1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
|
from dataclasses import dataclass
from enum import Enum
from typing import Dict, Iterator, List, Optional, Sequence, Set, Tuple, TypeVar, Union
from torchgen.model import (
Argument,
BackendIndex,
BaseTy,
FunctionSchema,
NativeFunction,
NativeFunctionsGroup,
NativeFunctionsViewGroup,
ScalarType,
SelfArgument,
TensorOptionsArguments,
)
_T = TypeVar("_T")
TENSOR_LIST_LIKE_CTYPES = [
"at::TensorList",
"const c10::List<c10::optional<at::Tensor>> &",
"const at::ITensorListRef &",
]
# An ArgName is just the str name of the argument in schema;
# but in some special circumstances, we may add a little extra
# context. The Enum SpecialArgName covers all of these cases;
# grep for their construction sites to see when they can occr.
SpecialArgName = Enum("SpecialArgName", ("possibly_redundant_memory_format",))
ArgName = Union[str, SpecialArgName]
# This class shouldn't be created directly; instead, use/create one of the singletons below.
@dataclass(frozen=True)
class BaseCppType:
ns: Optional[str]
name: str
def __str__(self) -> str:
if self.ns is None or self.ns == "":
return self.name
return f"{self.ns}::{self.name}"
# The set of all non-templated, valid, fully-qualified names of C++ types that are used in the codegen.
# Templated types get their own dataclass, mainly to make namespace parsing easier.
byteT = BaseCppType("", "uint8_t")
charT = BaseCppType("", "int8_t")
shortT = BaseCppType("", "int16_t")
# It would be more symmetric for this to be called intT, but it easy to mix
# this up with JIT int (which is int64_t in C++), so we intentionally don't
# define intT to make it obvious when you've stuffed it up
int32T = BaseCppType("", "int32_t")
longT = BaseCppType("", "int64_t")
halfT = BaseCppType("at", "Half")
doubleT = BaseCppType("", "double")
floatT = BaseCppType("", "float")
complexHalfT = BaseCppType(
"c10", "complex<c10::Half>"
) # stuffing template param here is an abuse
complexFloatT = BaseCppType("c10", "complex<float>")
complexDoubleT = BaseCppType("c10", "complex<double>")
boolT = BaseCppType("", "bool")
bfloat16T = BaseCppType("at", "BFloat16")
voidT = BaseCppType("", "void")
stringT = BaseCppType("c10", "string_view")
generatorT = BaseCppType("at", "Generator")
scalarTypeT = BaseCppType("at", "ScalarType")
tensorT = BaseCppType("at", "Tensor")
optionalTensorRefT = BaseCppType("at", "OptionalTensorRef")
tensorListT = BaseCppType("at", "TensorList")
iTensorListRefT = BaseCppType("at", "ITensorListRef")
iOptTensorListRefT = BaseCppType("at", "IOptTensorListRef")
dimnameT = BaseCppType("at", "Dimname")
dimnameListT = BaseCppType("at", "DimnameList")
dimVectorT = BaseCppType("at", "DimVector")
layoutT = BaseCppType("at", "Layout")
deviceT = BaseCppType("at", "Device")
scalarT = BaseCppType("at", "Scalar")
optionalScalarRefT = BaseCppType("at", "OptionalScalarRef")
memoryFormatT = BaseCppType("at", "MemoryFormat")
qschemeT = BaseCppType("at", "QScheme")
storageT = BaseCppType("at", "Storage")
streamT = BaseCppType("at", "Stream")
intArrayRefT = BaseCppType("at", "IntArrayRef")
optionalIntArrayRefT = BaseCppType("at", "OptionalIntArrayRef")
optionalSymIntArrayRefT = BaseCppType("at", "OptionalSymIntArrayRef")
tensorOptionsT = BaseCppType("at", "TensorOptions")
typeAndSizeT = BaseCppType("torch::autograd::generated", "TypeAndSize")
tensorGeometryT = BaseCppType("at", "TensorGeometry")
SymIntT = BaseCppType("c10", "SymInt")
symIntArrayRefT = BaseCppType("c10", "SymIntArrayRef")
# Types representing template parameters. Technically, we probably shouldn't
# represent them this way in codegen, but it was pretty convenient.
scalar_t = BaseCppType("", "scalar_t")
opmath_t = BaseCppType("", "opmath_t")
ScalarTypeToCppMapping: Dict[ScalarType, BaseCppType] = {
ScalarType.Byte: byteT,
ScalarType.Char: charT,
ScalarType.Short: shortT,
ScalarType.Int: int32T,
ScalarType.Long: longT,
ScalarType.Half: halfT,
ScalarType.Float: floatT,
ScalarType.Double: doubleT,
ScalarType.ComplexHalf: complexHalfT,
ScalarType.ComplexFloat: complexFloatT,
ScalarType.ComplexDouble: complexDoubleT,
ScalarType.Bool: boolT,
ScalarType.BFloat16: bfloat16T,
}
BaseTypeToCppMapping: Dict[BaseTy, BaseCppType] = {
BaseTy.int: longT,
BaseTy.float: doubleT,
BaseTy.bool: boolT,
BaseTy.str: stringT,
BaseTy.Generator: generatorT,
BaseTy.ScalarType: scalarTypeT,
BaseTy.Tensor: tensorT,
BaseTy.Dimname: dimnameT,
BaseTy.DimVector: dimVectorT,
BaseTy.Layout: layoutT,
BaseTy.Device: deviceT,
BaseTy.Scalar: scalarT,
BaseTy.MemoryFormat: memoryFormatT,
BaseTy.QScheme: qschemeT,
BaseTy.Storage: storageT,
BaseTy.Stream: streamT,
BaseTy.SymInt: SymIntT,
}
# CTypes encode C++ type structure as needed for translation.
@dataclass(frozen=True)
class BaseCType:
type: BaseCppType
def cpp_type(self, *, strip_ref: bool = False) -> str:
return str(self.type)
# For BC reasons, we don't want to introduce at:: namespaces to RegistrationDeclarations.yaml
# TODO: Kill this when we eventually remove it!
def cpp_type_registration_declarations(self) -> str:
return str(self.type).replace("at::", "")
def remove_const_ref(self) -> "CType":
return self
@dataclass(frozen=True)
class ConstRefCType:
elem: "CType"
def cpp_type(self, *, strip_ref: bool = False) -> str:
if strip_ref:
return self.elem.cpp_type(strip_ref=strip_ref)
return f"const {self.elem.cpp_type()} &"
def cpp_type_registration_declarations(self) -> str:
return f"const {self.elem.cpp_type_registration_declarations()} &"
def remove_const_ref(self) -> "CType":
return self.elem.remove_const_ref()
@dataclass(frozen=True)
class MutRefCType:
elem: "CType"
def cpp_type(self, *, strip_ref: bool = False) -> str:
if strip_ref:
return self.elem.cpp_type(strip_ref=strip_ref)
return f"{self.elem.cpp_type()} &"
def cpp_type_registration_declarations(self) -> str:
return f"{self.elem.cpp_type_registration_declarations()} &"
def remove_const_ref(self) -> "CType":
return self.elem.remove_const_ref()
@dataclass(frozen=True)
class OptionalCType:
elem: "CType"
def cpp_type(self, *, strip_ref: bool = False) -> str:
# Do not pass `strip_ref` recursively.
return f"c10::optional<{self.elem.cpp_type()}>"
def cpp_type_registration_declarations(self) -> str:
return f"c10::optional<{self.elem.cpp_type_registration_declarations()}>"
def remove_const_ref(self) -> "CType":
return OptionalCType(self.elem.remove_const_ref())
@dataclass(frozen=True)
class ListCType:
elem: "CType"
def cpp_type(self, *, strip_ref: bool = False) -> str:
# Do not pass `strip_ref` recursively.
return f"c10::List<{self.elem.cpp_type()}>"
def cpp_type_registration_declarations(self) -> str:
return f"c10::List<{self.elem.cpp_type_registration_declarations()}>"
def remove_const_ref(self) -> "CType":
return ListCType(self.elem.remove_const_ref())
@dataclass(frozen=True)
class ArrayRefCType:
elem: "CType"
def cpp_type(self, *, strip_ref: bool = False) -> str:
# Do not pass `strip_ref` recursively.
return f"at::ArrayRef<{self.elem.cpp_type()}>"
def cpp_type_registration_declarations(self) -> str:
return f"ArrayRef<{self.elem.cpp_type_registration_declarations()}>"
def remove_const_ref(self) -> "CType":
return ArrayRefCType(self.elem.remove_const_ref())
@dataclass(frozen=True)
class VectorCType:
elem: "CType"
def cpp_type(self, *, strip_ref: bool = False) -> str:
# Do not pass `strip_ref` recursively.
return f"::std::vector<{self.elem.cpp_type()}>"
def cpp_type_registration_declarations(self) -> str:
return f"::std::vector<{self.elem.cpp_type_registration_declarations()}>"
def remove_const_ref(self) -> "CType":
return VectorCType(self.elem.remove_const_ref())
@dataclass(frozen=True)
class ArrayCType:
elem: "CType"
size: int
def cpp_type(self, *, strip_ref: bool = False) -> str:
# Do not pass `strip_ref` recursively.
return f"::std::array<{self.elem.cpp_type()},{self.size}>"
def cpp_type_registration_declarations(self) -> str:
return f"::std::array<{self.elem.cpp_type_registration_declarations()},{self.size}>"
def remove_const_ref(self) -> "CType":
return ArrayCType(self.elem.remove_const_ref(), self.size)
@dataclass(frozen=True)
class TupleCType:
elems: List["CType"]
def cpp_type(self, *, strip_ref: bool = False) -> str:
# Do not pass `strip_ref` recursively.
return f'::std::tuple<{",".join([e.cpp_type() for e in self.elems])}>'
def cpp_type_registration_declarations(self) -> str:
return f'::std::tuple<{",".join([e.cpp_type_registration_declarations() for e in self.elems])}>'
def remove_const_ref(self) -> "CType":
return TupleCType([e.remove_const_ref() for e in self.elems])
@dataclass(frozen=True)
class VectorizedCType:
# This template is explicitly specialized, so the only valid
# elems are those we have specializations for (e.g., float, double, ...)
# scalar_t is also a common argument here (when we are codegen in
# a templated context)
elem: BaseCType
def cpp_type(self, *, strip_ref: bool = False) -> str:
return f"at::vec::Vectorized<{self.elem.cpp_type()}>"
def cpp_type_registration_declarations(self) -> str:
raise NotImplementedError
def remove_const_ref(self) -> "CType":
return self
CType = Union[
BaseCType,
OptionalCType,
ConstRefCType,
MutRefCType,
ListCType,
ArrayRefCType,
ArrayCType,
VectorCType,
TupleCType,
VectorizedCType,
]
# A NamedCType is short for Named C++ semantic type. A NamedCType represents a C++ type, plus
# semantic information about what it represents. For example, consider the
# argument "bool pin_memory"; its normal C++ type is "bool", but its C++
# semantic type also keeps track that this represents a "pin_memory"; you can't
# just use a random other boolean in a context where you need a "pin_memory"!
#
@dataclass(frozen=True)
class NamedCType:
name: ArgName
type: CType
def cpp_type(self, *, strip_ref: bool = False) -> str:
return self.type.cpp_type(strip_ref=strip_ref)
# For BC reasons, we don't want to introduce at:: namespaces to RegistrationDeclarations.yaml
# TODO: Kill this when we eventually remove it!
def cpp_type_registration_declarations(self) -> str:
return self.type.cpp_type_registration_declarations()
def remove_const_ref(self) -> "NamedCType":
return NamedCType(self.name, self.type.remove_const_ref())
def with_name(self, name: str) -> "NamedCType":
return NamedCType(name, self.type)
# A binding represents any C++ binding site for a formal parameter.
# We don't distinguish between binding sites for different APIs;
# instead, all of the important distinctions are encoded in CType,
# which you can use to figure out if a given Binding is appropriate
# for use in another context. (See torchgen.api.translate)
@dataclass(frozen=True)
class Binding:
name: str
nctype: NamedCType
argument: Union[Argument, TensorOptionsArguments, SelfArgument]
# TODO: maybe don't represent default here
default: Optional[str] = None
def rename(self, name: str) -> "Binding":
return Binding(
name=name,
nctype=self.nctype,
argument=self.argument,
default=self.default,
)
@property
def type(self) -> str:
return self.nctype.cpp_type()
def no_default(self) -> "Binding":
return Binding(
name=self.name,
nctype=self.nctype,
default=None,
argument=self.argument,
)
def decl(self, *, func_ptr_cast: bool = False) -> str:
mb_default = ""
if self.default is not None:
mb_default = f"={self.default}"
# casting only needs to know the type
if func_ptr_cast:
return f"{self.type}"
else:
return f"{self.type} {self.name}{mb_default}"
# For BC reasons, we don't want to introduce at:: namespaces to RegistrationDeclarations.yaml
# TODO: Kill this when we eventually remove it!
def decl_registration_declarations(self) -> str:
type_s = self.nctype.cpp_type_registration_declarations()
mb_default = ""
if self.default is not None:
mb_default = f"={self.default}"
return f"{type_s} {self.name}{mb_default}"
def defn(self) -> str:
return f"{self.type} {self.name}"
def with_name(self, name: str) -> "Binding":
return Binding(
name=name, nctype=self.nctype, argument=self.argument, default=self.default
)
# An Expr is a C++ expression. It has a C++ string representing its syntax,
# as well as a CType saying what it provides.
@dataclass(frozen=True)
class Expr:
expr: str
type: NamedCType
# A CppSignature represents a single overload in the C++ API. For
# any given function schema, there may be multiple CppSignatures
# corresponding to it, based on how we desugar to C++. See also
# CppSignatureGroup.
@dataclass(frozen=True)
class CppSignature:
# The schema this signature is derived from
func: FunctionSchema
# Is this a C++ signature for a method, i.e. Tensor::my_op(...)?
method: bool
# Is this a faithful C++ signature (i.e. following the JIT schema) or a convenience API
# (i.e. with a potential TensorOptions argument and out arguments in the front)
faithful: bool
# Is this a symint C++ signature. For BC reasons, functions that take
# SymInts still present as int64_t in C++, and the SymInt variant is
# offered at a different overload name
symint: bool
# The set of C++ arguments which should not have defaults applied to them
cpp_no_default_args: Set[str]
# Is this a fallback C++ binding? Fallback bindings are enabled by
# manual_cpp_binding: True and are alternate, non-public API that
# lets manual C++ binding implementors access the binding that would
# have been automatically generated
fallback_binding: bool = False
# Return the unpacked argument structure of this signature,
# discarding information about which arguments are semantically
# related to each other.
def arguments(self) -> Sequence[Binding]:
return cpp.arguments(
self.func.arguments,
faithful=self.faithful,
symint=self.symint,
method=self.method,
cpp_no_default_args=self.cpp_no_default_args,
)
def name(self) -> str:
n = cpp.name(
self.func,
faithful_name_for_out_overloads=self.faithful,
symint_overload=self.symint,
)
if self.fallback_binding:
n = f"__dispatch_{n}"
return n
# Render the C++ declaration for this signature
def decl(
self,
*,
name: Optional[str] = None,
prefix: str = "",
is_redispatching_fn: bool = False,
) -> str:
returns_type = cpp.returns_type(
self.func.returns, symint=self.symint
).cpp_type()
cpp_args = [a.decl() for a in self.arguments()]
if is_redispatching_fn:
cpp_args = ["c10::DispatchKeySet dispatchKeySet"] + cpp_args
cpp_args_str = ", ".join(cpp_args)
if name is None:
name = prefix + self.name()
return f"{returns_type} {name}({cpp_args_str})"
# Render the C++ definition for this signature, not including
# the body (with curly braces)
def defn(
self,
*,
name: Optional[str] = None,
prefix: str = "",
is_redispatching_fn: bool = False,
) -> str:
returns_type = cpp.returns_type(
self.func.returns, symint=self.symint
).cpp_type()
cpp_args = [a.defn() for a in self.arguments()]
if is_redispatching_fn:
cpp_args = ["c10::DispatchKeySet dispatchKeySet"] + cpp_args
cpp_args_str = ", ".join(cpp_args)
if name is None:
name = prefix + self.name()
return f"{returns_type} {name}({cpp_args_str})"
def ptr_type(self) -> str:
args_types_str = ", ".join(a.type for a in self.arguments())
return f"{cpp.returns_type(self.func.returns, symint=self.symint).cpp_type()} (*)({args_types_str})"
# Return the C++ function type, e.g., something like int(bool)
def type(self) -> str:
args_types_str = ", ".join(a.type for a in self.arguments())
return f"{cpp.returns_type(self.func.returns, symint=self.symint).cpp_type()} ({args_types_str})"
# Represents group of all CppSignatures associated with a
# FunctionSchema. Right now, that's the regular, user-visible
# signature, as well as a "faithful" signature which doesn't
# have grouping.
@dataclass(frozen=True)
class CppSignatureGroup:
func: FunctionSchema
signature: CppSignature
faithful_signature: Optional[CppSignature]
symint_signature: Optional[CppSignature]
symint_faithful_signature: Optional[CppSignature]
def most_faithful_signature(self) -> CppSignature:
if self.faithful_signature:
return self.faithful_signature
else:
return self.signature
def signatures(self, *, symint: bool = True) -> Iterator[CppSignature]:
yield self.signature
if self.faithful_signature:
yield self.faithful_signature
if symint:
if self.symint_signature:
yield self.symint_signature
if self.symint_faithful_signature:
yield self.symint_faithful_signature
@staticmethod
def from_native_function(
f: NativeFunction, *, method: bool, fallback_binding: bool = False
) -> "CppSignatureGroup":
func = f.func
def make_sig(*, faithful: bool, symint: bool) -> CppSignature:
return CppSignature(
func=func,
faithful=faithful,
symint=symint,
method=method,
fallback_binding=fallback_binding,
cpp_no_default_args=f.cpp_no_default_args,
)
def make_sigs(*, symint: bool) -> Tuple[CppSignature, Optional[CppSignature]]:
faithful_signature: Optional[CppSignature] = None
if func.arguments.tensor_options is not None or len(func.arguments.out) > 0:
faithful_signature = make_sig(faithful=True, symint=symint)
signature = make_sig(faithful=False, symint=symint)
return signature, faithful_signature
signature, faithful_signature = make_sigs(symint=False)
symint_signature: Optional[CppSignature] = None
symint_faithful_signature: Optional[CppSignature] = None
if func.has_symint():
symint_signature, symint_faithful_signature = make_sigs(symint=True)
return CppSignatureGroup(
func=func,
signature=signature,
faithful_signature=faithful_signature,
symint_signature=symint_signature,
symint_faithful_signature=symint_faithful_signature,
)
@dataclass(frozen=True)
class DispatcherSignature:
# The schema this signature is derived from
func: FunctionSchema
# Allows you to prepend an arbitrary prefix to the signature name.
# This is useful for parts of the codegen that generate wrappers around kernels,
# and need to avoid naming collisions.
prefix: str = ""
symint: bool = True
def arguments(self) -> List[Binding]:
return dispatcher.arguments(self.func, symint=self.symint)
def name(self) -> str:
return self.prefix + dispatcher.name(self.func)
def decl(self, name: Optional[str] = None) -> str:
args_str = ", ".join(a.decl() for a in self.arguments())
if name is None:
name = self.name()
return f"{self.returns_type().cpp_type()} {name}({args_str})"
def defn(
self, name: Optional[str] = None, *, is_redispatching_fn: bool = False
) -> str:
args = [a.defn() for a in self.arguments()]
if is_redispatching_fn:
args = ["c10::DispatchKeySet dispatchKeySet"] + args
args_str = ", ".join(args)
if name is None:
name = self.name()
return f"{self.returns_type().cpp_type()} {name}({args_str})"
def exprs(self) -> List[Expr]:
return [Expr(a.name, a.nctype) for a in self.arguments()]
def returns_type(self) -> CType:
return dispatcher.returns_type(self.func.returns, symint=self.symint)
def ptr_type(self) -> str:
dispatcher_args_types_str = ", ".join(a.type for a in self.arguments())
return f"{self.returns_type().cpp_type()} (*)({dispatcher_args_types_str})"
# Return the C++ function type, e.g., something like int(bool)
def type(self) -> str:
dispatcher_args_types_str = ", ".join(a.type for a in self.arguments())
return f"{self.returns_type().cpp_type()} ({dispatcher_args_types_str})"
@staticmethod
def from_schema(
func: FunctionSchema, *, prefix: str = "", symint: bool = True
) -> "DispatcherSignature":
return DispatcherSignature(func, prefix, symint)
@dataclass(frozen=True)
class NativeSignature:
# The schema this signature is derived from
func: FunctionSchema
symint: bool
prefix: str = ""
def name(self) -> str:
return self.prefix + native.name(self.func)
def decl(self, name: Optional[str] = None) -> str:
args_str = ", ".join(a.decl() for a in self.arguments())
if name is None:
name = self.name()
return f"{native.returns_type(self.func.returns, symint=self.symint).cpp_type()} {name}({args_str})"
def defn(self, name: Optional[str] = None) -> str:
args_str = ", ".join(a.defn() for a in self.arguments())
if name is None:
name = self.name()
return f"{native.returns_type(self.func.returns, symint=self.symint).cpp_type()} {name}({args_str})"
def ptr_type(self) -> str:
# don't include defaults in type signature!
args_str = ", ".join(a.defn() for a in self.arguments())
return f"{native.returns_type(self.func.returns, symint=self.symint).cpp_type()} (*)({args_str})"
def arguments(self) -> List[Binding]:
return native.arguments(self.func, symint=self.symint)
def returns_type(self) -> CType:
return native.returns_type(self.func.returns, symint=self.symint)
def dispatcher_exprs(self) -> List[Expr]:
return translate.translate(
self.arguments(), dispatcher.arguments(self.func), method=False
)
@dataclass(frozen=True)
class ViewInverseSignature:
g: NativeFunctionsViewGroup
def name(self) -> str:
assert self.g.view_copy is not None
return functionalization.name(self.g, is_reverse=True, include_namespace=False)
def decl(self) -> str:
assert self.g.view_copy is not None
return_type = functionalization.returns_type(self.g.view_copy.func)
decls = [
a.decl()
for a in functionalization.inner_arguments(
self.g.view_copy.func, is_reverse=True
)
]
return f"static {return_type.cpp_type()} {self.name()}({', '.join(decls)});"
@dataclass(frozen=True)
class FunctionalizationLambda:
g: NativeFunctionsViewGroup
# are we generating the forward lambda or the reverse lambda?
is_reverse: bool
def captures(self) -> List[Expr]:
# The lambda lives inside of a kernel following the dispatcher API, so its outer context is the dispatcher arguments
# We also need to read the "reapply views" TLS at the time that the functionalization kernel was executed,
# and plumb it into the lambda.
outer_ctx = dispatcher.arguments(self.g.view.func) + [
functionalization.reapply_views_binding
]
capture_bindings = functionalization.capture_arguments(
self.g.view.func, is_reverse=self.is_reverse
)
# allow_expensive_conversions is set because we want to convert
# some reference types (IntArrayRef) to value types (vector<int64_t>).
capture_exprs = translate.translate(
outer_ctx, capture_bindings, method=False, allow_expensive_conversions=True
)
return capture_exprs
def decl(self) -> str:
return_type = functionalization.returns_type(self.g.view.func)
capture_str = ", ".join(
f"{val.type.name} = {val.expr}" for val in self.captures()
)
decls = [
a.decl()
for a in functionalization.outer_arguments(is_reverse=self.is_reverse)
]
return f"[{capture_str}]({', '.join(decls)}) -> {return_type.cpp_type()}"
def inner_call(self, *, reapply_views: Optional[bool] = None) -> str:
inner_call_name = functionalization.name(
self.g,
is_reverse=self.is_reverse,
include_namespace=True,
reapply_views=reapply_views,
)
arg_ctx = functionalization.outer_arguments(is_reverse=self.is_reverse)
capture_ctx = functionalization.capture_arguments(
self.g.view.func, is_reverse=self.is_reverse
)
full_ctx = arg_ctx + capture_ctx
assert self.g.view_copy is not None
call_bindings = functionalization.inner_arguments(
self.g.view_copy.func, is_reverse=self.is_reverse
)
maybe_index = functionalization.inner_call_index(self.g.view_copy.func)
call_exprs = [
e.expr for e in translate.translate(full_ctx, call_bindings, method=False)
]
if not self.is_reverse and maybe_index is not None:
return f'{inner_call_name}({", ".join(call_exprs)})[{maybe_index.name}];'
else:
return f'{inner_call_name}({", ".join(call_exprs)});'
@staticmethod
def from_func(
g: NativeFunctionsViewGroup, *, is_reverse: bool
) -> "FunctionalizationLambda":
return FunctionalizationLambda(g, is_reverse)
@dataclass(frozen=True)
class StructuredImplSignature:
g: NativeFunctionsGroup
name: str
def defn(self, name: Optional[str] = None) -> str:
args_str = ", ".join(a.defn() for a in self.arguments())
return f"TORCH_IMPL_FUNC({self.name})({args_str})"
def arguments(self) -> List[Binding]:
return structured.impl_arguments(self.g)
# Helper functions
def kernel_signature(
f: NativeFunction, backend_index: BackendIndex, *, prefix: str = ""
) -> Union["NativeSignature", "DispatcherSignature"]:
# Note [External Backends Follow Dispatcher API]
# Kernel signatures for in-tree backends follow the "native" API,
# while kernels for out-of-tree backends follow the dispatcher API.
# See the comments in `native.py` for details, but historically there have been
# some small differences in schema convention between them and the Dispatcher API.
# Any differences that require translating between the two will results in a runtime cost,
# so we'd like to keep the differences as small as possible.
# With external backends, we'd like to enforce that they write their kernels with schemas
# that match the Dispatcher API directly, if they can.
meta = backend_index.get_kernel(f)
symint = meta is not None and meta.supports_symint()
if symint:
assert (
f.func.has_symint()
), f"attempted to define symint kernel for {backend_index.dispatch_key} without SymInt in schema"
if backend_index.external:
return DispatcherSignature.from_schema(f.func, prefix=prefix, symint=symint)
else:
return NativeSignature(f.func, prefix=prefix, symint=symint)
# Functions only, no types
from torchgen.api import (
cpp,
dispatcher,
functionalization,
native,
structured,
translate,
)
|