1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
|
#include <c10/cuda/CUDACachingAllocator.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAException.h>
#include <c10/cuda/CUDAFunctions.h>
#include <c10/util/UniqueVoidPtr.h>
#include <cuda_runtime_api.h>
#include <algorithm>
#include <bitset>
#include <deque>
#include <iterator>
#include <map>
#include <memory>
#include <mutex>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <vector>
namespace c10 {
C10_DEFINE_REGISTRY(FreeCudaMemoryCallbacksRegistry, FreeMemoryCallback);
namespace cuda {
namespace CUDACachingAllocator {
//
// Yet another caching allocator for CUDA device allocations.
//
// - Allocations are associated with a stream. Once freed, blocks can be
// re-allocated on the same stream, but not on any other stream.
// - The allocator attempts to find the smallest cached block that will fit the
// requested size. If the block is larger than the requested size, it may be
// split. If no block is found, the allocator will delegate to cudaMalloc.
// - If the cudaMalloc fails, the allocator will free all cached blocks that
// are not split and retry the allocation.
// - Large (>1MB) and small allocations are stored in separate pools.
// Small requests are packed into 2MB buffers. Large requests will use the
// smallest available free block or allocate a new block using cudaMalloc.
// To reduce fragmentation, requests between 1MB and 10MB will allocate and
// split a 20MB block, if no free block of sufficient size is available.
//
// With this allocator, allocations and frees should logically be considered
// "usages" of the memory segment associated with streams, just like kernel
// launches. The programmer must insert the proper synchronization if memory
// segments are used from multiple streams.
//
// The library provides a recordStream() function to help insert the correct
// synchronization when allocations are used on multiple streams. This will
// ensure that the block is not reused before each recorded stream completes
// work.
//
namespace {
using stream_set = std::unordered_set<cuda::CUDAStream>;
constexpr size_t kMinBlockSize = 512; // all sizes are rounded to at least 512 bytes
constexpr size_t kSmallSize = 1048576; // largest "small" allocation is 1 MiB
constexpr size_t kSmallBuffer = 2097152; // "small" allocations are packed in 2 MiB blocks
constexpr size_t kLargeBuffer = 20971520; // "large" allocations may be packed in 20 MiB blocks
constexpr size_t kMinLargeAlloc = 10485760; // allocations between 1 and 10 MiB may use kLargeBuffer
constexpr size_t kRoundLarge = 2097152; // round up large allocs to 2 MiB
typedef std::bitset<static_cast<size_t>(StatType::NUM_TYPES)> StatTypes;
void update_stat(Stat& stat, int64_t amount) {
stat.current += amount;
TORCH_INTERNAL_ASSERT(stat.current >= 0, "Negative tracked stat in CUDA allocator (likely logic error).");
stat.peak = std::max(stat.current, stat.peak);
if (amount > 0) {
stat.allocated += amount;
}
if (amount < 0) {
stat.freed += -amount;
}
}
void reset_accumulated_stat(Stat& stat) {
stat.allocated = 0;
stat.freed = 0;
}
void reset_peak_stat(Stat& stat) {
stat.peak = stat.current;
}
void update_stat_array(StatArray& stat_array, int64_t amount, const StatTypes& stat_types) {
for (size_t stat_type = 0; stat_type < stat_types.size(); ++stat_type) {
if (stat_types[stat_type]) {
update_stat(stat_array[stat_type], amount);
}
}
}
struct Block;
typedef bool (*Comparison)(const Block*, const Block*);
typedef std::set<Block*, Comparison> BlockPool;
struct Block {
int device; // gpu
cudaStream_t stream; // allocation stream
stream_set stream_uses; // streams on which the block was used
size_t size; // block size in bytes
BlockPool* pool; // owning memory pool
void* ptr; // memory address
bool allocated; // in-use flag
Block* prev; // prev block if split from a larger allocation
Block* next; // next block if split from a larger allocation
int event_count; // number of outstanding CUDA events
Block(int device, cudaStream_t stream, size_t size, BlockPool* pool, void* ptr) :
device(device), stream(stream), stream_uses(), size(size), pool(pool),
ptr(ptr), allocated(0), prev(nullptr), next(nullptr), event_count(0) { }
// constructor for search key
Block(int device, cudaStream_t stream, size_t size) :
device(device), stream(stream), stream_uses(), size(size), pool(nullptr),
ptr(nullptr), allocated(0), prev(nullptr), next(nullptr), event_count(0) { }
bool is_split() const {
return (prev != nullptr) || (next != nullptr);
}
};
static bool BlockComparator(const Block* a, const Block* b)
{
if (a->stream != b->stream) {
return (uintptr_t)a->stream < (uintptr_t)b->stream;
}
if (a->size != b->size) {
return a->size < b->size;
}
return (uintptr_t)a->ptr < (uintptr_t)b->ptr;
}
static std::string format_size(uint64_t size) {
std::ostringstream os;
os.precision(2);
os << std::fixed;
if (size <= 1024) {
os << size << " bytes";
} else if (size <= 1048576) {
os << (size / 1024.0);
os << " KiB";
} else if (size <= 1073741824ULL) {
os << size / 1048576.0;
os << " MiB";
} else {
os << size / 1073741824.0;
os << " GiB";
}
return os.str();
}
struct AllocParams {
AllocParams(int device, size_t size, cudaStream_t stream, BlockPool* pool, size_t alloc_size,
DeviceStats& stats) :
search_key(device, stream, size),
pool(pool),
alloc_size(alloc_size),
block(nullptr),
err(cudaSuccess) {}
int device() { return search_key.device; }
cudaStream_t stream() { return search_key.stream; }
size_t size() { return search_key.size; }
Block search_key;
BlockPool* pool;
size_t alloc_size;
Block* block;
StatTypes stat_types;
cudaError_t err;
};
} // namespace
class DeviceCachingAllocator {
private:
// lock around all operations
mutable std::recursive_mutex mutex;
// device statistics
DeviceStats stats;
// unallocated cached blocks larger than 1 MB
BlockPool large_blocks;
// unallocated cached blocks 1 MB or smaller
BlockPool small_blocks;
// allocated or in use by a stream
std::unordered_set<Block*> active_blocks;
// outstanding cuda events
std::deque<std::pair<cudaEvent_t, Block*>> cuda_events;
public:
DeviceCachingAllocator() :
large_blocks(BlockComparator),
small_blocks(BlockComparator) {}
// All public methods (except the above) acquire the allocator mutex.
// Thus, do not call a public method from another public method.
Block* malloc(int device, size_t size, cudaStream_t stream)
{
std::unique_lock<std::recursive_mutex> lock(mutex);
// process outstanding cudaEvents
process_events();
size = round_size(size);
auto& pool = get_pool(size);
const size_t alloc_size = get_allocation_size(size);
AllocParams params(device, size, stream, &pool, alloc_size, stats);
params.stat_types[static_cast<size_t>(StatType::AGGREGATE)] = true;
params.stat_types[static_cast<size_t>(get_stat_type_for_pool(pool))] = true;
bool block_found =
// Search pool
get_free_block(params)
// Trigger callbacks and retry search
|| (trigger_free_memory_callbacks(params) && get_free_block(params))
// Attempt allocate
|| alloc_block(params, false)
// Free all non-split cached blocks and retry alloc.
|| (free_cached_blocks() && alloc_block(params, true));
TORCH_INTERNAL_ASSERT((!block_found && params.err != cudaSuccess) || params.block);
if (!block_found) {
if (params.err == cudaErrorMemoryAllocation) {
size_t device_free;
size_t device_total;
C10_CUDA_CHECK(cudaMemGetInfo(&device_free, &device_total));
stats.num_ooms += 1;
// "total capacity": total global memory on GPU
// "already allocated": memory allocated by the program using the
// caching allocator
// "free": free memory as reported by the CUDA API
// "cached": memory held by the allocator but not used by the program
//
// The "allocated" amount does not include memory allocated outside
// of the caching allocator, such as memory allocated by other programs
// or memory held by the driver.
//
// The sum of "allocated" + "free" + "cached" may be less than the
// total capacity due to memory held by the driver and usage by other
// programs.
//
// Note that at this point free_cached_blocks has already returned all
// possible "cached" memory to the driver. The only remaining "cached"
// memory is split from a larger block that is partially in-use.
TORCH_CHECK_WITH(CUDAOutOfMemoryError, false,
"CUDA out of memory. Tried to allocate ", format_size(alloc_size),
" (GPU ", device, "; ",
format_size(device_total), " total capacity; ",
format_size(stats.allocated_bytes[static_cast<size_t>(StatType::AGGREGATE)].current),
" already allocated; ",
format_size(device_free), " free; ",
format_size(stats.reserved_bytes[static_cast<size_t>(StatType::AGGREGATE)].current),
" reserved in total by PyTorch)");
} else {
C10_CUDA_CHECK(params.err);
}
}
Block* block = params.block;
Block* remaining = nullptr;
TORCH_INTERNAL_ASSERT(block);
const bool already_split = block->is_split();
if (should_split(block, size)) {
remaining = block;
block = new Block(device, stream, size, &pool, block->ptr);
block->prev = remaining->prev;
if (block->prev) {
block->prev->next = block;
}
block->next = remaining;
remaining->prev = block;
remaining->ptr = static_cast<char*>(remaining->ptr) + size;
remaining->size -= size;
pool.insert(remaining);
if (already_split) {
// An already-split inactive block is being shrunk by size bytes.
update_stat_array(stats.inactive_split_bytes, -block->size, params.stat_types);
} else {
// A new split inactive block is being created from a previously unsplit block,
// size remaining->size bytes.
update_stat_array(stats.inactive_split_bytes, remaining->size, params.stat_types);
update_stat_array(stats.inactive_split, 1, params.stat_types);
}
} else if (already_split) {
// An already-split block is becoming active
update_stat_array(stats.inactive_split_bytes, -block->size, params.stat_types);
update_stat_array(stats.inactive_split, -1, params.stat_types);
}
block->allocated = true;
active_blocks.insert(block);
c10::reportMemoryUsageToProfiler(
block, block->size, c10::Device(c10::DeviceType::CUDA, device));
update_stat_array(stats.allocation, 1, params.stat_types);
update_stat_array(stats.allocated_bytes, block->size, params.stat_types);
update_stat_array(stats.active, 1, params.stat_types);
update_stat_array(stats.active_bytes, block->size, params.stat_types);
return block;
}
void free(Block* block)
{
std::lock_guard<std::recursive_mutex> lock(mutex);
block->allocated = false;
c10::reportMemoryUsageToProfiler(
block, -block->size, c10::Device(c10::DeviceType::CUDA, block->device));
StatTypes stat_types;
stat_types[static_cast<size_t>(StatType::AGGREGATE)] = true;
stat_types[static_cast<size_t>(get_stat_type_for_pool(*(block->pool)))] = true;
update_stat_array(stats.allocation, -1, {stat_types});
update_stat_array(stats.allocated_bytes, -block->size, {stat_types});
if (!block->stream_uses.empty()) {
insert_events(block);
} else {
free_block(block);
}
}
void* getBaseAllocation(Block* block, size_t* outSize) {
std::lock_guard<std::recursive_mutex> lock(mutex);
while (block->prev) {
block = block->prev;
}
void *basePtr = block->ptr;
if (outSize) {
size_t size = 0;
while (block) {
size += block->size;
block = block->next;
}
*outSize = size;
}
return basePtr;
}
void recordStream(Block* block, cuda::CUDAStream stream) {
std::lock_guard<std::recursive_mutex> lock(mutex);
if (stream.stream() == block->stream) {
// ignore uses on the allocation stream, since those don't require any
// special synchronization
return;
}
block->stream_uses.insert(stream);
}
/** returns cached blocks to the system allocator **/
void emptyCache() {
std::lock_guard<std::recursive_mutex> lock(mutex);
free_cached_blocks();
}
/** Retrieves info (total size + largest block) of the memory cache **/
void cacheInfo(size_t* total, size_t* largest)
{
std::lock_guard<std::recursive_mutex> lock(mutex);
if (*largest == 0) { // make an initial guess if a zero *largest is passed in
size_t tmp_bytes;
cudaMemGetInfo(largest, // Use free memory as an optimistic initial guess of *largest
&tmp_bytes);
}
cache_info_aux(large_blocks, total, largest);
cache_info_aux(small_blocks, total, largest);
}
/** Returns a copy of the memory allocator stats **/
DeviceStats getStats() {
std::lock_guard<std::recursive_mutex> lock(mutex);
return stats;
}
/** Resets the historical accumulation stats for the device **/
void resetAccumulatedStats() {
std::lock_guard<std::recursive_mutex> lock(mutex);
for (size_t statType = 0; statType < static_cast<size_t>(StatType::NUM_TYPES); ++statType) {
reset_accumulated_stat(stats.allocation[statType]);
reset_accumulated_stat(stats.segment[statType]);
reset_accumulated_stat(stats.active[statType]);
reset_accumulated_stat(stats.inactive_split[statType]);
reset_accumulated_stat(stats.allocated_bytes[statType]);
reset_accumulated_stat(stats.reserved_bytes[statType]);
reset_accumulated_stat(stats.active_bytes[statType]);
reset_accumulated_stat(stats.inactive_split_bytes[statType]);
}
stats.num_alloc_retries = 0;
stats.num_ooms = 0;
}
/** Resets the historical peak stats for the device **/
void resetPeakStats() {
std::lock_guard<std::recursive_mutex> lock(mutex);
for (size_t statType = 0; statType < static_cast<size_t>(StatType::NUM_TYPES); ++statType) {
reset_peak_stat(stats.allocation[statType]);
reset_peak_stat(stats.segment[statType]);
reset_peak_stat(stats.active[statType]);
reset_peak_stat(stats.inactive_split[statType]);
reset_peak_stat(stats.allocated_bytes[statType]);
reset_peak_stat(stats.reserved_bytes[statType]);
reset_peak_stat(stats.active_bytes[statType]);
reset_peak_stat(stats.inactive_split_bytes[statType]);
}
}
/** Dump a complete snapshot of the memory held by the allocator. Potentially VERY expensive. **/
std::vector<SegmentInfo> snapshot() const {
std::lock_guard<std::recursive_mutex> lock(mutex);
std::vector<SegmentInfo> result;
const auto all_blocks = get_all_blocks();
for (const Block* const head_block : all_blocks) {
if (head_block->prev != nullptr) {
continue;
}
result.emplace_back();
SegmentInfo& segment_info = result.back();
segment_info.device = head_block->device;
segment_info.address = reinterpret_cast<int64_t>(head_block->ptr);
segment_info.is_large = (head_block->pool == &large_blocks);
const Block* block = head_block;
while (block != nullptr) {
segment_info.blocks.emplace_back();
BlockInfo& block_info = segment_info.blocks.back();
block_info.size = block->size;
block_info.allocated = block->allocated;
block_info.active = block->allocated || (block->event_count > 0);
segment_info.total_size += block_info.size;
if (block_info.allocated) {
segment_info.allocated_size += block_info.size;
}
if (block_info.active) {
segment_info.active_size += block_info.size;
}
block = block->next;
}
}
std::sort(result.begin(), result.end(), [](const SegmentInfo& a, const SegmentInfo& b) {
return a.address < b.address;
});
return result;
}
static size_t round_size(size_t size) {
if (size < kMinBlockSize) {
return kMinBlockSize;
} else {
return kMinBlockSize * ((size + kMinBlockSize - 1) / kMinBlockSize);
}
}
private:
// All private methods do not acquire the allocator mutex.
std::vector<const Block*> get_all_blocks() const {
std::vector<const Block*> blocks;
blocks.insert(blocks.end(), small_blocks.begin(), small_blocks.end());
blocks.insert(blocks.end(), large_blocks.begin(), large_blocks.end());
blocks.insert(blocks.end(), active_blocks.begin(), active_blocks.end());
return blocks;
}
/** moves a block into a pool of cached free blocks */
void free_block(Block* block)
{
TORCH_INTERNAL_ASSERT(!block->allocated && block->event_count == 0);
size_t original_block_size = block->size;
auto& pool = *block->pool;
int64_t net_change_inactive_split_blocks = 0;
int64_t net_change_inactive_split_size = 0;
const std::array<Block*, 2> merge_candidates = {block->prev, block->next};
for (Block* merge_candidate : merge_candidates) {
const int64_t subsumed_size = try_merge_blocks(block, merge_candidate, pool);
if (subsumed_size > 0) {
net_change_inactive_split_blocks -= 1;
net_change_inactive_split_size -= subsumed_size;
}
}
active_blocks.erase(block);
pool.insert(block);
if (block->is_split()) {
net_change_inactive_split_blocks += 1;
net_change_inactive_split_size += block->size;
}
StatTypes stat_types;
stat_types[static_cast<size_t>(StatType::AGGREGATE)] = true;
stat_types[static_cast<size_t>(get_stat_type_for_pool(*(block->pool)))] = true;
update_stat_array(stats.inactive_split, net_change_inactive_split_blocks, stat_types);
update_stat_array(stats.inactive_split_bytes, net_change_inactive_split_size, stat_types);
update_stat_array(stats.active, -1, stat_types);
update_stat_array(stats.active_bytes, -original_block_size, stat_types);
}
/** combine previously split blocks. returns the size of the subsumed block, or 0 on failure. */
size_t try_merge_blocks(Block* dst, Block* src, BlockPool& pool)
{
if (!src || src->allocated || src->event_count > 0) {
return 0;
}
AT_ASSERT(dst->is_split() && src->is_split());
if (dst->prev == src) {
dst->ptr = src->ptr;
dst->prev = src->prev;
if (dst->prev) {
dst->prev->next = dst;
}
} else {
dst->next = src->next;
if (dst->next) {
dst->next->prev = dst;
}
}
const size_t subsumed_size = src->size;
dst->size += subsumed_size;
pool.erase(src);
delete src;
return subsumed_size;
}
BlockPool& get_pool(size_t size) {
if (size <= kSmallSize) {
return small_blocks;
} else {
return large_blocks;
}
}
StatType get_stat_type_for_pool(const BlockPool& pool) {
if (&pool == &small_blocks) {
return StatType::SMALL_POOL;
} else if (&pool == &large_blocks) {
return StatType::LARGE_POOL;
} else {
AT_ERROR("get_stat_type_for_pool: invalid pool");
}
}
bool should_split(const Block* block, size_t size) {
size_t remaining = block->size - size;
if (block->pool == &small_blocks) {
return remaining >= kMinBlockSize;
} else if (block->pool == &large_blocks) {
return remaining > kSmallSize;
} else {
AT_ERROR("should_split: invalid pool");
}
}
static size_t get_allocation_size(size_t size) {
if (size <= kSmallSize) {
return kSmallBuffer;
} else if (size < kMinLargeAlloc) {
return kLargeBuffer;
} else {
return kRoundLarge * ((size + kRoundLarge - 1) / kRoundLarge);
}
}
bool get_free_block(AllocParams& p) {
BlockPool& pool = *p.pool;
auto it = pool.lower_bound(&p.search_key);
if (it == pool.end() || (*it)->stream != p.stream())
return false;
p.block = *it;
pool.erase(it);
return true;
}
bool trigger_free_memory_callbacks(AllocParams& p) {
bool freed_memory = false;
for (const auto& name : FreeCudaMemoryCallbacksRegistry()->Keys()) {
freed_memory |=
FreeCudaMemoryCallbacksRegistry()->Create(name)->Execute();
}
return freed_memory;
}
bool alloc_block(AllocParams& p, bool isRetry) {
size_t size = p.alloc_size;
void* ptr;
if (isRetry) {
stats.num_alloc_retries += 1;
}
p.err = cudaMalloc(&ptr, size);
if (p.err != cudaSuccess) {
if (!isRetry || p.err == cudaErrorMemoryAllocation)
cudaGetLastError(); // clear CUDA error
return false;
}
p.block = new Block(p.device(), p.stream(), size, p.pool, (char*)ptr);
update_stat_array(stats.segment, 1, p.stat_types);
update_stat_array(stats.reserved_bytes, size, p.stat_types);
return (p.block != nullptr);
}
bool free_cached_blocks()
{
// First ensure that all blocks that can't currently be allocated due to
// outstanding events are returned to the pool.
synchronize_and_free_events();
// Free all non-split cached blocks
free_blocks(large_blocks);
free_blocks(small_blocks);
return true;
}
void free_blocks(BlockPool& blocks)
{
// Frees all non-split blocks
auto it = blocks.begin();
while (it != blocks.end()) {
Block* block = *it;
if (!block->prev && !block->next) {
C10_CUDA_CHECK(cudaFree((void*)block->ptr));
StatTypes stat_types;
stat_types[static_cast<size_t>(StatType::AGGREGATE)] = true;
stat_types[static_cast<size_t>(get_stat_type_for_pool(*(block->pool)))] = true;
update_stat_array(stats.segment, -1, stat_types);
update_stat_array(stats.reserved_bytes, -block->size, stat_types);
auto cur = it;
++it;
blocks.erase(cur);
delete block;
} else {
++it;
}
}
}
cudaEvent_t create_event_internal() {
cudaEvent_t event;
C10_CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
return event;
}
void free_event_internal(cudaEvent_t event) {
C10_CUDA_CHECK(cudaEventDestroy(event));
}
void synchronize_and_free_events() {
// Synchronize on outstanding events and then free associated blocks.
for (auto& e : cuda_events) {
cudaEvent_t event = e.first;
Block* block = e.second;
C10_CUDA_CHECK(cudaEventSynchronize(event));
free_event_internal(event);
block->event_count--;
if (block->event_count == 0) {
free_block(block);
}
}
cuda_events.clear();
}
void insert_events(Block* block)
{
int prev_device;
C10_CUDA_CHECK(cudaGetDevice(&prev_device));
stream_set streams(std::move(block->stream_uses));
AT_ASSERT(block->stream_uses.empty());
for (auto it = streams.begin(); it != streams.end(); ++it) {
C10_CUDA_CHECK(cudaSetDevice(it->device_index()));
cudaEvent_t event = create_event_internal();
C10_CUDA_CHECK(cudaEventRecord(event, it->stream()));
block->event_count++;
cuda_events.emplace_back(event, block);
}
C10_CUDA_CHECK(cudaSetDevice(prev_device));
}
void process_events()
{
// Process outstanding cudaEvents. Events that are completed are removed
// from the queue, and the 'event_count' for the corresponding allocation
// is decremented. Stops at the first event which has not been completed.
// Since events on different devices or streams may occur out of order,
// the processing of some events may be delayed.
while (!cuda_events.empty()) {
auto& e = cuda_events.front();
cudaEvent_t event = e.first;
Block* block = e.second;
cudaError_t err = cudaEventQuery(event);
if (err == cudaErrorNotReady) {
// ignore and clear the error if not ready
cudaGetLastError();
break;
} else if (err != cudaSuccess) {
C10_CUDA_CHECK(err);
}
free_event_internal(event);
block->event_count--;
if (block->event_count == 0) {
free_block(block);
}
cuda_events.pop_front();
}
}
// Accumulates sizes of all memory blocks for given device in given pool
void cache_info_aux(BlockPool& blocks, size_t* total, size_t* largest)
{
for (auto it = blocks.begin(); it != blocks.end(); ++it) {
size_t blocksize = (*it)->size;
*total += blocksize;
if (blocksize > *largest) {
*largest = blocksize;
}
}
}
};
class THCCachingAllocator {
private:
std::mutex mutex;
// allocated blocks by device pointer
std::unordered_map<void*, Block*> allocated_blocks;
// lock around calls to cudaFree (to prevent deadlocks with NCCL)
mutable std::mutex cuda_free_mutex;
void add_allocated_block(Block* block) {
std::lock_guard<std::mutex> lock(mutex);
allocated_blocks[block->ptr] = block;
}
public:
std::vector<std::unique_ptr<DeviceCachingAllocator>> device_allocator;
std::mutex* getCudaFreeMutex() const {
return &cuda_free_mutex;
}
Block* get_allocated_block(void *ptr, bool remove=false) {
std::lock_guard<std::mutex> lock(mutex);
auto it = allocated_blocks.find(ptr);
if (it == allocated_blocks.end()) {
return nullptr;
}
Block* block = it->second;
if (remove) {
allocated_blocks.erase(it);
}
return block;
}
void init(int device_count) {
int size = device_allocator.size();
if (size < device_count) {
device_allocator.resize(device_count);
for (int i = size; i < device_count; i++) {
device_allocator[i] = std::unique_ptr<DeviceCachingAllocator>(new DeviceCachingAllocator());
}
}
}
/** allocates a block which is safe to use from the provided stream */
void malloc(void** devPtr, int device, size_t size, cudaStream_t stream) {
TORCH_INTERNAL_ASSERT(
0 <= device && device < device_allocator.size(),
"Allocator not initialized for device ",
device,
": did you call init?");
Block* block = device_allocator[device]->malloc(device, size, stream);
add_allocated_block(block);
*devPtr = (void*)block->ptr;
}
void free(void* ptr) {
if (!ptr) {
return;
}
Block* block = get_allocated_block(ptr, true /* remove */);
if (!block) {
AT_ERROR("invalid device pointer: ", ptr);
}
device_allocator[block->device]->free(block);
}
void emptyCache() {
int count = device_allocator.size();
for (int i = 0; i < count; i++)
device_allocator[i]->emptyCache();
}
void* getBaseAllocation(void* ptr, size_t* outSize)
{
Block* block = get_allocated_block(ptr);
if (!block) {
AT_ERROR("invalid device pointer: ", ptr);
}
return device_allocator[block->device]->getBaseAllocation(block, outSize);
}
void recordStream(const DataPtr& ptr, cuda::CUDAStream stream) {
// Empty tensor's storage().data() might be a null ptr. As there is no
// blocks associated with those tensors, it is fine to do nothing here.
if (!ptr.get()) {
return;
}
// If a tensor is not allocated by this instance, simply skip
// This usually happens when CUDA tensors are shared across processes,
// we have implemented reference counting based sharing mechanism to
// guarantee tensors won't be accidentally freed by one process while
// they are still being used in another
if (ptr.get_deleter() != &raw_delete)
return;
Block* block = get_allocated_block(ptr.get());
// block must not be null reaching here
TORCH_INTERNAL_ASSERT(block != nullptr, "No allocated block can be found");
device_allocator[block->device]->recordStream(block, stream);
}
std::vector<SegmentInfo> snapshot() {
std::vector<SegmentInfo> result;
int count = device_allocator.size();
for (int i = 0; i < count; i++) {
auto snap = device_allocator[i]->snapshot();
result.insert(result.end(), snap.begin(), snap.end());
}
return result;
}
};
THCCachingAllocator caching_allocator;
// Returns whether to force all allocations to bypass the caching allocator and
// go straight to cudaMalloc. This setting is useful when debugging GPU memory
// errors, since the caching allocator foils cuda-memcheck.
bool forceUncachedAllocator() {
static bool force_uncached =
getenv("PYTORCH_NO_CUDA_MEMORY_CACHING") != nullptr;
return force_uncached;
}
static void uncached_delete(void* ptr) {
C10_CUDA_CHECK(cudaFree(ptr));
}
// NB: I decided not to fold this into THCCachingAllocator, because the latter
// has a lot more methods and it wasn't altogether clear that they should
// actually be publicly exposed
struct CudaCachingAllocator : public Allocator {
DataPtr allocate(size_t size) const override {
int device;
C10_CUDA_CHECK(cudaGetDevice(&device));
void* r = nullptr;
if (forceUncachedAllocator()) {
C10_CUDA_CHECK(cudaMalloc(&r, size));
return {r, r, &uncached_delete, Device(DeviceType::CUDA, device)};
}
if (size != 0) {
caching_allocator.malloc(&r, device, size, cuda::getCurrentCUDAStream(device));
}
return {r, r, &raw_delete, Device(DeviceType::CUDA, device)};
}
DeleterFnPtr raw_deleter() const override {
return &raw_delete;
}
};
CudaCachingAllocator device_allocator;
Allocator* get(void)
{
return &device_allocator;
}
void init(int device_count) {
caching_allocator.init(device_count);
}
void emptyCache(void) {
caching_allocator.emptyCache();
}
void cacheInfo(int dev_id, size_t* cachedAndFree, size_t* largestBlock) {
caching_allocator.device_allocator[dev_id]->cacheInfo(cachedAndFree, largestBlock);
}
void* getBaseAllocation(void *ptr, size_t *size)
{
return caching_allocator.getBaseAllocation(ptr, size);
}
void recordStream(const DataPtr& ptr, cuda::CUDAStream stream)
{
caching_allocator.recordStream(ptr, stream);
}
std::mutex* getFreeMutex()
{
return caching_allocator.getCudaFreeMutex();
}
static inline void assertValidDevice(int device) {
int device_num = device_count();
AT_ASSERTM(0 <= device && device < device_num, "Invalid device argument.");
}
DeviceStats getDeviceStats(int device) {
assertValidDevice(device);
return caching_allocator.device_allocator[device]->getStats();
}
void resetAccumulatedStats(int device) {
assertValidDevice(device);
caching_allocator.device_allocator[device]->resetAccumulatedStats();
}
void resetPeakStats(int device) {
assertValidDevice(device);
caching_allocator.device_allocator[device]->resetPeakStats();
}
std::vector<SegmentInfo> snapshot() {
return caching_allocator.snapshot();
}
//
// In CUDA IPC, sender sends a tensor to receiver, getIpcDevPtr
// is called by the receiving process to map the CUDA memory from the sending
// process into its own address space.
//
// CUDA IPC only allows sharing a big memory block associated with a cudaIpcMemHandle_t
// and it can be opened only **once** per context per process. There can be
// multiple types of storage in the same IPC mem block, so we must cache the
// device ptr to construct typed storage as it comes.
//
// ipcMemHandle_to_devptr maps a cudaIpcMemHandle_t to a device pointer in the process
// that can be used to access the memory block in the sender process.
// It only saves a weak_ptr of the device pointer in the map, the shared_ptr
// will be used to reconstruct all storages in this CudaMalloc allocation.
// And it will deleted in cudaIpcCloseMemHandle when its reference count is 0.
//
namespace {
std::mutex IpcMutex;
std::unordered_map<std::string, std::weak_ptr<void>> ipcMemHandle_to_devptr;
}
std::shared_ptr<void> getIpcDevPtr(std::string handle) {
std::lock_guard<std::mutex> lock(IpcMutex);
auto iter = ipcMemHandle_to_devptr.find(handle);
if (iter != ipcMemHandle_to_devptr.end()) {
auto devptr = iter->second.lock();
if (devptr) return devptr;
}
// This ipcMemHandle hasn't been opened, or already expired, open it to
// enable IPC access to that mem block.
void *dev = nullptr;
auto ipc_handle = reinterpret_cast<const cudaIpcMemHandle_t*>(handle.c_str());
C10_CUDA_CHECK(cudaIpcOpenMemHandle(&dev, *ipc_handle, cudaIpcMemLazyEnablePeerAccess));
// devPtr has to be deleted in same device when created.
int curr_device;
C10_CUDA_CHECK(cudaGetDevice(&curr_device));
auto sp = std::shared_ptr<void>(
dev,
[handle, curr_device](void *ptr) {
cuda::CUDAGuard device_guard(curr_device);
std::lock_guard<std::mutex> deleter_lock(IpcMutex);
C10_CUDA_CHECK(cudaIpcCloseMemHandle(ptr));
ipcMemHandle_to_devptr.erase(handle);});
std::weak_ptr<void> wp = sp;
// To eliminate an additional search, we can use insert().
// It doesn't overwrite when key already exists(ptr expired).
// But in the deleter for sp we erased the entry,
// this should be safe to do now.
ipcMemHandle_to_devptr.insert(iter, {handle, wp});
return sp;
}
void* raw_alloc(size_t nbytes) {
if (nbytes == 0) {
return nullptr;
}
int device;
C10_CUDA_CHECK(cudaGetDevice(&device));
void* r = nullptr;
caching_allocator.malloc(&r, device, nbytes, cuda::getCurrentCUDAStream(device));
return r;
}
void* raw_alloc_with_stream(size_t nbytes, cudaStream_t stream) {
if (nbytes == 0) {
return nullptr;
}
int device;
C10_CUDA_CHECK(cudaGetDevice(&device));
void* r = nullptr;
caching_allocator.malloc(&r, device, nbytes, stream);
return r;
}
void raw_delete(void* ptr) {
caching_allocator.free(ptr);
}
} // namespace CUDACachingAllocator
}} // namespace c10::cuda
|