1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
#pragma once
#include <type_traits>
#include <array>
#include <functional>
#include <c10/util/TypeList.h>
#include <c10/util/Array.h>
namespace c10 { namespace guts {
/**
* Access information about result type or arguments from a function type.
* Example:
* using A = function_traits<int (float, double)>::return_type // A == int
* using A = function_traits<int (float, double)>::parameter_types::tuple_type // A == tuple<float, double>
*/
template<class Func> struct function_traits {
static_assert(!std::is_same<Func, Func>::value, "In function_traits<Func>, Func must be a plain function type.");
};
template<class Result, class... Args>
struct function_traits<Result (Args...)> {
using func_type = Result (Args...);
using return_type = Result;
using parameter_types = typelist::typelist<Args...>;
static constexpr auto number_of_parameters = sizeof...(Args);
};
/**
* infer_function_traits: creates a `function_traits` type for a simple
* function (pointer) or functor (lambda/struct). Currently does not support
* class methods.
*/
template <typename Functor>
struct infer_function_traits {
using type = function_traits<c10::guts::detail::strip_class_t<decltype(&Functor::operator())>>;
};
template <typename Result, typename... Args>
struct infer_function_traits<Result (*)(Args...)> {
using type = function_traits<Result(Args...)>;
};
template <typename Result, typename... Args>
struct infer_function_traits<Result (Args...)> {
using type = function_traits<Result(Args...)>;
};
template <typename T>
using infer_function_traits_t = typename infer_function_traits<T>::type;
/**
* Use extract_arg_by_filtered_index to return the i-th argument whose
* type fulfills a given type trait. The argument itself is perfectly forwarded.
*
* Example:
* std::string arg1 = "Hello";
* std::string arg2 = "World";
* std::string&& result = extract_arg_by_filtered_index<is_string, 1>(0, arg1, 2.0, std::move(arg2));
*
* Warning: Taking the result by rvalue reference can cause segfaults because ownership will not be passed on
* from the original reference. The original reference dies after the expression and the resulting
*/
namespace detail {
template<template <class> class Condition, size_t index, class Enable, class... Args> struct extract_arg_by_filtered_index_;
template<template <class> class Condition, size_t index, class Head, class... Tail>
struct extract_arg_by_filtered_index_<Condition, index, std::enable_if_t<!Condition<Head>::value>, Head, Tail...> {
static decltype(auto) call(Head&& /*head*/, Tail&&... tail) {
return extract_arg_by_filtered_index_<Condition, index, void, Tail...>::call(std::forward<Tail>(tail)...);
}
};
template<template <class> class Condition, size_t index, class Head, class... Tail>
struct extract_arg_by_filtered_index_<Condition, index, std::enable_if_t<Condition<Head>::value && index != 0>, Head, Tail...> {
static decltype(auto) call(Head&& /*head*/, Tail&&... tail) {
return extract_arg_by_filtered_index_<Condition, index-1, void, Tail...>::call(std::forward<Tail>(tail)...);
}
};
template<template <class> class Condition, size_t index>
struct extract_arg_by_filtered_index_<Condition, index, void> {
static void call() {
static_assert(index != index, "extract_arg_by_filtered_index out of range.");
}
};
template<template <class> class Condition, size_t index, class Head, class... Tail>
struct extract_arg_by_filtered_index_<Condition, index, std::enable_if_t<Condition<Head>::value && index == 0>, Head, Tail...> {
static decltype(auto) call(Head&& head, Tail&&... /*tail*/) {
return std::forward<Head>(head);
}
};
}
template<template <class> class Condition, size_t index, class... Args>
decltype(auto) extract_arg_by_filtered_index(Args&&... args) {
static_assert(is_type_condition<Condition>::value, "In extract_arg_by_filtered_index, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");
return detail::extract_arg_by_filtered_index_<Condition, index, void, Args...>::call(std::forward<Args>(args)...);
}
/**
* Use filter_map to map a subset of the arguments to values.
* The subset is defined by type traits, and will be evaluated at compile time.
* At runtime, it will just loop over the pre-filtered arguments to create an std::array.
*
* Example:
* std::array<double, 2> result = filter_map<double, std::is_integral>([] (auto a) {return (double)a;}, 3, "bla", 4);
* // result == {3.0, 4.0}
*/
namespace detail {
template<class ResultType, size_t num_results> struct filter_map_ {
template<template <class> class Condition, class Mapper, class... Args, size_t... INDEX>
static guts::array<ResultType, num_results> call(const Mapper& mapper, std::index_sequence<INDEX...>, Args&&... args) {
return guts::array<ResultType, num_results> { mapper(extract_arg_by_filtered_index<Condition, INDEX>(std::forward<Args>(args)...))... };
}
};
template<class ResultType> struct filter_map_<ResultType, 0> {
template<template <class> class Condition, class Mapper, class... Args, size_t... INDEX>
static guts::array<ResultType, 0> call(const Mapper& /*mapper*/, std::index_sequence<INDEX...>, Args&&... /*args*/) {
return guts::array<ResultType, 0> { };
}
};
}
template<class ResultType, template <class> class Condition, class Mapper, class... Args>
decltype(auto) filter_map(const Mapper& mapper, Args&&... args) {
static_assert(is_type_condition<Condition>::value, "In filter_map<Result, Condition>, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");
static constexpr size_t num_results = typelist::count_if<Condition, typelist::typelist<Args...>>::value;
return detail::filter_map_<ResultType, num_results>::template call<Condition, Mapper, Args...>(mapper, std::make_index_sequence<num_results>(), std::forward<Args>(args)...);
}
/**
* Use tuple_elements to extract a position-indexed subset of elements
* from the argument tuple into a result tuple.
*
* Example:
* std::tuple<int, const char*, double> t = std::make_tuple(0, "HEY", 2.0);
* std::tuple<int, double> result = tuple_elements(t, std::index_sequence<0, 2>());
*/
template <class Tuple, size_t... ns>
constexpr auto tuple_elements(Tuple t, std::index_sequence<ns...>) {
return std::tuple<std::tuple_element_t<ns, Tuple>...>(std::get<ns>(t)...);
}
/**
* Use tuple_take to extract the first n elements from the argument tuple
* into a result tuple.
*
* Example:
* std::tuple<int, const char*, double> t = std::make_tuple(0, "HEY", 2.0);
* std::tuple<int, const char*> result = tuple_take<decltype(t), 2>(t);
*/
template <class Tuple, size_t n>
constexpr auto tuple_take(Tuple t) {
return tuple_elements(t, std::make_index_sequence<n>{});
}
/**
* Use tuple_map to run a mapping function over a tuple to get a new tuple.
*
* Example 1:
* auto result = tuple_map(std::tuple<int32_t, int32_t, int32_t>(3, 4, 5), [] (int32_t a) -> int16_t {return a+1;});
* // result == std::tuple<int16_t, int16_t, int16_t>(4, 5, 6)
*
* Example 2:
* struct Mapper {
* std::string operator()(int32_t a) const {
* return std::to_string(a);
* }
* int64_t operator()(const std::string& a) const {
* return atoi(a.c_str());
* }
* };
* auto result = tuple_map(std::tuple<int32_t, std::string>(3, "4"), Mapper());
* // result == std::tuple<std::string, int64_t>("3", 4)
*
* Example 3:
* struct A final {
* int32_t func() {
* return 5;
* }
* };
* struct B final {
* std::string func() {
* return "5";
* }
* };
* auto result = tuple_map(std::make_tuple(A(), B()), [] (auto a) { return a.func(); });
* // result == std::tuple<int32_t, std::string>(5, "5");
*/
namespace detail {
template<class Mapper, class... Args, size_t... Indices>
auto tuple_map(std::tuple<Args...>&& tuple, const Mapper& mapper, std::index_sequence<Indices...>) {
return std::tuple<decltype(mapper(std::forward<Args>(std::get<Indices>(tuple))))...>(
mapper(std::forward<Args>(std::get<Indices>(tuple)))...
);
}
}
template<class Mapper, class... Args>
auto tuple_map(std::tuple<Args...>&& tuple, const Mapper& mapper) {
return detail::tuple_map(std::move(tuple), mapper, std::index_sequence_for<Args...>());
}
/**
* tuple_concat concatenates several tuples into one.
*/
namespace detail {
// extract_tuple_element_by_index is a helper that takes a list of tuples and extracts the i-th element
// in a flattened view of the tuples.
// Example: extract_tuple_element_by_index<3>(tuple(2,3), tuple(4,5), tuple(6,7)) == 5.
template<size_t index, class HeadTuple, class... TailTuples, std::enable_if_t<index < std::tuple_size<HeadTuple>::value, int> = 0>
decltype(auto) extract_tuple_element_by_index(HeadTuple&& head_tuple, TailTuples&&... tail_tuples) {
// TODO if constexpr instead of enable_if
return std::get<index>(std::forward<HeadTuple>(head_tuple));
}
template<size_t index, class HeadTuple, class... TailTuples, std::enable_if_t<index >= std::tuple_size<HeadTuple>::value, int> = 0>
decltype(auto) extract_tuple_element_by_index(HeadTuple&& head_tuple, TailTuples&&... tail_tuples) {
// TODO if constexpr instead of enable_if
return extract_tuple_element_by_index<index - std::tuple_size<HeadTuple>::value, TailTuples...>(std::forward<TailTuples>(tail_tuples)...);
}
static_assert(
std::is_same<
int&&,
decltype(extract_tuple_element_by_index<2>(std::tuple<int32_t>(2), std::tuple<int32_t&&, int32_t>(std::declval<int32_t>(), 3)))
>::value,
"extract_tuple_element_by_index should return rvalue references if the tuple contains them. It should not move them into a value"
);
template<class ConcatenatedTuple, class... Tuples, size_t... ElementIndices>
auto tuple_concat(Tuples&&... tuples, std::index_sequence<ElementIndices...>) {
return ConcatenatedTuple(extract_tuple_element_by_index<ElementIndices>(std::forward<Tuples>(tuples)...)...);
}
}
template<class... Tuples>
auto tuple_concat(Tuples&&... tuples) {
using flattened_types = guts::typelist::concat_t<guts::typelist::from_tuple_t<Tuples>...>;
using concatenated_tuple = guts::typelist::to_tuple_t<flattened_types>;
constexpr size_t num_elements = guts::typelist::size<flattened_types>::value;
return detail::tuple_concat<concatenated_tuple, Tuples...>(std::forward<Tuples>(tuples)..., std::make_index_sequence<num_elements>());
}
}}
|