
io_unique_names.append(n.debugName())
if n.isCompleteTensor():
io_tensor_sizes.append(n.type().sizes())
else:
io_tensor_sizes.append(None)
setattr(self, m, io_unique_names)
setattr(self, m + "tensor_size", io_tensor_sizes)
else:
setattr(self, m, getattr(node_cpp, m)())
class NodePyIO(NodePy):
def __init__(self, node_cpp, input_or_output=None):
super(NodePyIO, self).__init__(node_cpp, methods_IO)
try:
tensor_size = node_cpp.type().sizes()
except RuntimeError:
tensor_size = [
1,
] # fail when constant model is used.
self.tensor_size = tensor_size
# Kind attribute string is purely descriptive and will be shown
# in detailed information for the node in TensorBoard's graph plugin.
#
# NodePyOP nodes get this from their kind() method.
self.kind = "Parameter"
if input_or_output:
self.input_or_output = input_or_output
self.kind = "IO Node"
class NodePyOP(NodePy):
def __init__(self, node_cpp):
super(NodePyOP, self).__init__(node_cpp, methods_OP)
# Replace single quote which causes strange behavior in TensorBoard
# TODO: See if we can remove this in the future
self.attributes = str(
{k: _node_get(node_cpp, k) for k in node_cpp.attributeNames()}
).replace("'", " ")
self.kind = node_cpp.kind()
class GraphPy(object):
"""Helper class to convert torch.nn.Module to GraphDef proto and visualization
with TensorBoard.
GraphDef generation operates in two passes:
In the first pass, all nodes are read and saved to two lists.
One list is for input/output nodes (nodes_io), which only have inbound
or outbound connections, but not both. Another list is for internal
operator nodes (nodes_op). The first pass also saves all scope name
appeared in the nodes in scope_name_appeared list for later processing.
In the second pass, scope names are fully applied to all nodes.
debugNameToScopedName is a mapping from a node's ID to its fully qualified
scope name. e.g. Net1/Linear[0]/1. Unfortunately torch.jit doesn't have
totally correct scope output, so this is nontrivial. The function
populate_namespace_from_OP_to_IO and find_common_root are used to
assign scope name to a node based on the connection between nodes
in a heuristic kind of way. Bookkeeping is done with shallowest_scope_name
and scope_name_appeared.
"""
def __init__(self):
self.nodes_op = []
self.nodes_io = OrderedDict()
self.unique_name_to_scoped_name = {}
self.shallowest_scope_name = "default"
self.scope_name_appeared = []
def append(self, x):
if isinstance(x, NodePyIO):
self.nodes_io[x.debugName] = x
if isinstance(x, NodePyOP):
self.nodes_op.append(x)
def printall(self):
print("all nodes")
for node in self.nodes_op:
print(node)
for key in self.nodes_io:
print(self.nodes_io[key])
def find_common_root(self):
for fullscope in self.scope_name_appeared:
if fullscope:
self.shallowest_scope_name = fullscope.split("/")[0]
def populate_namespace_from_OP_to_IO(self):
for node in self.nodes_op:
for node_output, outputSize in zip(node.outputs, node.outputstensor_size):
self.scope_name_appeared.append(node.scopeName)
self.nodes_io[node_output] = NodeBase(
node_output,
node.inputs,
node.scopeName,
outputSize,
op_type=node.kind,
attributes=node.attributes,
)
self.find_common_root()
for node in self.nodes_op:
for input_node_id in node.inputs:
self.unique_name_to_scoped_name[input_node_id] = (
node.scopeName + "/" + input_node_id
)
for key, node in self.nodes_io.items():
if type(node) == NodeBase:
self.unique_name_to_scoped_name[key] = node.scope + "/" + node.debugName
if hasattr(node, "input_or_output"):
self.unique_name_to_scoped_name[key] = (
node.input_or_output + "/" + node.debugName
)
if hasattr(node, "scope") and node.scope is not None:
self.unique_name_to_scoped_name[key] = node.scope + "/" + node.debugName
if node.scope == "" and self.shallowest_scope_name:
self.unique_name_to_scoped_name[node.debugName] = (
self.shallowest_scope_name + "/" + node.debugName
)
# replace name
for key, node in self.nodes_io.items():
self.nodes_io[key].inputs = [
self.unique_name_to_scoped_name[node_input_id]
for node_input_id in node.inputs
]
if node.debugName in self.unique_name_to_scoped_name:
self.nodes_io[key].debugName = self.unique_name_to_scoped_name[
node.debugName
]
def to_proto(self):
"""
Converts graph representation of GraphPy object to TensorBoard
required format.
"""
# TODO: compute correct memory usage and CPU time once
# PyTorch supports it
nodes = []
for v in self.nodes_io.values():
nodes.append(
node_proto(
v.debugName,
input=v.inputs,
outputsize=v.tensor_size,
op=v.kind,
attributes=v.attributes,
)
)
return nodes
def parse(graph, trace, args=None, omit_useless_nodes=True):
"""This method parses an optimized PyTorch model graph and produces
a list of nodes and node stats for eventual conversion to TensorBoard
protobuf format.
Args:
graph (PyTorch module): The model graph to be parsed.
trace (PyTorch JIT TracedModule): The model trace to be parsed.
args (tuple): input tensor[s] for the model.
omit_useless_nodes (boolean): Whether to remove nodes from the graph.
"""
n_inputs = len(args)
scope = {}
nodes_py = GraphPy()
for node in graph.inputs():
if omit_useless_nodes:
if (
len(node.uses()) == 0
): # number of user of the node (= number of outputs/ fanout)
continue
if node.type().kind() != CLASSTYPE_KIND:
nodes_py.append(NodePyIO(node, "input"))
attr_to_scope: Dict[Any, str] = {}
for node in graph.nodes():
if node.kind() == GETATTR_KIND:
attr_name = node.s("name")
attr_key = node.output().debugName()
parent = node.input().node()
if (
parent.kind() == GETATTR_KIND
): # If the parent node is not the top-level "self" node
parent_attr_name = parent.s("name")
parent_attr_key = parent.output().debugName()
parent_scope = attr_to_scope[parent_attr_key]
attr_scope = parent_scope.split("/")[-1]
attr_to_scope[attr_key] = "{}/{}.{}".format(
parent_scope, attr_scope, attr_name
)
else:
attr_to_scope[attr_key] = "__module.{}".format(attr_name)
# We don't need classtype nodes; scope will provide this information
if node.output().type().kind() != CLASSTYPE_KIND:
node_py = NodePyOP(node)
node_py.scopeName = attr_to_scope[attr_key] # type: ignore[attr-defined]
nodes_py.append(node_py)
else:
nodes_py.append(NodePyOP(node))
for i, node in enumerate(graph.outputs()): # Create sink nodes for output ops
node_pyio = NodePyIO(node, "output")
node_pyio.debugName = "output.{}".format(i + 1)
node_pyio.inputs = [node.debugName()]
nodes_py.append(node_pyio)
def parse_traced_name(module):
if isinstance(module, torch.jit.TracedModule):
module_name = module._name
else:
module_name = getattr(module, "original_name", "Module")
return module_name
alias_to_name = {}
base_name = parse_traced_name(trace)
for name, module in trace.named_modules(prefix="__module"):
mod_name = parse_traced_name(module)
attr_name = name.split(".")[-1]
alias_to_name[name] = "{}[{}]".format(mod_name, attr_name)
for node in nodes_py.nodes_op:
module_aliases = node.scopeName.split("/")
replacements = [
alias_to_name[alias] if alias in alias_to_name else alias.split(".")[-1]
for alias in module_aliases
]
node.scopeName = base_name
if any(replacements):
node.scopeName += "/" + "/".join(replacements)
nodes_py.populate_namespace_from_OP_to_IO()
return nodes_py.to_proto()
def graph(model, args, verbose=False, use_strict_trace=True):
"""
This method processes a PyTorch model and produces a `GraphDef` proto
that can be logged to TensorBoard.
Args:
model (PyTorch module): The model to be parsed.
args (tuple): input tensor[s] for the model.
verbose (bool): Whether to print out verbose information while
processing.
use_strict_trace (bool): Whether to pass keyword argument `strict` to
`torch.jit.trace`. Pass False when you want the tracer to
record your mutable container types (list, dict)
"""
with _set_model_to_eval(model):
try:
trace = torch.jit.trace(model, args, strict=use_strict_trace)
graph = trace.graph
torch._C._jit_pass_inline(graph)
except RuntimeError as e:
print(e)
print("Error occurs, No graph saved")
raise e
if verbose:
print(graph)
list_of_nodes = parse(graph, trace, args)
# We are hardcoding that this was run on CPU even though it might have actually
# run on GPU. Note this is what is shown in TensorBoard and has no bearing
# on actual execution.
# TODO: See if we can extract GPU vs CPU information from the PyTorch model
# and pass it correctly to TensorBoard.
#
# Definition of StepStats and DeviceStepStats can be found at
# https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/graph/tf_graph_common/test/graph-test.ts
# and
# https://github.com/tensorflow/tensorboard/blob/master/tensorboard/compat/proto/step_stats.proto
stepstats = RunMetadata(
step_stats=StepStats(dev_stats=[DeviceStepStats(device="/device:CPU:0")])
)
return GraphDef(node=list_of_nodes, versions=VersionDef(producer=22)), stepstats
# The producer version has been reverse engineered from standard
# TensorBoard logged data.
@contextlib.contextmanager
def _set_model_to_eval(model):
"""A context manager to temporarily set the training mode of ``model`` to eval."""
if not isinstance(model, torch.jit.ScriptFunction):
originally_training = model.training
model.train(False)
try:
yield
finally:
model.train(originally_training)
else:
# Do nothing for ScriptFunction
try:
yield
finally:
pass
def _node_get(node: torch._C.Node, key: str):
"""Gets attributes of a node which is polymorphic over return type."""
sel = node.kindOf(key)
return getattr(node, sel)(key)
|