1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
#include <c10/core/TensorImpl.h>
#include <c10/core/Backend.h>
#include <c10/core/WrapDimMinimal.h>
#include <c10/core/impl/LocalDispatchKeySet.h>
#include <c10/util/Optional.h>
C10_DEFINE_bool(
caffe2_keep_on_shrink,
true,
"If set, keeps memory when a tensor is shrinking its size.");
C10_DEFINE_int64(
caffe2_max_keep_on_shrink_memory,
LLONG_MAX,
"The maximum memory in bytes to keep on shrink, if the difference between "
"tensor sizes is bigger than this then tensor will be reset.");
namespace c10 {
const char * const TensorImpl::err_msg_tensor_metadata_change_not_allowed =
"is not allowed on a Tensor created from .data or .detach().\n"
"If your intent is to change the metadata of a Tensor (such as sizes / strides / storage / storage_offset)\n"
"without autograd tracking the change, remove the .data / .detach() call and wrap the change in a `with torch.no_grad():` block.\n"
"For example, change:\n"
" x.data.set_(y)\n"
"to:\n"
" with torch.no_grad():\n"
" x.set_(y)";
at::Tensor& TensorImpl::mutable_grad() {
if (!autograd_meta_) autograd_meta_ = impl::GetAutogradMetaFactory()->make();
return autograd_meta_->mutable_grad();
}
const at::Tensor& TensorImpl::grad() const {
// Yes, I know this looks really weird. But I don't really have a choice as
// long as this function returns a const reference to Tensor. I'm not
// really sure how I would have designed this API differently, but it
// is not so easy to fix right now because the mutable counterpart of
// this function must keep working so that "x.grad() = ..." keeps working
// (part of public API).
if (!autograd_meta_) return impl::GetAutogradMetaFactory()->undefined_tensor();
return autograd_meta_->grad();
}
TensorImpl::TensorImpl(
Storage&& storage,
DispatchKeySet key_set,
const caffe2::TypeMeta& data_type)
: TensorImpl(std::move(storage), key_set, data_type, storage.device()) {}
TensorImpl::TensorImpl(DispatchKeySet key_set, const caffe2::TypeMeta& data_type, c10::optional<c10::Device> device_opt)
: TensorImpl({}, key_set, data_type, std::move(device_opt)) {}
TensorImpl::TensorImpl(Storage&& storage, DispatchKeySet key_set, const caffe2::TypeMeta& data_type,
c10::optional<c10::Device> device_opt)
: storage_(std::move(storage)),
sizes_{0},
storage_offset_(0),
numel_(0),
data_type_(data_type),
device_opt_(device_opt) {
if (!key_set.empty()) {
AT_ASSERT(data_type.id() == caffe2::TypeIdentifier::uninitialized() ||
device_opt_.has_value());
// UndefinedTensorImpl is a singleton, so we skip logging it
C10_LOG_API_USAGE_ONCE("tensor.create");
}
// After we removed Autograd keys from globally enabled set, every Tensor must be created with
// a backend DispatchKey and an AutogradBackend key.
// We automatically add the corresponding autograd key to key_set_ so that backends can stay
// in the old way of only registering with backend key like DispatchKey::CPU.
// TODO: Ideally this logic fits best in Variable/Autograd layer so that we only
// add AutogradBackend key when the tensor requires grad.
DispatchKey k = key_set.highestPriorityBackendTypeId();
key_set_ = key_set.add(getAutogradKeyFromBackend(k));
// we would also like to check that non-cpu devices have an index, but some Caffe2 operators create
// Storages with default devices.
strides_.push_back(1);
}
IntArrayRef TensorImpl::sizes() const {
return sizes_;
}
IntArrayRef TensorImpl::strides() const {
return strides_;
}
bool TensorImpl::compute_contiguous() const {
bool is_contiguous = true;
if (is_empty())
return is_contiguous;
int64_t z = 1;
for (int64_t d = dim() - 1; d >= 0; d--) {
if (sizes_[d] != 1) {
if (strides_[d] == z) {
z *= sizes_[d];
} else {
is_contiguous = false;
break;
}
}
}
return is_contiguous;
}
bool TensorImpl::compute_channels_last_contiguous_2d() const {
// Please don't combine these code, constant array is used here to let
// compiler fully unroll the loop to get better performance
switch (sizes_.size()) {
case 4:
{
int64_t expected = 1;
for (auto& d : {1, 3, 2, 0}) {
if (sizes_[d] != 1) {
if (strides_[d] != expected) {
return false;
}
expected *= sizes_[d];
}
}
return true;
}
case 3:
// TODO dim == 3 case will be enabled once it is fully tested
return false;
default:
return false;
}
}
bool TensorImpl::compute_channels_last_contiguous_3d() const {
// Please don't combine these code, constant array is used here to let
// compiler fully unroll the loop to get better performance
switch (sizes_.size()) {
case 5:
{
int64_t expected = 1;
for (auto& d : {1, 4, 3, 2, 0}) {
if (sizes_[d] != 1) {
if (strides_[d] != expected) {
return false;
}
expected *= sizes_[d];
}
}
return true;
}
case 4:
// TODO dim == 4 case will be enabled once it is fully tested
return false;
default:
return false;
}
}
bool TensorImpl::compute_strides_like_channels_last_2d() const {
return is_channels_last_strides_2d(sizes_, strides_);
}
bool TensorImpl::compute_strides_like_channels_last_3d() const {
return is_channels_last_strides_3d(sizes_, strides_);
}
bool TensorImpl::compute_non_overlapping_and_dense() const {
if (dim() == 1) {
return sizes_[0] < 2 || strides_[0] == 1;
}
SmallVector<int64_t,5> perm;
perm.resize(dim());
for (int64_t i = 0; i < dim(); i ++) {
perm[i] = i;
}
// Sort by strides, leaving 0 and 1 sized dims at the end of the array
std::sort(perm.begin(), perm.end(), [&](int64_t a, int64_t b) {
if (sizes_[a] < 2) {
return false;
} else if (sizes_[b] < 2) {
return true;
}
return strides_[a] < strides_[b];
});
auto require_stride = 1;
for (int64_t i = 0; i < dim(); i ++) {
if (sizes_[perm[i]] < 2) {
return true;
}
if (strides_[perm[i]] != require_stride) {
return false;
}
require_stride *= sizes_[perm[i]];
}
return true;
}
void TensorImpl::release_resources() {
autograd_meta_.reset();
if (storage_) {
storage_ = {};
}
}
int64_t TensorImpl::dim() const {
return sizes_.size();
}
int64_t TensorImpl::size(int64_t d) const {
d = at::maybe_wrap_dim(d, dim(), false);
return sizes_[d];
}
int64_t TensorImpl::stride(int64_t d) const {
d = at::maybe_wrap_dim(d, dim(), false);
return strides_[d];
}
bool TensorImpl::has_storage() const {
return storage_;
}
bool TensorImpl::is_contiguous(at::MemoryFormat memory_format) const {
#ifdef DEBUG
AT_ASSERT(compute_contiguous() == is_contiguous_);
#endif
if (memory_format == at::MemoryFormat::ChannelsLast) {
return is_channels_last_contiguous_;
}
else if (memory_format == at::MemoryFormat::ChannelsLast3d) {
return is_channels_last_3d_contiguous_;
}
return is_contiguous_;
}
const Storage& TensorImpl::storage() const {
return storage_;
}
static void deletePlacementDeleteContext(void* ptr) {
delete static_cast<PlacementDeleteContext*>(ptr);
}
at::DataPtr PlacementDeleteContext::makeDataPtr(
at::DataPtr&& data_ptr,
PlacementDtor placement_dtor,
size_t size,
at::Device device) {
auto* ptr = data_ptr.get();
return {ptr,
new PlacementDeleteContext(std::move(data_ptr), placement_dtor, size),
&deletePlacementDeleteContext,
device};
}
AutogradMetaInterface::~AutogradMetaInterface() {}
void TensorImpl::set_requires_grad(bool requires_grad) {
if (!requires_grad && !autograd_meta_) return;
if (!autograd_meta_) autograd_meta_ = impl::GetAutogradMetaFactory()->make();
// NB: In principle, setting requires_grad to false could result in
// the AutogradMeta becoming equal to a default constructed state,
// in which case we could apply the nullptr AutogradMeta optimization
// (see autograd_meta_ docs). But we don't do this right now. Note
// that it is unsound to unconditionally set AutogradMeta to false
// when you set requires_grad to False, as there may be nontrivial
// information content in the other fields; for example, we may
// have set the string name for a Variable, or there may be hooks
// registered for it.
autograd_meta_->set_requires_grad(requires_grad, this);
}
bool TensorImpl::requires_grad() const {
if (!autograd_meta_) return false;
return autograd_meta_->requires_grad();
}
void TensorImpl::set_autograd_meta(std::unique_ptr<c10::AutogradMetaInterface> autograd_meta) {
// NB: autograd_meta may be null! That just means it's the default
// constructor
autograd_meta_ = std::move(autograd_meta);
}
c10::AutogradMetaInterface* TensorImpl::autograd_meta() const {
// NB: Might return null!
return autograd_meta_.get();
}
void TensorImpl::copy_tensor_metadata(
const TensorImpl* src_impl,
TensorImpl* dest_impl,
const c10::VariableVersion& version_counter,
bool allow_tensor_metadata_change) {
dest_impl->storage_ = src_impl->storage_;
dest_impl->sizes_ = src_impl->sizes_;
dest_impl->strides_ = src_impl->strides_;
dest_impl->storage_offset_ = src_impl->storage_offset_;
dest_impl->data_type_ = src_impl->data_type_;
dest_impl->device_opt_ = src_impl->device_opt_;
dest_impl->key_set_ = src_impl->key_set_;
dest_impl->is_contiguous_ = src_impl->is_contiguous_;
dest_impl->is_channels_last_contiguous_ = src_impl->is_channels_last_contiguous_;
dest_impl->is_channels_last_3d_contiguous_ = src_impl->is_channels_last_3d_contiguous_;
dest_impl->is_channels_last_ = src_impl->is_channels_last_;
dest_impl->is_channels_last_3d_ = src_impl->is_channels_last_3d_;
dest_impl->is_non_overlapping_and_dense_ = src_impl->is_non_overlapping_and_dense_;
dest_impl->is_wrapped_number_ = src_impl->is_wrapped_number_;
dest_impl->reserved_ = src_impl->reserved_;
dest_impl->set_version_counter(version_counter);
dest_impl->set_allow_tensor_metadata_change(allow_tensor_metadata_change);
if (src_impl->named_tensor_meta_ != nullptr) {
dest_impl->named_tensor_meta_ = src_impl->named_tensor_meta_->clone();
}
}
namespace impl {
namespace {
AutogradMetaFactory* meta_factory = nullptr;
}
void SetAutogradMetaFactory(AutogradMetaFactory* factory) {
meta_factory = factory;
}
AutogradMetaFactory* GetAutogradMetaFactory() {
TORCH_CHECK(meta_factory, "Support for autograd has not been loaded; have you linked against libtorch.so?")
return meta_factory;
}
} // namespace impl
} // namespace c10
|