File: Metaprogramming.h

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (252 lines) | stat: -rw-r--r-- 10,550 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#pragma once

#include <type_traits>
#include <array>
#include <functional>
#include <c10/util/TypeList.h>
#include <c10/util/Array.h>

namespace c10 { namespace guts {

/**
 * Access information about result type or arguments from a function type.
 * Example:
 * using A = function_traits<int (float, double)>::return_type // A == int
 * using A = function_traits<int (float, double)>::parameter_types::tuple_type // A == tuple<float, double>
 */
template<class Func> struct function_traits {
  static_assert(!std::is_same<Func, Func>::value, "In function_traits<Func>, Func must be a plain function type.");
};
template<class Result, class... Args>
struct function_traits<Result (Args...)> {
  using func_type = Result (Args...);
  using return_type = Result;
  using parameter_types = typelist::typelist<Args...>;
  static constexpr auto number_of_parameters = sizeof...(Args);
};

/**
 * infer_function_traits: creates a `function_traits` type for a simple
 * function (pointer) or functor (lambda/struct). Currently does not support
 * class methods.
 */

template <typename Functor>
struct infer_function_traits {
  using type = function_traits<c10::guts::detail::strip_class_t<decltype(&Functor::operator())>>;
};

template <typename Result, typename... Args>
struct infer_function_traits<Result (*)(Args...)> {
  using type = function_traits<Result(Args...)>;
};

template <typename Result, typename... Args>
struct infer_function_traits<Result (Args...)> {
  using type = function_traits<Result(Args...)>;
};

template <typename T>
using infer_function_traits_t = typename infer_function_traits<T>::type;

/**
 * Use extract_arg_by_filtered_index to return the i-th argument whose
 * type fulfills a given type trait. The argument itself is perfectly forwarded.
 *
 * Example:
 * std::string arg1 = "Hello";
 * std::string arg2 = "World";
 * std::string&& result = extract_arg_by_filtered_index<is_string, 1>(0, arg1, 2.0, std::move(arg2));
 *
 * Warning: Taking the result by rvalue reference can cause segfaults because ownership will not be passed on
 *          from the original reference. The original reference dies after the expression and the resulting
 */
namespace detail {
template<template <class> class Condition, size_t index, class Enable, class... Args> struct extract_arg_by_filtered_index_;
template<template <class> class Condition, size_t index, class Head, class... Tail>
struct extract_arg_by_filtered_index_<Condition, index, std::enable_if_t<!Condition<Head>::value>, Head, Tail...> {
  static decltype(auto) call(Head&& /*head*/, Tail&&... tail) {
    return extract_arg_by_filtered_index_<Condition, index, void, Tail...>::call(std::forward<Tail>(tail)...);
  }
};
template<template <class> class Condition, size_t index, class Head, class... Tail>
struct extract_arg_by_filtered_index_<Condition, index, std::enable_if_t<Condition<Head>::value && index != 0>, Head, Tail...> {
  static decltype(auto) call(Head&& /*head*/, Tail&&... tail) {
    return extract_arg_by_filtered_index_<Condition, index-1, void, Tail...>::call(std::forward<Tail>(tail)...);
  }
};
template<template <class> class Condition, size_t index>
struct extract_arg_by_filtered_index_<Condition, index, void> {
  static void call() {
    static_assert(index != index, "extract_arg_by_filtered_index out of range.");
  }
};
template<template <class> class Condition, size_t index, class Head, class... Tail>
struct extract_arg_by_filtered_index_<Condition, index, std::enable_if_t<Condition<Head>::value && index == 0>, Head, Tail...> {
  static decltype(auto) call(Head&& head, Tail&&... /*tail*/) {
    return std::forward<Head>(head);
  }
};
}
template<template <class> class Condition, size_t index, class... Args>
decltype(auto) extract_arg_by_filtered_index(Args&&... args) {
  static_assert(is_type_condition<Condition>::value, "In extract_arg_by_filtered_index, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");
  return detail::extract_arg_by_filtered_index_<Condition, index, void, Args...>::call(std::forward<Args>(args)...);
}



/**
 * Use filter_map to map a subset of the arguments to values.
 * The subset is defined by type traits, and will be evaluated at compile time.
 * At runtime, it will just loop over the pre-filtered arguments to create an std::array.
 *
 * Example:
 *  std::array<double, 2> result = filter_map<double, std::is_integral>([] (auto a) {return (double)a;}, 3, "bla", 4);
 *  // result == {3.0, 4.0}
 */
namespace detail {

template<class ResultType, size_t num_results> struct filter_map_ {
   template<template <class> class Condition, class Mapper, class... Args, size_t... INDEX>
   static guts::array<ResultType, num_results> call(const Mapper& mapper, std::index_sequence<INDEX...>, Args&&... args) {
     return guts::array<ResultType, num_results> { mapper(extract_arg_by_filtered_index<Condition, INDEX>(std::forward<Args>(args)...))... };
   }
};
template<class ResultType> struct filter_map_<ResultType, 0> {
  template<template <class> class Condition, class Mapper, class... Args, size_t... INDEX>
  static guts::array<ResultType, 0> call(const Mapper& /*mapper*/, std::index_sequence<INDEX...>, Args&&... /*args*/) {
    return guts::array<ResultType, 0> { };
  }
};
}

template<class ResultType, template <class> class Condition, class Mapper, class... Args>
decltype(auto) filter_map(const Mapper& mapper, Args&&... args) {
  static_assert(is_type_condition<Condition>::value, "In filter_map<Result, Condition>, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");

  static constexpr size_t num_results = typelist::count_if<Condition, typelist::typelist<Args...>>::value;
  return detail::filter_map_<ResultType, num_results>::template call<Condition, Mapper, Args...>(mapper, std::make_index_sequence<num_results>(), std::forward<Args>(args)...);
}


/**
 * Use tuple_elements to extract a position-indexed subset of elements
 * from the argument tuple into a result tuple.
 *
 * Example:
 *  std::tuple<int, const char*, double> t = std::make_tuple(0, "HEY", 2.0);
 *  std::tuple<int, double> result = tuple_elements(t, std::index_sequence<0, 2>());
 */
template <class Tuple, size_t... ns>
constexpr auto tuple_elements(Tuple t, std::index_sequence<ns...>) {
  return std::tuple<std::tuple_element_t<ns, Tuple>...>(std::get<ns>(t)...);
}

/**
 * Use tuple_take to extract the first n elements from the argument tuple
 * into a result tuple.
 *
 * Example:
 *  std::tuple<int, const char*, double> t = std::make_tuple(0, "HEY", 2.0);
 *  std::tuple<int, const char*> result = tuple_take<decltype(t), 2>(t);
 */
template <class Tuple, size_t n>
constexpr auto tuple_take(Tuple t) {
  return tuple_elements(t, std::make_index_sequence<n>{});
}


/**
 * Use tuple_map to run a mapping function over a tuple to get a new tuple.
 *
 * Example 1:
 *   auto result = tuple_map(std::tuple<int32_t, int32_t, int32_t>(3, 4, 5), [] (int32_t a) -> int16_t {return a+1;});
 *   // result == std::tuple<int16_t, int16_t, int16_t>(4, 5, 6)
 *
 * Example 2:
 *   struct Mapper {
 *     std::string operator()(int32_t a) const {
 *       return std::to_string(a);
 *     }
 *     int64_t operator()(const std::string& a) const {
 *        return atoi(a.c_str());
 *     }
 *   };
 *   auto result = tuple_map(std::tuple<int32_t, std::string>(3, "4"), Mapper());
 *   // result == std::tuple<std::string, int64_t>("3", 4)
 *
 * Example 3:
 *   struct A final {
 *    int32_t func() {
 *      return 5;
 *    }
 *  };
 *  struct B final {
 *    std::string func() {
 *      return "5";
 *    }
 *  };
 *  auto result = tuple_map(std::make_tuple(A(), B()), [] (auto a) { return a.func(); });
 *  // result == std::tuple<int32_t, std::string>(5, "5");
 */
namespace detail {
  template<class Mapper, class... Args, size_t... Indices>
  auto tuple_map(std::tuple<Args...>&& tuple, const Mapper& mapper, std::index_sequence<Indices...>) {
    return std::tuple<decltype(mapper(std::forward<Args>(std::get<Indices>(tuple))))...>(
      mapper(std::forward<Args>(std::get<Indices>(tuple)))...
    );
  }
}

template<class Mapper, class... Args>
auto tuple_map(std::tuple<Args...>&& tuple, const Mapper& mapper) {
  return detail::tuple_map(std::move(tuple), mapper, std::index_sequence_for<Args...>());
}


/**
 * tuple_concat concatenates several tuples into one.
 */

namespace detail {
  // extract_tuple_element_by_index is a helper that takes a list of tuples and extracts the i-th element
  // in a flattened view of the tuples.
  // Example: extract_tuple_element_by_index<3>(tuple(2,3), tuple(4,5), tuple(6,7)) == 5.

  template<size_t index, class HeadTuple, class... TailTuples, std::enable_if_t<index < std::tuple_size<HeadTuple>::value, int> = 0>
  decltype(auto) extract_tuple_element_by_index(HeadTuple&& head_tuple, TailTuples&&... tail_tuples) {
    // TODO if constexpr instead of enable_if
    return std::get<index>(std::forward<HeadTuple>(head_tuple));
  }

  template<size_t index, class HeadTuple, class... TailTuples, std::enable_if_t<index >= std::tuple_size<HeadTuple>::value, int> = 0>
  decltype(auto) extract_tuple_element_by_index(HeadTuple&& head_tuple, TailTuples&&... tail_tuples) {
    // TODO if constexpr instead of enable_if
    return extract_tuple_element_by_index<index - std::tuple_size<HeadTuple>::value, TailTuples...>(std::forward<TailTuples>(tail_tuples)...);
  }

  static_assert(
    std::is_same<
      int&&,
      decltype(extract_tuple_element_by_index<2>(std::tuple<int32_t>(2), std::tuple<int32_t&&, int32_t>(std::declval<int32_t>(), 3)))
    >::value,
    "extract_tuple_element_by_index should return rvalue references if the tuple contains them. It should not move them into a value"
  );

  template<class ConcatenatedTuple, class... Tuples, size_t... ElementIndices>
  auto tuple_concat(Tuples&&... tuples, std::index_sequence<ElementIndices...>) {
    return ConcatenatedTuple(extract_tuple_element_by_index<ElementIndices>(std::forward<Tuples>(tuples)...)...);
  }
}

template<class... Tuples>
  auto tuple_concat(Tuples&&... tuples) {
    using flattened_types = guts::typelist::concat_t<guts::typelist::from_tuple_t<Tuples>...>;
    using concatenated_tuple = guts::typelist::to_tuple_t<flattened_types>;
    constexpr size_t num_elements = guts::typelist::size<flattened_types>::value;
    return detail::tuple_concat<concatenated_tuple, Tuples...>(std::forward<Tuples>(tuples)..., std::make_index_sequence<num_elements>());
  }


}}