1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
#pragma once
#include <vector>
#include <iostream>
#include <string>
#include <c10/macros/Macros.h>
#include <c10/util/ArrayRef.h>
#include <c10/util/Exception.h>
namespace c10 {
// Semantically, a dispatch key identifies a possible "level" in our
// dispatch, for which a handler may be registered. Traditional
// backends like CPU and CUDA get dispatch keys; however, so do
// "wrapping" layers like Variable (for autograd handling).
//
// In implementation terms, the dispatch key identifies a specific "bit" in a
// DispatchKeySet. Higher bit indexes get handled by dispatching first (because
// we "count leading zeros" when we extract the highest priority dispatch
// key.)
enum class DispatchKey : uint8_t {
// ~~~~~~~~~~~~~~~~~~~~~~~~~~ UNDEFINED ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
// This is not a "real" tensor id, but it exists to give us a "nullopt"
// element we can return for cases when a DispatchKeySet contains no elements.
// You can think a more semantically accurate definition of DispatchKey is:
//
// using DispatchKey = optional<RealDispatchKey>
//
// and Undefined == nullopt. We didn't actually represent
// it this way because optional<RealDispatchKey> would take two
// words, when DispatchKey fits in eight bits.
Undefined = 0,
// Define an alias for Undefined to represent CatchAll (long term
// this will get eliminated, but for now it's convenient)
CatchAll = Undefined,
// ~~~~~~~~~~~~~~~~~~~~~~~~~~ BACKENDS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
// A "backend" is colloquially used to refer to handlers for dispatch
// which actually implement the numerics of an operation in question.
//
// Due to the nature of the enum, these backends are specified in
// an ordered way, but for most backends this order is not semantically
// meaningful (e.g., it's valid to reorder these backends without changing
// semantics). The only situation when backend ordering is meaningful
// is when the backend participates in multiple dispatch with another
// backend; e.g., CPU and SparseCPU (sparse must have
// higher priority).
// Here are backends which you think of as traditionally specifying
// how to implement operations on some device.
CPU, // registered at build/aten/src/ATen/CPUType.cpp
CUDA, // registered at build/aten/src/ATen/CUDAType.cpp
HIP, // NB: I think this is not actually used, due to Note [Masquerading as
// CUDA]
FPGA, // Xilinx support lives out of tree at https://gitlab.com/pytorch-complex/vitis_kernels
MSNPU, // unused externally, but tested at
// test/cpp_extensions/msnpu_extension.cpp
XLA, // lives out of tree at https://github.com/pytorch/xla
Vulkan,
// These are Caffe2 device types which we grandfathered into
// DispatchKey.
// TODO: Caffe2-only DispatchKeys actually should be removed from this enum
// and just simply be undispatchable.
MKLDNN, // (MKLDNN is treated as another "device" in Caffe2)
OpenGL,
OpenCL,
IDEEP,
// Here are backends which specify more specialized operators
// based on the dtype of the tensor.
QuantizedCPU, // registered at build/aten/src/ATen/QuantizedCPUType.cpp
QuantizedCUDA, // registered at build/aten/src/ATen/QuantizedCUDAType.cpp
ComplexCPU, // lives out of tree at
// https://gitlab.com/pytorch-complex/pytorch-cpu-strided-complex
ComplexCUDA, // and
// https://gitlab.com/pytorch-complex/pytorch-cuda-strided-complex
// tested at test/cpp_extensions/complex_registration_extension.cpp
// TODO: Remove Complex dispatch keys when Complex is moved in tree
// This backend is to support custom RNGs; it lets you go
// to a different kernel if you pass in a generator that is not a
// traditional CPUGeneratorImpl/CUDAGeneratorImpl. To make use of this
// key:
// 1) set it as a second parameter of at::Generator constructor call in
// the user-defined PRNG class.
// 2) use it as a dispatch key while registering custom kernels
// (templatized kernels specialized for user-defined PRNG class)
// intended for out of tree use; tested by aten/src/ATen/test/rng_test.cpp
CustomRNGKeyId,
// Here are backends which specify more specialized operators
// based on the layout of the tensor. Note that the sparse backends
// are one case where ordering matters: sparse multi-dispatches with
// the corresponding dense tensors, and must be handled before them.
MkldnnCPU, // registered at build/aten/src/ATen/MkldnnCPUType.cpp
// NB: not to be confused with MKLDNN, which is Caffe2 only
SparseCPU, // registered at build/aten/src/ATen/SparseCPUType.cpp
SparseCUDA, // registered at build/aten/src/ATen/SparseCUDAType.cpp
SparseHIP, // TODO: I think this is not actually used, due to Note
// [Masquerading as CUDA]
// Here are reserved backends for user-defined backends, see Note [Private use
// DispatchKey]
// To see some example about how to use this, check out MSNPU
PrivateUse1,
PrivateUse2,
PrivateUse3,
// Define an alias key to represent end of backend dispatch keys.
// If you add new backend keys after PrivateUse3, please also update it here.
EndOfBackendKeys = PrivateUse3,
// The meta function characterizes how an operation affects the metadata of a
// tensor (shape, dtype) without doing any of the actual computation. A
// meta tensor can be used to dry run operators without actually doing
// any computation, e.g., add on two meta tensors would give you another
// meta tensor with the output shape and dtype, but wouldn't actually
// add anything. A meta implementation typically would look something like:
//
// Tensor meta::add(const Tensor& self, const Tensor& other) {
// TORCH_CHECK(self.size().equals(other.size()));
// return at::empty_like(self, self.size());
// }
//
// The meta function would get invoked if you ran an operator passing
// in meta tensors. The call stack in such a case would look something like
// this:
//
// at::add(x: Meta, y: Meta) {
// return [dispatch] meta::add(x: Meta, y: Meta) {
// output_shape = ...
// [dispatch] meta::empty(output_shape) {
// return ... meta tensor with output_shape but no data allocated ...
// }
// }
// }
//
// Meta functions have an important secondary function, which is they can
// be used as tensor "allocators". A typical backend implementation should
// be implemented in this way:
//
// Tensor cpu::add(const Tensor& self, const Tensor& other) {
// Tensor result = meta::add(self, other);
// // ... do the actual computation into result ...
// return result;
// }
//
// In this case, the internal at::empty_like invocation would dispatch to the
// CPU factory function, not the meta factory function. The call stack in
// this case looks like:
//
// at::add(x: CPU, y: CPU) {
// return [dispatch] cpu::add(x: CPU, y: CPU) {
// output = [direct] meta::add(x: CPU, y: CPU) {
// output_shape = ...
// [dispatch] cpu::empty(output_shape)
// }
// ... compute on output ...
// return output;
// }
// }
//
Meta,
// In some situations, it is not immediately obvious what the correct
// backend for function is, because the function in question doesn't
// have any "tensor" arguments. In this case, a BackendSelect function
// can be registered to implement the custom determination of the
// correct backend.
BackendSelect,
// The named dispatch key is set for any tensors with named dimensions.
// Although we have a dispatch key for named tensors, for historical reasons,
// this dispatch key doesn't do any of the substantive functionality for named
// tensor (though, hypothetically, it could!) At the moment, it's just
// responsible for letting us give good error messages when operations
// don't support named tensors.
//
// NB: If you ever consider moving named tensor functionality into
// this dispatch key, note that it might be necessary add another dispatch
// key that triggers before composite operators, in case a composite operator
// has named dimension propagation that doesn't match that of its
// constituent parts.
Named,
// Note [Alias Dispatch Key : Autograd]
// All backends are oblivious to autograd; autograd is handled as a
// layer which happens on top of all backends. It inspects the autograd
// metadata of all inputs, determines what autograd metadata should be
// constructed by the output, and otherwise defers to the backend to
// actually do the numeric computation. Autograd contains
// the bulk of this logic.
// Autograd is now an alias dispatch key which by default maps to all
// backend-specific autograd keys.
// Backend-specific allow backends to override the default kernel registered
// to Autograd key as needed.
// For example, XLA wants to define autograd for einsum directly.
// Registering a custom autograd implementation at the XLA key won't work
// because we process Autograd before XLA. This key has higher priority and
// gets processed first. You generally should NOT redispatch after handling
// autograd here (since that would result in execution of the Autograd
// operator, which you're trying to skip). In AutogradXLA implementations,
// you are responsible for handling autograd yourself, or deferring to other
// operators which support autograd.
// Currently we only have backend-specific autograd keys for CPU/CUDA/XLA and
// reserved user-defined backends. All other in-tree backends share the
// AutogradOther key. We can add specific autograd key for those backends
// upon request.
AutogradOther,
AutogradCPU,
AutogradCUDA,
AutogradXLA,
// Here are some reserved pre-autograd keys for user-defined backends, see
// Note [Private use DispatchKey]
AutogradPrivateUse1,
AutogradPrivateUse2,
AutogradPrivateUse3,
Tracer,
// Autocasting precedes VariableTypeId, to ensure casts are autograd-exposed
// and inputs are saved for backward in the post-autocast type.
Autocast,
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~ WRAPPERS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
// There are a number of alternative modes which may want to handle before
// autograd; for example, error checking, tracing, profiling or vmap. They
// go here.
// This is the dispatch key for BatchedTensorImpl, which is used to implement
// batching rules for vmap.
Batched,
// When we are inside a vmap, all tensors dispatch on this key.
// See Note: [DispatchKey::VmapMode usage] for more details.
VmapMode,
// TESTING: This is intended to be a generic testing tensor type id.
// Don't use it for anything real; its only acceptable use is within a single
// process test. Use it by creating a TensorImpl with this DispatchKey, and
// then registering operators to operate on this type id. See
// aten/src/ATen/core/dispatch/backend_fallback_test.cpp for a usage example.
TESTING_ONLY_GenericWrapper,
// TESTING: This is intended to be a generic testing tensor type id.
// Don't use it for anything real; its only acceptable use is within a ingle
// process test. Use it by toggling the mode on and off via
// TESTING_ONLY_tls_generic_mode_set_enabled and then registering operators
// to operate on this type id. See
// aten/src/ATen/core/dispatch/backend_fallback_test.cpp
// for a usage example
TESTING_ONLY_GenericMode,
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FIN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
NumDispatchKeys, // Sentinel, end of runtime keys.
// ~~~~~~~~~~~~~~~~~~~~~~ Alias Dispatch Keys ~~~~~~~~~~~~~~~~~~~~~~~~~~ //
// Alias dispatch keys are synthetic dispatch keys which map to multiple
// runtime dispatch keys. Alisa keys have precedence, but they are always
// lower precedence than runtime keys. You can register a kernel to an
// alias key, the kernel might be populated to the mapped runtime keys
// during dispatch table computation.
// If a runtime dispatch key has multiple kernels from alias keys, which
// kernel wins is done based on the precedence of alias keys (but runtime
// keys always have precedence over alias keys).
// Alias keys won't be directly called during runtime.
// See Note [Alias Dispatch Key : Autograd]
Autograd,
Math,
// Define an alias key to represent end of alias dispatch keys.
// If you add new alias keys after Autograd, please also update it here.
EndOfAliasKeys = Math, //
// ~~~~~~~~~~~~~~~~~~~~~~~~~ BC ALIASES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
// The aliases exist for backwards compatibility reasons, they shouldn't
// be used
CPUTensorId = CPU,
CUDATensorId = CUDA,
PrivateUse1_PreAutograd = AutogradPrivateUse1,
PrivateUse2_PreAutograd = AutogradPrivateUse2,
PrivateUse3_PreAutograd = AutogradPrivateUse3,
};
// Note [Private use DispatchKey]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Private use tensor IDs are preallocated tensor type IDs for use in user
// applications. Similar to private use fields in HTTP, they can be used
// by end users for experimental or private applications, without needing
// to "standardize" the tensor ID (which would be done by submitting a PR
// to PyTorch to add your type ID).
//
// Private use tensor IDs are appropriate to use if you want to experiment
// with adding a new tensor type (without having to patch PyTorch first) or
// have a private, non-distributed application that needs to make use of a
// new tensor type. Private use tensor IDs are NOT appropriate to use for
// libraries intended to be distributed to further users: please contact
// the PyTorch developers to get a type ID registered in this case.
//
// We provide two classes of private user tensor id: regular DispatchKeys
// and Autograd DispatchKeys. DispatchKeys serve the role of ordinary "backend"
// DispatchKeys; if you were adding support for a new type of accelerator, you
// would use a backend DispatchKey, and ideally automatically reuse AutogradOther
// definitions already defined in PyTorch. AutogradPrivateUse DispatchKeys serve
// as "wrapper" DispatchKeys: they are only necessary for tensors that compose
// multiple internal tensors, and for cases when the built-in autograd formulas
// for operators are not appropriate.
static_assert(
static_cast<uint8_t>(DispatchKey::NumDispatchKeys) < 64,
"DispatchKey is used as index into 64-bit bitmask; you must have less than 64 entries");
C10_API const char* toString(DispatchKey);
C10_API std::ostream& operator<<(std::ostream&, DispatchKey);
C10_API DispatchKey getAutogradKeyFromBackend(DispatchKey t);
// These are some convenience identifiers for dispatch keys which are
// shorter to type than their long counterparts. Note that some of these
// dispatch keys directly correspond to DeviceType; and most APIs that
// accept DispatchKey also accept DeviceType; e.g.,
// torch::dispatch(torch::kCPU, ...) is also valid.
constexpr DispatchKey kAutograd = DispatchKey::Autograd;
// Check if a DispatchKey is an alias mapping to other runtime keys.
inline bool isAliasDispatchKey(DispatchKey k) {
return k > DispatchKey::NumDispatchKeys && k <= DispatchKey::EndOfAliasKeys;
}
} // namespace c10
namespace torch {
// Expose the constant, but not the TYPE (DispatchKey is an implementation
// detail!)
using c10::kAutograd;
}
// NB: You really shouldn't use this instance; this enum is guaranteed
// to be pretty small so a regular array should be acceptable.
namespace std {
template <>
struct hash<c10::DispatchKey> {
typedef size_t result_type;
typedef c10::DispatchKey argument_type;
size_t operator()(c10::DispatchKey x) const {
return static_cast<size_t>(x);
}
};
}
|