File: CUDACachingAllocator.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (1074 lines) | stat: -rw-r--r-- 34,148 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
#include <c10/cuda/CUDACachingAllocator.h>

#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAException.h>
#include <c10/cuda/CUDAFunctions.h>
#include <c10/util/UniqueVoidPtr.h>

#include <cuda_runtime_api.h>
#include <algorithm>
#include <bitset>
#include <deque>
#include <iterator>
#include <map>
#include <memory>
#include <mutex>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <vector>

namespace c10 {

C10_DEFINE_REGISTRY(FreeCudaMemoryCallbacksRegistry, FreeMemoryCallback);

namespace cuda {
namespace CUDACachingAllocator {

//
// Yet another caching allocator for CUDA device allocations.
//
// - Allocations are associated with a stream. Once freed, blocks can be
//   re-allocated on the same stream, but not on any other stream.
// - The allocator attempts to find the smallest cached block that will fit the
//   requested size. If the block is larger than the requested size, it may be
//   split. If no block is found, the allocator will delegate to cudaMalloc.
// - If the cudaMalloc fails, the allocator will free all cached blocks that
//   are not split and retry the allocation.
// - Large (>1MB) and small allocations are stored in separate pools.
//   Small requests are packed into 2MB buffers. Large requests will use the
//   smallest available free block or allocate a new block using cudaMalloc.
//   To reduce fragmentation, requests between 1MB and 10MB will allocate and
//   split a 20MB block, if no free block of sufficient size is available.
//
// With this allocator, allocations and frees should logically be considered
// "usages" of the memory segment associated with streams, just like kernel
// launches. The programmer must insert the proper synchronization if memory
// segments are used from multiple streams.
//
// The library provides a recordStream() function to help insert the correct
// synchronization when allocations are used on multiple streams. This will
// ensure that the block is not reused before each recorded stream completes
// work.
//


namespace {

using stream_set = std::unordered_set<cuda::CUDAStream>;

constexpr size_t kMinBlockSize = 512;       // all sizes are rounded to at least 512 bytes
constexpr size_t kSmallSize = 1048576;      // largest "small" allocation is 1 MiB
constexpr size_t kSmallBuffer = 2097152;    // "small" allocations are packed in 2 MiB blocks
constexpr size_t kLargeBuffer = 20971520;   // "large" allocations may be packed in 20 MiB blocks
constexpr size_t kMinLargeAlloc = 10485760; // allocations between 1 and 10 MiB may use kLargeBuffer
constexpr size_t kRoundLarge = 2097152;     // round up large allocs to 2 MiB

typedef std::bitset<static_cast<size_t>(StatType::NUM_TYPES)> StatTypes;

void update_stat(Stat& stat, int64_t amount) {
  stat.current += amount;

  TORCH_INTERNAL_ASSERT(stat.current >= 0, "Negative tracked stat in CUDA allocator (likely logic error).");

  stat.peak = std::max(stat.current, stat.peak);
  if (amount > 0) {
    stat.allocated += amount;
  }
  if (amount < 0) {
    stat.freed += -amount;
  }
}

void reset_accumulated_stat(Stat& stat) {
  stat.allocated = 0;
  stat.freed = 0;
}

void reset_peak_stat(Stat& stat) {
  stat.peak = stat.current;
}

void update_stat_array(StatArray& stat_array, int64_t amount, const StatTypes& stat_types) {
  for (size_t stat_type = 0; stat_type < stat_types.size(); ++stat_type) {
    if (stat_types[stat_type]) {
      update_stat(stat_array[stat_type], amount);
    }
  }
}

struct Block;
typedef bool (*Comparison)(const Block*, const Block*);
typedef std::set<Block*, Comparison> BlockPool;

struct Block {
  int           device;      // gpu
  cudaStream_t  stream;      // allocation stream
  stream_set    stream_uses; // streams on which the block was used
  size_t        size;        // block size in bytes
  BlockPool*    pool;        // owning memory pool
  void*         ptr;         // memory address
  bool          allocated;   // in-use flag
  Block*        prev;        // prev block if split from a larger allocation
  Block*        next;        // next block if split from a larger allocation
  int           event_count; // number of outstanding CUDA events

  Block(int device, cudaStream_t stream, size_t size, BlockPool* pool, void* ptr) :
    device(device), stream(stream), stream_uses(), size(size), pool(pool),
    ptr(ptr), allocated(0), prev(nullptr), next(nullptr), event_count(0) { }

  // constructor for search key
  Block(int device, cudaStream_t stream, size_t size) :
    device(device), stream(stream), stream_uses(), size(size), pool(nullptr),
    ptr(nullptr), allocated(0), prev(nullptr), next(nullptr), event_count(0) { }

  bool is_split() const {
    return (prev != nullptr) || (next != nullptr);
  }
};

static bool BlockComparator(const Block* a, const Block* b)
{
  if (a->stream != b->stream) {
    return (uintptr_t)a->stream < (uintptr_t)b->stream;
  }
  if (a->size != b->size) {
    return a->size < b->size;
  }
  return (uintptr_t)a->ptr < (uintptr_t)b->ptr;
}

static std::string format_size(uint64_t size) {
  std::ostringstream os;
  os.precision(2);
  os << std::fixed;
  if (size <= 1024) {
    os << size << " bytes";
  } else if (size <= 1048576) {
    os << (size / 1024.0);
    os << " KiB";
  } else if (size <= 1073741824ULL) {
    os << size / 1048576.0;
    os << " MiB";
  } else {
    os << size / 1073741824.0;
    os << " GiB";
  }
  return os.str();
}

struct AllocParams {
  AllocParams(int device, size_t size, cudaStream_t stream, BlockPool* pool, size_t alloc_size,
              DeviceStats& stats) :
    search_key(device, stream, size),
    pool(pool),
    alloc_size(alloc_size),
    block(nullptr),
    err(cudaSuccess) {}

  int device() { return search_key.device; }
  cudaStream_t stream() { return search_key.stream; }
  size_t size() { return search_key.size; }

  Block search_key;
  BlockPool* pool;
  size_t alloc_size;
  Block* block;
  StatTypes stat_types;
  cudaError_t err;
};

} // namespace

class DeviceCachingAllocator {

 private:

  // lock around all operations
  mutable std::recursive_mutex mutex;

  // device statistics
  DeviceStats stats;

  // unallocated cached blocks larger than 1 MB
  BlockPool large_blocks;

  // unallocated cached blocks 1 MB or smaller
  BlockPool small_blocks;

  // allocated or in use by a stream
  std::unordered_set<Block*> active_blocks;

  // outstanding cuda events
  std::deque<std::pair<cudaEvent_t, Block*>> cuda_events;

 public:

  DeviceCachingAllocator() :
      large_blocks(BlockComparator),
      small_blocks(BlockComparator) {}

  // All public methods (except the above) acquire the allocator mutex.
  // Thus, do not call a public method from another public method.

  Block* malloc(int device, size_t size, cudaStream_t stream)
  {
    std::unique_lock<std::recursive_mutex> lock(mutex);

    // process outstanding cudaEvents
    process_events();

    size = round_size(size);
    auto& pool = get_pool(size);
    const size_t alloc_size = get_allocation_size(size);
    AllocParams params(device, size, stream, &pool, alloc_size, stats);
    params.stat_types[static_cast<size_t>(StatType::AGGREGATE)] = true;
    params.stat_types[static_cast<size_t>(get_stat_type_for_pool(pool))] = true;

    bool block_found =
      // Search pool
      get_free_block(params)
      // Trigger callbacks and retry search
      || (trigger_free_memory_callbacks(params) && get_free_block(params))
      // Attempt allocate
      || alloc_block(params, false)
      // Free all non-split cached blocks and retry alloc.
      || (free_cached_blocks() && alloc_block(params, true));

    TORCH_INTERNAL_ASSERT((!block_found && params.err != cudaSuccess) || params.block);
    if (!block_found) {
      if (params.err == cudaErrorMemoryAllocation) {
        size_t device_free;
        size_t device_total;
        C10_CUDA_CHECK(cudaMemGetInfo(&device_free, &device_total));

        stats.num_ooms += 1;

        // "total capacity": total global memory on GPU
        // "already allocated": memory allocated by the program using the
        //                      caching allocator
        // "free": free memory as reported by the CUDA API
        // "cached": memory held by the allocator but not used by the program
        //
        // The "allocated" amount  does not include memory allocated outside
        // of the caching allocator, such as memory allocated by other programs
        // or memory held by the driver.
        //
        // The sum of "allocated" + "free" + "cached" may be less than the
        // total capacity due to memory held by the driver and usage by other
        // programs.
        //
        // Note that at this point free_cached_blocks has already returned all
        // possible "cached" memory to the driver. The only remaining "cached"
        // memory is split from a larger block that is partially in-use.
        TORCH_CHECK_WITH(CUDAOutOfMemoryError, false,
          "CUDA out of memory. Tried to allocate ", format_size(alloc_size),
          " (GPU ", device, "; ",
          format_size(device_total), " total capacity; ",
          format_size(stats.allocated_bytes[static_cast<size_t>(StatType::AGGREGATE)].current),
          " already allocated; ",
          format_size(device_free), " free; ",
          format_size(stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)].current),
          " reserved in total by PyTorch)");
      } else {
        C10_CUDA_CHECK(params.err);
      }
    }

    Block* block = params.block;
    Block* remaining = nullptr;
    TORCH_INTERNAL_ASSERT(block);

    const bool already_split = block->is_split();
    if (should_split(block, size)) {
      remaining = block;

      block = new Block(device, stream, size, &pool, block->ptr);
      block->prev = remaining->prev;
      if (block->prev) {
        block->prev->next = block;
      }
      block->next = remaining;

      remaining->prev = block;
      remaining->ptr = static_cast<char*>(remaining->ptr) + size;
      remaining->size -= size;
      pool.insert(remaining);

      if (already_split) {
        // An already-split inactive block is being shrunk by size bytes.
        update_stat_array(stats.inactive_split_bytes, -block->size, params.stat_types);
      } else {
        // A new split inactive block is being created from a previously unsplit block,
        // size remaining->size bytes.
        update_stat_array(stats.inactive_split_bytes, remaining->size, params.stat_types);
        update_stat_array(stats.inactive_split, 1, params.stat_types);
      }
    } else if (already_split) {
      // An already-split block is becoming active
      update_stat_array(stats.inactive_split_bytes, -block->size, params.stat_types);
      update_stat_array(stats.inactive_split, -1, params.stat_types);
    }

    block->allocated = true;
    active_blocks.insert(block);

    c10::reportMemoryUsageToProfiler(
        block, block->size, c10::Device(c10::DeviceType::CUDA, device));

    update_stat_array(stats.allocation, 1, params.stat_types);
    update_stat_array(stats.allocated_bytes, block->size, params.stat_types);
    update_stat_array(stats.active, 1, params.stat_types);
    update_stat_array(stats.active_bytes, block->size, params.stat_types);

    return block;
  }

  void free(Block* block)
  {
    std::lock_guard<std::recursive_mutex> lock(mutex);

    block->allocated = false;

    c10::reportMemoryUsageToProfiler(
        block, -block->size, c10::Device(c10::DeviceType::CUDA, block->device));

    StatTypes stat_types;
    stat_types[static_cast<size_t>(StatType::AGGREGATE)] = true;
    stat_types[static_cast<size_t>(get_stat_type_for_pool(*(block->pool)))] = true;
    update_stat_array(stats.allocation, -1, {stat_types});
    update_stat_array(stats.allocated_bytes, -block->size, {stat_types});

    if (!block->stream_uses.empty()) {
      insert_events(block);
    } else {
      free_block(block);
    }
  }

  void* getBaseAllocation(Block* block, size_t* outSize) {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    while (block->prev) {
      block = block->prev;
    }
    void *basePtr = block->ptr;
    if (outSize) {
      size_t size = 0;
      while (block) {
        size += block->size;
        block = block->next;
      }
      *outSize = size;
    }
    return basePtr;
  }

  void recordStream(Block* block, cuda::CUDAStream stream) {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    if (stream.stream() == block->stream) {
      // ignore uses on the allocation stream, since those don't require any
      // special synchronization
      return;
    }
    block->stream_uses.insert(stream);
  }

  /** returns cached blocks to the system allocator **/
  void emptyCache() {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    free_cached_blocks();
  }

  /** Retrieves info (total size + largest block) of the memory cache **/
  void cacheInfo(size_t* total, size_t* largest)
  {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    if (*largest == 0) {  // make an initial guess if a zero *largest is passed in
      size_t tmp_bytes;
      cudaMemGetInfo(largest,  // Use free memory as an optimistic initial guess of *largest
                     &tmp_bytes);
    }
    cache_info_aux(large_blocks, total, largest);
    cache_info_aux(small_blocks, total, largest);
  }

  /** Returns a copy of the memory allocator stats **/
  DeviceStats getStats() {
    std::lock_guard<std::recursive_mutex> lock(mutex);
    return stats;
  }

  /** Resets the historical accumulation stats for the device **/
  void resetAccumulatedStats() {
    std::lock_guard<std::recursive_mutex> lock(mutex);

    for (size_t statType = 0; statType < static_cast<size_t>(StatType::NUM_TYPES); ++statType) {
      reset_accumulated_stat(stats.allocation[statType]);
      reset_accumulated_stat(stats.segment[statType]);
      reset_accumulated_stat(stats.active[statType]);
      reset_accumulated_stat(stats.inactive_split[statType]);
      reset_accumulated_stat(stats.allocated_bytes[statType]);
      reset_accumulated_stat(stats.reserved_bytes[statType]);
      reset_accumulated_stat(stats.active_bytes[statType]);
      reset_accumulated_stat(stats.inactive_split_bytes[statType]);
    }

    stats.num_alloc_retries = 0;
    stats.num_ooms = 0;
  }

  /** Resets the historical peak stats for the device **/
  void resetPeakStats() {
    std::lock_guard<std::recursive_mutex> lock(mutex);

    for (size_t statType = 0; statType < static_cast<size_t>(StatType::NUM_TYPES); ++statType) {
      reset_peak_stat(stats.allocation[statType]);
      reset_peak_stat(stats.segment[statType]);
      reset_peak_stat(stats.active[statType]);
      reset_peak_stat(stats.inactive_split[statType]);
      reset_peak_stat(stats.allocated_bytes[statType]);
      reset_peak_stat(stats.reserved_bytes[statType]);
      reset_peak_stat(stats.active_bytes[statType]);
      reset_peak_stat(stats.inactive_split_bytes[statType]);
    }
  }

  /** Dump a complete snapshot of the memory held by the allocator. Potentially VERY expensive. **/
  std::vector<SegmentInfo> snapshot() const {
    std::lock_guard<std::recursive_mutex> lock(mutex);

    std::vector<SegmentInfo> result;
    const auto all_blocks = get_all_blocks();

    for (const Block* const head_block : all_blocks) {
      if (head_block->prev != nullptr) {
        continue;
      }
      result.emplace_back();
      SegmentInfo& segment_info = result.back();
      segment_info.device = head_block->device;
      segment_info.address = reinterpret_cast<int64_t>(head_block->ptr);
      segment_info.is_large = (head_block->pool == &large_blocks);

      const Block* block = head_block;
      while (block != nullptr) {
        segment_info.blocks.emplace_back();
        BlockInfo& block_info = segment_info.blocks.back();

        block_info.size = block->size;
        block_info.allocated = block->allocated;
        block_info.active = block->allocated || (block->event_count > 0);

        segment_info.total_size += block_info.size;
        if (block_info.allocated) {
          segment_info.allocated_size += block_info.size;
        }
        if (block_info.active) {
          segment_info.active_size += block_info.size;
        }

        block = block->next;
      }
    }

    std::sort(result.begin(), result.end(), [](const SegmentInfo& a, const SegmentInfo& b) {
      return a.address < b.address;
    });

    return result;
  }

  static size_t round_size(size_t size) {
    if (size < kMinBlockSize) {
      return kMinBlockSize;
    } else {
      return kMinBlockSize * ((size + kMinBlockSize - 1) / kMinBlockSize);
    }
  }

 private:

  // All private methods do not acquire the allocator mutex.

  std::vector<const Block*> get_all_blocks() const {
    std::vector<const Block*> blocks;
    blocks.insert(blocks.end(), small_blocks.begin(), small_blocks.end());
    blocks.insert(blocks.end(), large_blocks.begin(), large_blocks.end());
    blocks.insert(blocks.end(), active_blocks.begin(), active_blocks.end());
    return blocks;
  }

  /** moves a block into a pool of cached free blocks */
  void free_block(Block* block)
  {
    TORCH_INTERNAL_ASSERT(!block->allocated && block->event_count == 0);

    size_t original_block_size = block->size;

    auto& pool = *block->pool;
    int64_t net_change_inactive_split_blocks = 0;
    int64_t net_change_inactive_split_size = 0;

    const std::array<Block*, 2> merge_candidates = {block->prev, block->next};
    for (Block* merge_candidate : merge_candidates) {
      const int64_t subsumed_size = try_merge_blocks(block, merge_candidate, pool);
      if (subsumed_size > 0) {
        net_change_inactive_split_blocks -= 1;
        net_change_inactive_split_size -= subsumed_size;
      }
    }

    active_blocks.erase(block);
    pool.insert(block);

    if (block->is_split()) {
      net_change_inactive_split_blocks += 1;
      net_change_inactive_split_size += block->size;
    }

    StatTypes stat_types;
    stat_types[static_cast<size_t>(StatType::AGGREGATE)] = true;
    stat_types[static_cast<size_t>(get_stat_type_for_pool(*(block->pool)))] = true;
    update_stat_array(stats.inactive_split, net_change_inactive_split_blocks, stat_types);
    update_stat_array(stats.inactive_split_bytes, net_change_inactive_split_size, stat_types);
    update_stat_array(stats.active, -1, stat_types);
    update_stat_array(stats.active_bytes, -original_block_size, stat_types);
  }

  /** combine previously split blocks. returns the size of the subsumed block, or 0 on failure. */
  size_t try_merge_blocks(Block* dst, Block* src, BlockPool& pool)
  {
    if (!src || src->allocated || src->event_count > 0) {
      return 0;
    }

    AT_ASSERT(dst->is_split() && src->is_split());

    if (dst->prev == src) {
      dst->ptr = src->ptr;
      dst->prev = src->prev;
      if (dst->prev) {
        dst->prev->next = dst;
      }
    } else {
      dst->next = src->next;
      if (dst->next) {
        dst->next->prev = dst;
      }
    }

    const size_t subsumed_size = src->size;
    dst->size += subsumed_size;
    pool.erase(src);
    delete src;

    return subsumed_size;
  }

  BlockPool& get_pool(size_t size) {
    if (size <= kSmallSize) {
      return small_blocks;
    } else {
      return large_blocks;
    }
  }

  StatType get_stat_type_for_pool(const BlockPool& pool) {
    if (&pool == &small_blocks) {
      return StatType::SMALL_POOL;
    } else if (&pool == &large_blocks) {
      return StatType::LARGE_POOL;
    } else {
      AT_ERROR("get_stat_type_for_pool: invalid pool");
    }
  }

  bool should_split(const Block* block, size_t size) {
    size_t remaining = block->size - size;
    if (block->pool == &small_blocks) {
      return remaining >= kMinBlockSize;
    } else if (block->pool == &large_blocks) {
      return remaining > kSmallSize;
    } else {
      AT_ERROR("should_split: invalid pool");
    }
  }

  static size_t get_allocation_size(size_t size) {
    if (size <= kSmallSize) {
      return kSmallBuffer;
    } else if (size < kMinLargeAlloc) {
      return kLargeBuffer;
    } else {
      return kRoundLarge * ((size + kRoundLarge - 1) / kRoundLarge);
    }
  }

  bool get_free_block(AllocParams& p) {
    BlockPool& pool = *p.pool;
    auto it = pool.lower_bound(&p.search_key);
    if (it == pool.end() || (*it)->stream != p.stream())
      return false;
    p.block = *it;
    pool.erase(it);
    return true;
  }

  bool trigger_free_memory_callbacks(AllocParams& p) {
    bool freed_memory = false;
    for (const auto& name : FreeCudaMemoryCallbacksRegistry()->Keys()) {
      freed_memory |=
        FreeCudaMemoryCallbacksRegistry()->Create(name)->Execute();
    }
    return freed_memory;
  }

  bool alloc_block(AllocParams& p, bool isRetry) {
    size_t size = p.alloc_size;
    void* ptr;

    if (isRetry) {
      stats.num_alloc_retries += 1;
    }

    p.err = cudaMalloc(&ptr, size);
    if (p.err != cudaSuccess) {
      if (!isRetry || p.err == cudaErrorMemoryAllocation)
        cudaGetLastError();  // clear CUDA error
      return false;
    }

    p.block = new Block(p.device(), p.stream(), size, p.pool, (char*)ptr);
    update_stat_array(stats.segment, 1, p.stat_types);
    update_stat_array(stats.reserved_bytes, size, p.stat_types);

    return (p.block != nullptr);
  }

  bool free_cached_blocks()
  {
    // First ensure that all blocks that can't currently be allocated due to
    // outstanding events are returned to the pool.
    synchronize_and_free_events();

    // Free all non-split cached blocks
    free_blocks(large_blocks);
    free_blocks(small_blocks);
    return true;
  }

  void free_blocks(BlockPool& blocks)
  {
    // Frees all non-split blocks
    auto it = blocks.begin();
    while (it != blocks.end()) {
      Block* block = *it;
      if (!block->prev && !block->next) {
        C10_CUDA_CHECK(cudaFree((void*)block->ptr));

        StatTypes stat_types;
        stat_types[static_cast<size_t>(StatType::AGGREGATE)] = true;
        stat_types[static_cast<size_t>(get_stat_type_for_pool(*(block->pool)))] = true;
        update_stat_array(stats.segment, -1, stat_types);
        update_stat_array(stats.reserved_bytes, -block->size, stat_types);

        auto cur = it;
        ++it;
        blocks.erase(cur);
        delete block;
      } else {
        ++it;
      }
    }
  }

  cudaEvent_t create_event_internal() {
    cudaEvent_t event;
    C10_CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
    return event;
  }

  void free_event_internal(cudaEvent_t event) {
    C10_CUDA_CHECK(cudaEventDestroy(event));
  }

  void synchronize_and_free_events() {
    // Synchronize on outstanding events and then free associated blocks.

    for (auto& e : cuda_events) {
      cudaEvent_t event = e.first;
      Block* block = e.second;

      C10_CUDA_CHECK(cudaEventSynchronize(event));
      free_event_internal(event);

      block->event_count--;
      if (block->event_count == 0) {
        free_block(block);
      }
    }

    cuda_events.clear();
  }

  void insert_events(Block* block)
  {
    int prev_device;
    C10_CUDA_CHECK(cudaGetDevice(&prev_device));

    stream_set streams(std::move(block->stream_uses));
    AT_ASSERT(block->stream_uses.empty());
    for (auto it = streams.begin(); it != streams.end(); ++it) {
      C10_CUDA_CHECK(cudaSetDevice(it->device_index()));

      cudaEvent_t event = create_event_internal();
      C10_CUDA_CHECK(cudaEventRecord(event, it->stream()));

      block->event_count++;
      cuda_events.emplace_back(event, block);
    }

    C10_CUDA_CHECK(cudaSetDevice(prev_device));
  }

  void process_events()
  {
    // Process outstanding cudaEvents. Events that are completed are removed
    // from the queue, and the 'event_count' for the corresponding allocation
    // is decremented. Stops at the first event which has not been completed.
    // Since events on different devices or streams may occur out of order,
    // the processing of some events may be delayed.
    while (!cuda_events.empty()) {
      auto& e = cuda_events.front();
      cudaEvent_t event = e.first;
      Block* block = e.second;

      cudaError_t err = cudaEventQuery(event);
      if (err == cudaErrorNotReady) {
        // ignore and clear the error if not ready
        cudaGetLastError();
        break;
      } else if (err != cudaSuccess) {
        C10_CUDA_CHECK(err);
      }

      free_event_internal(event);

      block->event_count--;
      if (block->event_count == 0) {
        free_block(block);
      }
      cuda_events.pop_front();
    }
  }

  // Accumulates sizes of all memory blocks for given device in given pool
  void cache_info_aux(BlockPool& blocks, size_t* total, size_t* largest)
  {
    for (auto it = blocks.begin(); it != blocks.end(); ++it) {
      size_t blocksize = (*it)->size;
      *total += blocksize;
      if (blocksize > *largest) {
        *largest = blocksize;
      }
    }
  }
};

class THCCachingAllocator {

 private:

  std::mutex mutex;

  // allocated blocks by device pointer
  std::unordered_map<void*, Block*> allocated_blocks;

  // lock around calls to cudaFree (to prevent deadlocks with NCCL)
  mutable std::mutex cuda_free_mutex;

  void add_allocated_block(Block* block) {
    std::lock_guard<std::mutex> lock(mutex);
    allocated_blocks[block->ptr] = block;
  }

 public:

  std::vector<std::unique_ptr<DeviceCachingAllocator>> device_allocator;

  std::mutex* getCudaFreeMutex() const {
    return &cuda_free_mutex;
  }

  Block* get_allocated_block(void *ptr, bool remove=false) {
    std::lock_guard<std::mutex> lock(mutex);
    auto it = allocated_blocks.find(ptr);
    if (it == allocated_blocks.end()) {
      return nullptr;
    }
    Block* block = it->second;
    if (remove) {
      allocated_blocks.erase(it);
    }
    return block;
  }

  void init(int device_count) {
    int size = device_allocator.size();
    if (size < device_count) {
      device_allocator.resize(device_count);
      for (int i = size; i < device_count; i++) {
        device_allocator[i] = std::unique_ptr<DeviceCachingAllocator>(new DeviceCachingAllocator());
      }
    }
  }

  /** allocates a block which is safe to use from the provided stream */
  void malloc(void** devPtr, int device, size_t size, cudaStream_t stream) {
    TORCH_INTERNAL_ASSERT(
        0 <= device && device < device_allocator.size(),
        "Allocator not initialized for device ",
        device,
        ": did you call init?");
    Block* block = device_allocator[device]->malloc(device, size, stream);
    add_allocated_block(block);
    *devPtr = (void*)block->ptr;
  }

  void free(void* ptr) {
    if (!ptr) {
      return;
    }
    Block* block = get_allocated_block(ptr, true /* remove */);
    if (!block) {
      AT_ERROR("invalid device pointer: ", ptr);
    }
    device_allocator[block->device]->free(block);
  }

  void emptyCache() {
    int count = device_allocator.size();
    for (int i = 0; i < count; i++)
      device_allocator[i]->emptyCache();
  }

  void* getBaseAllocation(void* ptr, size_t* outSize)
  {
    Block* block = get_allocated_block(ptr);
    if (!block) {
      AT_ERROR("invalid device pointer: ", ptr);
    }
    return device_allocator[block->device]->getBaseAllocation(block, outSize);
  }

  void recordStream(const DataPtr& ptr, cuda::CUDAStream stream) {
    // Empty tensor's storage().data() might be a null ptr. As there is no
    // blocks associated with those tensors, it is fine to do nothing here.
    if (!ptr.get()) {
      return;
    }

    // If a tensor is not allocated by this instance, simply skip
    // This usually happens when CUDA tensors are shared across processes,
    // we have implemented reference counting based sharing mechanism to
    // guarantee tensors won't be accidentally freed by one process while
    // they are still being used in another
    if (ptr.get_deleter() != &raw_delete)
      return;

    Block* block = get_allocated_block(ptr.get());
    // block must not be null reaching here
    TORCH_INTERNAL_ASSERT(block != nullptr, "No allocated block can be found");
    device_allocator[block->device]->recordStream(block, stream);
  }

  std::vector<SegmentInfo> snapshot() {
    std::vector<SegmentInfo> result;
    int count = device_allocator.size();
    for (int i = 0; i < count; i++) {
      auto snap = device_allocator[i]->snapshot();
      result.insert(result.end(), snap.begin(), snap.end());
    }

    return result;
  }
};

THCCachingAllocator caching_allocator;

// Returns whether to force all allocations to bypass the caching allocator and
// go straight to cudaMalloc.  This setting is useful when debugging GPU memory
// errors, since the caching allocator foils cuda-memcheck.
bool forceUncachedAllocator() {
  static bool force_uncached =
      getenv("PYTORCH_NO_CUDA_MEMORY_CACHING") != nullptr;
  return force_uncached;
}

static void uncached_delete(void* ptr) {
  C10_CUDA_CHECK(cudaFree(ptr));
}

// NB: I decided not to fold this into THCCachingAllocator, because the latter
// has a lot more methods and it wasn't altogether clear that they should
// actually be publicly exposed
struct CudaCachingAllocator : public Allocator {
  DataPtr allocate(size_t size) const override {
    int device;
    C10_CUDA_CHECK(cudaGetDevice(&device));
    void* r = nullptr;
    if (forceUncachedAllocator()) {
      C10_CUDA_CHECK(cudaMalloc(&r, size));
      return {r, r, &uncached_delete, Device(DeviceType::CUDA, device)};
    }
    if (size != 0) {
      caching_allocator.malloc(&r, device, size, cuda::getCurrentCUDAStream(device));
    }
    return {r, r, &raw_delete, Device(DeviceType::CUDA, device)};
  }
  DeleterFnPtr raw_deleter() const override {
    return &raw_delete;
  }
};

CudaCachingAllocator device_allocator;

Allocator* get(void)
{
  return &device_allocator;
}

void init(int device_count) {
  caching_allocator.init(device_count);
}

void emptyCache(void) {
  caching_allocator.emptyCache();
}

void cacheInfo(int dev_id, size_t* cachedAndFree, size_t* largestBlock) {
  caching_allocator.device_allocator[dev_id]->cacheInfo(cachedAndFree, largestBlock);
}

void* getBaseAllocation(void *ptr, size_t *size)
{
  return caching_allocator.getBaseAllocation(ptr, size);
}

void recordStream(const DataPtr& ptr, cuda::CUDAStream stream)
{
  caching_allocator.recordStream(ptr, stream);
}

std::mutex* getFreeMutex()
{
  return caching_allocator.getCudaFreeMutex();
}

static inline void assertValidDevice(int device) {
  int device_num = device_count();
  AT_ASSERTM(0 <= device && device < device_num, "Invalid device argument.");
}

DeviceStats getDeviceStats(int device) {
  assertValidDevice(device);
  return caching_allocator.device_allocator[device]->getStats();
}

void resetAccumulatedStats(int device) {
  assertValidDevice(device);
  caching_allocator.device_allocator[device]->resetAccumulatedStats();
}

void resetPeakStats(int device) {
  assertValidDevice(device);
  caching_allocator.device_allocator[device]->resetPeakStats();
}

std::vector<SegmentInfo> snapshot() {
  return caching_allocator.snapshot();
}

//
// In CUDA IPC, sender sends a tensor to receiver, getIpcDevPtr
// is called by the receiving process to map the CUDA memory from the sending
// process into its own address space.
//
// CUDA IPC only allows sharing a big memory block associated with a cudaIpcMemHandle_t
// and it can be opened only **once** per context per process. There can be
// multiple types of storage in the same IPC mem block, so we must cache the
// device ptr to construct typed storage as it comes.
//
// ipcMemHandle_to_devptr maps a cudaIpcMemHandle_t to a device pointer in the process
// that can be used to access the memory block in the sender process.
// It only saves a weak_ptr of the device pointer in the map, the shared_ptr
// will be used to reconstruct all storages in this CudaMalloc allocation.
// And it will deleted in cudaIpcCloseMemHandle when its reference count is 0.
//
namespace {
  std::mutex IpcMutex;
  std::unordered_map<std::string, std::weak_ptr<void>> ipcMemHandle_to_devptr;
}

std::shared_ptr<void> getIpcDevPtr(std::string handle) {
  std::lock_guard<std::mutex> lock(IpcMutex);

  auto iter = ipcMemHandle_to_devptr.find(handle);
  if (iter != ipcMemHandle_to_devptr.end()) {
    auto devptr = iter->second.lock();
    if (devptr) return devptr;
  }
  // This ipcMemHandle hasn't been opened, or already expired, open it to
  // enable IPC access to that mem block.
  void *dev = nullptr;
  auto ipc_handle = reinterpret_cast<const cudaIpcMemHandle_t*>(handle.c_str());
  C10_CUDA_CHECK(cudaIpcOpenMemHandle(&dev, *ipc_handle, cudaIpcMemLazyEnablePeerAccess));
  // devPtr has to be deleted in same device when created.
  int curr_device;
  C10_CUDA_CHECK(cudaGetDevice(&curr_device));
  auto sp = std::shared_ptr<void>(
      dev,
      [handle, curr_device](void *ptr) {
        cuda::CUDAGuard device_guard(curr_device);
        std::lock_guard<std::mutex> deleter_lock(IpcMutex);
        C10_CUDA_CHECK(cudaIpcCloseMemHandle(ptr));
        ipcMemHandle_to_devptr.erase(handle);});
  std::weak_ptr<void> wp = sp;
  // To eliminate an additional search, we can use insert().
  // It doesn't overwrite when key already exists(ptr expired).
  // But in the deleter for sp we erased the entry,
  // this should be safe to do now.
  ipcMemHandle_to_devptr.insert(iter, {handle, wp});

  return sp;
}

void* raw_alloc(size_t nbytes) {
  if (nbytes == 0) {
    return nullptr;
  }
  int device;
  C10_CUDA_CHECK(cudaGetDevice(&device));
  void* r = nullptr;
  caching_allocator.malloc(&r, device, nbytes, cuda::getCurrentCUDAStream(device));
  return r;
}

void* raw_alloc_with_stream(size_t nbytes, cudaStream_t stream) {
  if (nbytes == 0) {
    return nullptr;
  }
  int device;
  C10_CUDA_CHECK(cudaGetDevice(&device));
  void* r = nullptr;
  caching_allocator.malloc(&r, device, nbytes, stream);
  return r;
}

void raw_delete(void* ptr) {
  caching_allocator.free(ptr);
}

} // namespace CUDACachingAllocator

}} // namespace c10::cuda