File: control

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (137 lines) | stat: -rw-r--r-- 5,156 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
Source: pytorch
Section: science
Homepage: https://pytorch.org/
Priority: optional
Standards-Version: 4.6.0.1
Vcs-Git: https://salsa.debian.org/deeplearning-team/pytorch.git
Vcs-Browser: https://salsa.debian.org/deeplearning-team/pytorch
Maintainer: Debian Deep Learning Team <debian-ai@lists.debian.org>
Uploaders: Mo Zhou <lumin@debian.org>
Rules-Requires-Root: no
Build-Depends: cmake,
               debhelper-compat (= 12),
               dh-exec,
               dh-python,
               googletest,
               libasio-dev,
               libavcodec-dev,
			   libblas-dev,
               libbenchmark-dev,
               libcpuinfo-dev,
               libdnnl-dev [amd64 arm64 ppc64el],
               libeigen3-dev,
               libfmt-dev,
               libfp16-dev,
               libflatbuffers-dev,
               flatbuffers-compiler-dev,
               libfxdiv-dev,
               libgflags-dev,
               libgloo-dev [amd64 arm64 ppc64el mips64el s390x],
               libgoogle-glog-dev,
               libideep-dev (>=0.0~git20220817.77d662b-1~) [amd64 arm64 ppc64el],
               liblapack-dev,
               libleveldb-dev,
               liblmdb-dev,
               libnop-dev,
               libnuma-dev,
               libonnx-dev (>= 1.7.0+dfsg-3),
               libopencv-dev,
               libprotobuf-dev,
               libprotoc-dev,
               libpsimd-dev,
               libpthreadpool-dev,
               libsleef-dev,
               libsnappy-dev,
               libtensorpipe-dev,
               libxnnpack-dev [amd64 arm64],
               libzmq3-dev,
               libzstd-dev,
               ninja-build,
               ocl-icd-opencl-dev,
               protobuf-compiler,
               pybind11-dev,
               python3,
               python3,
               python3-dev,
               python3-cffi,
               python3-distutils,
               python3-numpy,
               python3-onnx,
               python3-pybind11,
               python3-setuptools,
               python3-yaml

Package: python3-torch
Section: python
Architecture: amd64 arm64 mips64el ppc64el s390x kfreebsd-amd64 riscv64
Depends: libtorch1.13 (= ${binary:Version}),
         ${misc:Depends},
         ${python3:Depends},
         ${shlibs:Depends},
         libtorch-test (= ${binary:Version}),
# PyTorch's JIT (C++ Extension) functionality needs development files/tools.
Recommends: libtorch-dev (= ${binary:Version}), build-essential, ninja-build,
 pybind11-dev,
Suggests: python3-hypothesis, python3-pytest
Provides: ${python3:Provides}
Description: Tensors and Dynamic neural networks in Python (Python Interface)
 PyTorch is a Python package that provides two high-level features:
 .
 (1) Tensor computation (like NumPy) with strong GPU acceleration
 (2) Deep neural networks built on a tape-based autograd system
 .
 You can reuse your favorite Python packages such as NumPy, SciPy and Cython
 to extend PyTorch when needed.
 .
 This is the CPU-only version of PyTorch and Caffe2 (Python interface).

Package: libtorch-dev
Section: libdevel
Architecture: amd64 arm64 mips64el ppc64el s390x kfreebsd-amd64 riscv64
Depends: libgflags-dev,
         libgoogle-glog-dev,
         libtorch1.13 (= ${binary:Version}),
         python3-dev,
         libprotobuf-dev,
         ${misc:Depends}
Description: Tensors and Dynamic neural networks in Python (Development Files)
 PyTorch is a Python package that provides two high-level features:
 .
 (1) Tensor computation (like NumPy) with strong GPU acceleration
 (2) Deep neural networks built on a tape-based autograd system
 .
 You can reuse your favorite Python packages such as NumPy, SciPy and Cython
 to extend PyTorch when needed.
 .
 This is the CPU-only version of PyTorch and Caffe2 (Development files).

Package: libtorch1.13
Section: libs
Architecture: amd64 arm64 mips64el ppc64el s390x kfreebsd-amd64 riscv64
Multi-Arch: same
Depends: ${misc:Depends}, ${shlibs:Depends},
Recommends: libopenblas0 | libblis3 | libatlas3-base | libmkl-rt | libblas3,
Description: Tensors and Dynamic neural networks in Python (Shared Objects)
 PyTorch is a Python package that provides two high-level features:
 .
 (1) Tensor computation (like NumPy) with strong GPU acceleration
 (2) Deep neural networks built on a tape-based autograd system
 .
 You can reuse your favorite Python packages such as NumPy, SciPy and Cython
 to extend PyTorch when needed.
 .
 This is the CPU-only version of PyTorch and Caffe2 (Shared Objects).

Package: libtorch-test
Architecture: amd64 arm64 mips64el ppc64el s390x kfreebsd-amd64 riscv64
Depends: libtorch1.13 (= ${binary:Version}), ${misc:Depends}, ${shlibs:Depends},
Description: Tensors and Dynamic neural networks in Python (Test Binaries)
 PyTorch is a Python package that provides two high-level features:
 .
 (1) Tensor computation (like NumPy) with strong GPU acceleration
 (2) Deep neural networks built on a tape-based autograd system
 .
 You can reuse your favorite Python packages such as NumPy, SciPy and Cython
 to extend PyTorch when needed.
 .
 This is the CPU-only version of PyTorch and Caffe2 (Test Binaries).