1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
|
# ---[ Generate and install header and cpp files
include(../cmake/Codegen.cmake)
# ---[ Vulkan code gen
if(USE_VULKAN)
include(../cmake/VulkanCodegen.cmake)
endif()
# ---[ MSVC OpenMP modification
if(MSVC)
include(../cmake/public/utils.cmake)
endif()
# ATen parallelism settings
# OMP - OpenMP for intra-op, native thread pool for inter-op parallelism
# NATIVE - using native thread pool for intra- and inter-op parallelism
# TBB - using TBB for intra- and native thread pool for inter-op parallelism
if(INTERN_BUILD_MOBILE AND NOT BUILD_CAFFE2_MOBILE)
set(ATEN_THREADING "NATIVE" CACHE STRING "ATen parallel backend")
else()
if(USE_OPENMP)
set(ATEN_THREADING "OMP" CACHE STRING "ATen parallel backend")
elseif(USE_TBB)
set(ATEN_THREADING "TBB" CACHE STRING "ATen parallel backend")
else()
set(ATEN_THREADING "NATIVE" CACHE STRING "ATen parallel backend")
endif()
endif()
set(AT_PARALLEL_OPENMP 0)
set(AT_PARALLEL_NATIVE 0)
set(AT_PARALLEL_NATIVE_TBB 0)
message(STATUS "Using ATen parallel backend: ${ATEN_THREADING}")
if("${ATEN_THREADING}" STREQUAL "OMP")
set(AT_PARALLEL_OPENMP 1)
elseif("${ATEN_THREADING}" STREQUAL "NATIVE")
set(AT_PARALLEL_NATIVE 1)
elseif("${ATEN_THREADING}" STREQUAL "TBB")
if(NOT USE_TBB)
message(FATAL_ERROR "Using TBB backend but USE_TBB is off")
endif()
set(AT_PARALLEL_NATIVE_TBB 1)
else()
message(FATAL_ERROR "Unknown ATen parallel backend: ${ATEN_THREADING}")
endif()
# ---[ Declare source file lists
# ---[ ATen build
if(INTERN_BUILD_ATEN_OPS)
set(__caffe2_CMAKE_POSITION_INDEPENDENT_CODE ${CMAKE_POSITION_INDEPENDENT_CODE})
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
add_subdirectory(../aten aten)
set(CMAKE_POSITION_INDEPENDENT_CODE ${__caffe2_CMAKE_POSITION_INDEPENDENT_CODE})
# Generate the headers wrapped by our operator
add_custom_command(OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/contrib/aten/aten_op.h
COMMAND
"${PYTHON_EXECUTABLE}" ${CMAKE_CURRENT_SOURCE_DIR}/contrib/aten/gen_op.py
--aten_root=${CMAKE_CURRENT_SOURCE_DIR}/../aten
--template_dir=${CMAKE_CURRENT_SOURCE_DIR}/contrib/aten
--yaml_dir=${CMAKE_CURRENT_BINARY_DIR}/../aten/src/ATen
--install_dir=${CMAKE_CURRENT_BINARY_DIR}/contrib/aten
DEPENDS
ATEN_CPU_FILES_GEN_TARGET
${CMAKE_BINARY_DIR}/aten/src/ATen/Declarations.yaml
${CMAKE_CURRENT_SOURCE_DIR}/contrib/aten/gen_op.py
${CMAKE_CURRENT_SOURCE_DIR}/contrib/aten/aten_op_template.h)
add_custom_target(__aten_op_header_gen
DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/contrib/aten/aten_op.h)
add_library(aten_op_header_gen INTERFACE)
add_dependencies(aten_op_header_gen __aten_op_header_gen)
# Add source, includes, and libs to lists
list(APPEND Caffe2_CPU_SRCS ${ATen_CPU_SRCS})
list(APPEND Caffe2_GPU_SRCS ${ATen_CUDA_SRCS})
list(APPEND Caffe2_GPU_SRCS_W_SORT_BY_KEY ${ATen_CUDA_SRCS_W_SORT_BY_KEY})
list(APPEND Caffe2_HIP_SRCS ${ATen_HIP_SRCS})
list(APPEND Caffe2_HIP_SRCS ${ATen_HIP_SRCS_W_SORT_BY_KEY})
list(APPEND Caffe2_CPU_TEST_SRCS ${ATen_CPU_TEST_SRCS})
list(APPEND Caffe2_GPU_TEST_SRCS ${ATen_CUDA_TEST_SRCS})
list(APPEND Caffe2_HIP_TEST_SRCS ${ATen_HIP_TEST_SRCS})
list(APPEND Caffe2_CPU_TEST_SRCS ${ATen_CORE_TEST_SRCS})
list(APPEND Caffe2_VULKAN_TEST_SRCS ${ATen_VULKAN_TEST_SRCS})
list(APPEND Caffe2_CPU_INCLUDE ${ATen_CPU_INCLUDE})
list(APPEND Caffe2_GPU_INCLUDE ${ATen_CUDA_INCLUDE})
list(APPEND Caffe2_HIP_INCLUDE ${ATen_HIP_INCLUDE})
list(APPEND Caffe2_VULKAN_INCLUDE ${ATen_VULKAN_INCLUDE})
list(APPEND Caffe2_DEPENDENCY_LIBS ${ATen_CPU_DEPENDENCY_LIBS})
list(APPEND Caffe2_CUDA_DEPENDENCY_LIBS ${ATen_CUDA_DEPENDENCY_LIBS})
list(APPEND Caffe2_HIP_DEPENDENCY_LIBS ${ATen_HIP_DEPENDENCY_LIBS})
list(APPEND Caffe2_DEPENDENCY_INCLUDE ${ATen_THIRD_PARTY_INCLUDE})
endif()
# ---[ Caffe2 build
# Note: the folders that are being commented out have not been properly
# addressed yet.
add_subdirectory(core)
add_subdirectory(serialize)
add_subdirectory(utils)
if(BUILD_CAFFE2)
add_subdirectory(perfkernels)
endif()
# Skip modules that are not used by libtorch mobile yet.
if(BUILD_CAFFE2 AND (NOT INTERN_BUILD_MOBILE OR BUILD_CAFFE2_MOBILE))
add_subdirectory(contrib)
add_subdirectory(predictor)
add_subdirectory(predictor/emulator)
add_subdirectory(core/nomnigraph)
if(USE_NVRTC)
add_subdirectory(cuda_rtc)
endif()
add_subdirectory(db)
add_subdirectory(distributed)
# add_subdirectory(experiments) # note, we may remove this folder at some point
add_subdirectory(ideep)
add_subdirectory(image)
add_subdirectory(video)
add_subdirectory(mobile)
add_subdirectory(mpi)
add_subdirectory(observers)
add_subdirectory(onnx)
if(BUILD_CAFFE2_OPS)
add_subdirectory(operators)
add_subdirectory(operators/rnn)
if(USE_FBGEMM)
add_subdirectory(quantization)
add_subdirectory(quantization/server)
endif()
if(USE_QNNPACK)
add_subdirectory(operators/quantized)
endif()
endif()
add_subdirectory(opt)
add_subdirectory(proto)
add_subdirectory(python)
add_subdirectory(queue)
add_subdirectory(sgd)
add_subdirectory(share)
# add_subdirectory(test) # todo: use caffe2_gtest_main instead of gtest_main because we will need to call GlobalInit
add_subdirectory(transforms)
endif()
if(NOT BUILD_CAFFE2)
add_subdirectory(proto)
endif()
# Advanced: if we have allow list specified, we will do intersections for all
# main lib srcs.
if(CAFFE2_ALLOWLISTED_FILES)
caffe2_do_allowlist(Caffe2_CPU_SRCS CAFFE2_ALLOWLISTED_FILES)
caffe2_do_allowlist(Caffe2_GPU_SRCS CAFFE2_ALLOWLISTED_FILES)
caffe2_do_allowlist(Caffe2_HIP_SRCS CAFFE2_ALLOWLISTED_FILES)
endif()
# Debug messages - if you want to get a list of source files, enable the
# following.
if(FALSE)
message(STATUS "CPU sources: ")
foreach(tmp ${Caffe2_CPU_SRCS})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "GPU sources: ")
foreach(tmp ${Caffe2_GPU_SRCS})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "CPU include: ")
foreach(tmp ${Caffe2_CPU_INCLUDE})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "GPU include: ")
foreach(tmp ${Caffe2_GPU_INCLUDE})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "CPU test sources: ")
foreach(tmp ${Caffe2_CPU_TEST_SRCS})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "GPU test sources: ")
foreach(tmp ${Caffe2_GPU_TEST_SRCS})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "HIP sources: ")
foreach(tmp ${Caffe2_HIP_SRCS})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "HIP test sources: ")
foreach(tmp ${Caffe2_HIP_TEST_SRCS})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "ATen CPU test sources: ")
foreach(tmp ${ATen_CPU_TEST_SRCS})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "ATen CUDA test sources: ")
foreach(tmp ${ATen_CUDA_TEST_SRCS})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "ATen HIP test sources: ")
foreach(tmp ${ATen_HIP_TEST_SRCS})
message(STATUS " " ${tmp})
endforeach()
message(STATUS "ATen Vulkan test sources: ")
foreach(tmp ${ATen_VULKAN_TEST_SRCS})
message(STATUS " " ${tmp})
endforeach()
endif()
if(NOT INTERN_BUILD_MOBILE OR BUILD_CAFFE2_MOBILE)
# ---[ List of libraries to link with
add_library(caffe2_protos STATIC $<TARGET_OBJECTS:Caffe2_PROTO>)
add_dependencies(caffe2_protos Caffe2_PROTO)
# If we are going to link protobuf locally inside caffe2 libraries, what we will do is
# to create a helper static library that always contains libprotobuf source files, and
# link the caffe2 related dependent libraries to it.
target_include_directories(caffe2_protos INTERFACE $<INSTALL_INTERFACE:include>)
# Reason for this public dependency is as follows:
# (1) Strictly speaking, we should not expose any Protobuf related functions. We should
# only use function interfaces wrapped with our own public API, and link protobuf
# locally.
# (2) However, currently across the Caffe2 codebase, we have extensive use of protobuf
# functionalities. For example, not only libcaffe2.so uses it, but also other
# binaries such as python extensions etc. As a result, we will have to have a
# transitive dependency to libprotobuf.
#
# Good thing is that, if we specify CAFFE2_LINK_LOCAL_PROTOBUF, then we do not need to
# separately deploy protobuf binaries - libcaffe2.so will contain all functionalities
# one needs. One can verify this via ldd.
#
# TODO item in the future includes:
# (1) Enable using lite protobuf
# (2) Properly define public API that do not directly depend on protobuf itself.
# (3) Expose the libprotobuf.a file for dependent libraries to link to.
#
# What it means for users/developers?
# (1) Users: nothing affecting the users, other than the fact that CAFFE2_LINK_LOCAL_PROTOBUF
# avoids the need to deploy protobuf.
# (2) Developers: if one simply uses core caffe2 functionality without using protobuf,
# nothing changes. If one has a dependent library that uses protobuf, then one needs to
# have the right protobuf version as well as linking to libprotobuf.a.
target_link_libraries(caffe2_protos PUBLIC protobuf::libprotobuf)
if(NOT BUILD_SHARED_LIBS)
install(TARGETS caffe2_protos ARCHIVE DESTINATION "${CMAKE_INSTALL_LIBDIR}")
endif()
endif()
# ==========================================================
# formerly-libtorch
# ==========================================================
set(TORCH_SRC_DIR "${PROJECT_SOURCE_DIR}/torch")
set(TORCH_ROOT "${PROJECT_SOURCE_DIR}")
if(NOT TORCH_INSTALL_BIN_DIR)
set(TORCH_INSTALL_BIN_DIR bin)
endif()
if(NOT TORCH_INSTALL_INCLUDE_DIR)
set(TORCH_INSTALL_INCLUDE_DIR include)
endif()
if(NOT TORCH_INSTALL_LIB_DIR)
set(TORCH_INSTALL_LIB_DIR lib)
endif()
if(NOT INTERN_BUILD_MOBILE OR NOT BUILD_CAFFE2_MOBILE)
if(USE_DISTRIBUTED)
# Define this target even if we're building without TensorPipe, to make life
# easier to other targets that depend on this. However, in that case, by not
# setting the USE_TENSORPIPE compile definition, this target will just end
# up being empty. Downstream targets should also add a #ifdef guard.
if(NOT WIN32)
add_library(process_group_agent "${TORCH_SRC_DIR}/csrc/distributed/rpc/process_group_agent.cpp" "${TORCH_SRC_DIR}/csrc/distributed/rpc/process_group_agent.h")
target_link_libraries(process_group_agent PRIVATE torch c10d)
add_dependencies(process_group_agent torch c10d)
add_library(tensorpipe_agent
"${TORCH_SRC_DIR}/csrc/distributed/rpc/tensorpipe_agent.cpp"
"${TORCH_SRC_DIR}/csrc/distributed/rpc/tensorpipe_agent.h"
"${TORCH_SRC_DIR}/csrc/distributed/rpc/tensorpipe_utils.cpp"
"${TORCH_SRC_DIR}/csrc/distributed/rpc/tensorpipe_utils.h"
)
target_link_libraries(tensorpipe_agent PRIVATE torch c10d tensorpipe)
add_dependencies(tensorpipe_agent torch c10d)
if(USE_TENSORPIPE)
target_compile_definitions(tensorpipe_agent PUBLIC USE_TENSORPIPE)
target_link_libraries(tensorpipe_agent PRIVATE tensorpipe)
add_dependencies(tensorpipe_agent tensorpipe)
endif()
endif()
endif()
set(CMAKE_POSITION_INDEPENDENT_CODE TRUE)
# Generate files
set(TOOLS_PATH "${TORCH_ROOT}/tools")
configure_file("${TORCH_SRC_DIR}/_utils_internal.py"
"${TOOLS_PATH}/shared/_utils_internal.py"
COPYONLY)
set(GENERATED_CXX_TORCH
"${TORCH_SRC_DIR}/csrc/autograd/generated/Functions.cpp"
"${TORCH_SRC_DIR}/csrc/jit/generated/generated_unboxing_wrappers_0.cpp"
"${TORCH_SRC_DIR}/csrc/jit/generated/generated_unboxing_wrappers_1.cpp"
"${TORCH_SRC_DIR}/csrc/jit/generated/generated_unboxing_wrappers_2.cpp"
)
if(NOT INTERN_DISABLE_AUTOGRAD)
list(APPEND GENERATED_CXX_TORCH
"${TORCH_SRC_DIR}/csrc/autograd/generated/VariableType_0.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/VariableType_1.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/VariableType_2.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/VariableType_3.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/VariableType_4.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/TraceType_0.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/TraceType_1.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/TraceType_2.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/TraceType_3.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/TraceType_4.cpp"
)
endif()
set(GENERATED_H_TORCH
"${TORCH_SRC_DIR}/csrc/autograd/generated/Functions.h"
"${TORCH_SRC_DIR}/csrc/autograd/generated/variable_factories.h"
)
if(NOT INTERN_DISABLE_AUTOGRAD)
list(APPEND GENERATED_H_TORCH
"${TORCH_SRC_DIR}/csrc/autograd/generated/VariableType.h"
)
endif()
set(GENERATED_CXX_PYTHON
"${TORCH_SRC_DIR}/csrc/autograd/generated/python_functions.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/python_variable_methods.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/python_torch_functions.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/python_nn_functions.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/python_fft_functions.cpp"
"${TORCH_SRC_DIR}/csrc/autograd/generated/python_linalg_functions.cpp"
)
set(GENERATED_H_PYTHON
"${TORCH_SRC_DIR}/csrc/autograd/generated/python_functions.h"
)
set(GENERATED_TESTING_PYTHON
"${TORCH_SRC_DIR}/testing/_internal/generated/annotated_fn_args.py"
)
set(TORCH_GENERATED_CODE
${GENERATED_CXX_TORCH}
${GENERATED_H_TORCH}
${GENERATED_CXX_PYTHON}
${GENERATED_H_PYTHON}
${GENERATED_TESTING_PYTHON}
)
add_custom_command(
OUTPUT
${TORCH_GENERATED_CODE}
COMMAND
"${PYTHON_EXECUTABLE}" tools/setup_helpers/generate_code.py
--declarations-path "${CMAKE_BINARY_DIR}/aten/src/ATen/Declarations.yaml"
--nn-path "aten/src"
$<$<BOOL:${INTERN_DISABLE_AUTOGRAD}>:--disable-autograd>
$<$<BOOL:${SELECTED_OP_LIST}>:--selected-op-list-path="${SELECTED_OP_LIST}">
--force_schema_registration
DEPENDS
"${CMAKE_BINARY_DIR}/aten/src/ATen/Declarations.yaml"
"${TOOLS_PATH}/autograd/templates/VariableType.h"
"${TOOLS_PATH}/autograd/templates/VariableType.cpp"
"${TOOLS_PATH}/autograd/templates/TraceType.cpp"
"${TOOLS_PATH}/autograd/templates/Functions.h"
"${TOOLS_PATH}/autograd/templates/Functions.cpp"
"${TOOLS_PATH}/autograd/templates/python_functions.h"
"${TOOLS_PATH}/autograd/templates/python_functions.cpp"
"${TOOLS_PATH}/autograd/templates/python_variable_methods.cpp"
"${TOOLS_PATH}/autograd/templates/python_torch_functions.cpp"
"${TOOLS_PATH}/autograd/templates/python_nn_functions.cpp"
"${TOOLS_PATH}/autograd/templates/python_fft_functions.cpp"
"${TOOLS_PATH}/autograd/templates/python_linalg_functions.cpp"
"${TOOLS_PATH}/autograd/templates/variable_factories.h"
"${TOOLS_PATH}/autograd/templates/annotated_fn_args.py"
"${TOOLS_PATH}/autograd/deprecated.yaml"
"${TOOLS_PATH}/autograd/derivatives.yaml"
"${TOOLS_PATH}/autograd/gen_autograd_functions.py"
"${TOOLS_PATH}/autograd/gen_autograd.py"
"${TOOLS_PATH}/autograd/gen_python_functions.py"
"${TOOLS_PATH}/autograd/gen_variable_factories.py"
"${TOOLS_PATH}/autograd/gen_variable_type.py"
"${TOOLS_PATH}/autograd/load_derivatives.py"
"${TOOLS_PATH}/autograd/nested_dict.py"
"${TOOLS_PATH}/autograd/utils.py"
"${TOOLS_PATH}/jit/gen_unboxing_wrappers.py"
"${TOOLS_PATH}/jit/templates/generated_unboxing_wrappers.cpp"
WORKING_DIRECTORY "${TORCH_ROOT}")
# Required workaround for libtorch_python.so build
# see https://samthursfield.wordpress.com/2015/11/21/cmake-dependencies-between-targets-and-files-and-custom-commands/#custom-commands-in-different-directories
add_custom_target(
generate-torch-sources
DEPENDS ${TORCH_GENERATED_CODE}
)
set(TORCH_SRCS ${GENERATED_CXX_TORCH})
list(APPEND TORCH_SRCS ${GENERATED_H_TORCH})
append_filelist("libtorch_cmake_sources" TORCH_SRCS)
# Required workaround for LLVM 9 includes.
if(NOT MSVC)
set_source_files_properties(${TORCH_SRC_DIR}/csrc/jit/tensorexpr/llvm_jit.cpp PROPERTIES COMPILE_FLAGS -Wno-noexcept-type)
endif()
# Disable certain warnings for GCC-9.X
if(CMAKE_COMPILER_IS_GNUCXX AND (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 9.0.0))
# See https://github.com/pytorch/pytorch/issues/38856
set_source_files_properties(${TORCH_SRC_DIR}/csrc/jit/tensorexpr/llvm_jit.cpp PROPERTIES COMPILE_FLAGS "-Wno-redundant-move -Wno-noexcept-type")
set_source_files_properties(${TORCH_SRC_DIR}/csrc/jit/tensorexpr/llvm_codegen.cpp PROPERTIES COMPILE_FLAGS -Wno-init-list-lifetime)
endif()
if(NOT INTERN_DISABLE_MOBILE_INTERP)
set(MOBILE_SRCS
${TORCH_SRC_DIR}/csrc/jit/mobile/function.cpp
${TORCH_SRC_DIR}/csrc/jit/mobile/import.cpp
${TORCH_SRC_DIR}/csrc/jit/mobile/import_data.cpp
${TORCH_SRC_DIR}/csrc/jit/mobile/module.cpp
${TORCH_SRC_DIR}/csrc/jit/mobile/observer.cpp
${TORCH_SRC_DIR}/csrc/jit/mobile/interpreter.cpp
${TORCH_SRC_DIR}/csrc/jit/mobile/export_data.cpp
${TORCH_SRC_DIR}/csrc/jit/mobile/optim/sgd.cpp
${TORCH_SRC_DIR}/csrc/jit/mobile/sequential.cpp
)
list(APPEND TORCH_SRCS ${MOBILE_SRCS})
endif()
# This one needs to be unconditionally added as Functions.cpp is also unconditionally added
list(APPEND TORCH_SRCS
${TORCH_SRC_DIR}/csrc/autograd/FunctionsManual.cpp
)
if(NOT INTERN_DISABLE_AUTOGRAD)
list(APPEND TORCH_SRCS
${TORCH_SRC_DIR}/csrc/autograd/TraceTypeManual.cpp
${TORCH_SRC_DIR}/csrc/autograd/VariableTypeManual.cpp
)
endif()
if(NOT INTERN_BUILD_MOBILE)
list(APPEND TORCH_SRCS
${TORCH_SRC_DIR}/csrc/api/src/jit.cpp
${TORCH_SRC_DIR}/csrc/jit/serialization/onnx.cpp
${TORCH_SRC_DIR}/csrc/jit/serialization/export.cpp
${TORCH_SRC_DIR}/csrc/jit/serialization/export_module.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/fuser/cpu/fused_kernel.cpp
${TORCH_SRC_DIR}/csrc/jit/api/module_save.cpp
${TORCH_SRC_DIR}/csrc/utils/byte_order.cpp
)
# Disable legacy import of building without Caffe2 support
if(BUILD_CAFFE2)
list(APPEND TORCH_SRCS
${TORCH_SRC_DIR}/csrc/jit/serialization/import_legacy.cpp
)
else()
set_source_files_properties(
${TORCH_SRC_DIR}/csrc/jit/serialization/import.cpp
PROPERTIES COMPILE_FLAGS "-DC10_DISABLE_LEGACY_IMPORT"
)
endif()
if(USE_DISTRIBUTED AND NOT WIN32)
append_filelist("libtorch_distributed_sources" TORCH_SRCS)
endif()
endif()
if(USE_CUDA)
list(APPEND Caffe2_GPU_SRCS
${TORCH_SRC_DIR}/csrc/jit/codegen/fuser/cuda/fused_kernel.cpp
${TORCH_SRC_DIR}/csrc/autograd/profiler_cuda.cpp
${TORCH_SRC_DIR}/csrc/autograd/functions/comm.cpp
${TORCH_SRC_DIR}/csrc/cuda/comm.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/arith.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/compute_at.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/codegen.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/dispatch.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/expr_evaluator.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/executor.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/executor_kernel_arg.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/executor_launch_params.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/executor_utils.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/fusion.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/graph_fuser.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/index_compute.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/instrumentation.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/ir_base_nodes.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/ir_cloner.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/ir_graphviz.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/ir_nodes.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/ir_iostream.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/iter_visitor.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/kernel.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/kernel_cache.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/kernel_ir.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/kernel_ir_builder.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/lower_index.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/lower_insert_syncs.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/lower_loops.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/lower_thread_predicate.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/lower_unroll.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/lower_utils.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/lower_validation.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/lower2device.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/manager.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/mutator.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/parser.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/partition.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/predicate_compute.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/register_interface.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/scheduler.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/shape_inference.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/tensor_view.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/transform_iter.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/transform_replay.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/transform_rfactor.cpp
${TORCH_SRC_DIR}/csrc/jit/codegen/cuda/type.cpp
${TORCH_SRC_DIR}/csrc/jit/tensorexpr/cuda_codegen.cpp
)
add_library(caffe2_nvrtc SHARED ${ATen_NVRTC_STUB_SRCS})
if(MSVC)
# Delay load nvcuda.dll so we can import torch compiled with cuda on a CPU-only machine
set(DELAY_LOAD_FLAGS "-DELAYLOAD:nvcuda.dll;delayimp.lib")
else()
set(DELAY_LOAD_FLAGS "")
endif()
target_link_libraries(caffe2_nvrtc ${CUDA_NVRTC} ${CUDA_CUDA_LIB} ${CUDA_NVRTC_LIB} ${DELAY_LOAD_FLAGS})
target_include_directories(caffe2_nvrtc PRIVATE ${CUDA_INCLUDE_DIRS})
install(TARGETS caffe2_nvrtc DESTINATION "${TORCH_INSTALL_LIB_DIR}")
if(USE_NCCL)
list(APPEND Caffe2_GPU_SRCS
${TORCH_SRC_DIR}/csrc/cuda/nccl.cpp)
endif()
endif()
if(USE_ROCM)
list(APPEND Caffe2_HIP_SRCS
${TORCH_SRC_DIR}/csrc/jit/codegen/fuser/cuda/fused_kernel.cpp
${TORCH_SRC_DIR}/csrc/autograd/profiler_cuda.cpp
${TORCH_SRC_DIR}/csrc/autograd/functions/comm.cpp
${TORCH_SRC_DIR}/csrc/cuda/comm.cpp
${TORCH_SRC_DIR}/csrc/jit/tensorexpr/cuda_codegen.cpp
)
if(USE_NCCL)
list(APPEND Caffe2_HIP_SRCS
${TORCH_SRC_DIR}/csrc/cuda/nccl.cpp)
endif()
# caffe2_nvrtc's stubs to driver APIs are useful for HIP.
# See NOTE [ ATen NVRTC Stub and HIP ]
add_library(caffe2_nvrtc SHARED ${ATen_NVRTC_STUB_SRCS})
target_link_libraries(caffe2_nvrtc ${PYTORCH_HIP_HCC_LIBRARIES} ${ROCM_HIPRTC_LIB})
target_compile_definitions(caffe2_nvrtc PRIVATE USE_ROCM __HIP_PLATFORM_HCC__)
install(TARGETS caffe2_nvrtc DESTINATION "${TORCH_INSTALL_LIB_DIR}")
endif()
if(NOT NO_API)
list(APPEND TORCH_SRCS
${TORCH_SRC_DIR}/csrc/api/src/cuda.cpp
${TORCH_SRC_DIR}/csrc/api/src/data/datasets/mnist.cpp
${TORCH_SRC_DIR}/csrc/api/src/data/samplers/distributed.cpp
${TORCH_SRC_DIR}/csrc/api/src/data/samplers/random.cpp
${TORCH_SRC_DIR}/csrc/api/src/data/samplers/sequential.cpp
${TORCH_SRC_DIR}/csrc/api/src/data/samplers/stream.cpp
${TORCH_SRC_DIR}/csrc/api/src/enum.cpp
${TORCH_SRC_DIR}/csrc/api/src/serialize.cpp
${TORCH_SRC_DIR}/csrc/api/src/jit.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/init.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/module.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/_functions.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/activation.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/adaptive.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/batchnorm.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/normalization.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/instancenorm.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/conv.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/dropout.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/distance.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/embedding.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/fold.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/linear.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/loss.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/padding.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/pixelshuffle.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/pooling.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/rnn.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/upsampling.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/transformer.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/modules/container/functional.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/activation.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/adaptive.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/batchnorm.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/embedding.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/instancenorm.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/normalization.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/conv.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/dropout.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/linear.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/padding.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/pooling.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/rnn.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/vision.cpp
${TORCH_SRC_DIR}/csrc/api/src/nn/options/transformer.cpp
${TORCH_SRC_DIR}/csrc/api/src/optim/adagrad.cpp
${TORCH_SRC_DIR}/csrc/api/src/optim/adam.cpp
${TORCH_SRC_DIR}/csrc/api/src/optim/adamw.cpp
${TORCH_SRC_DIR}/csrc/api/src/optim/lbfgs.cpp
${TORCH_SRC_DIR}/csrc/api/src/optim/optimizer.cpp
${TORCH_SRC_DIR}/csrc/api/src/optim/rmsprop.cpp
${TORCH_SRC_DIR}/csrc/api/src/optim/serialize.cpp
${TORCH_SRC_DIR}/csrc/api/src/optim/sgd.cpp
${TORCH_SRC_DIR}/csrc/api/src/serialize/input-archive.cpp
${TORCH_SRC_DIR}/csrc/api/src/serialize/output-archive.cpp
)
endif()
list(APPEND Caffe2_CPU_SRCS ${TORCH_SRCS})
endif()
# NOTE [ Linking AVX and non-AVX files ]
#
# Regardless of the CPU capabilities, we build some files with AVX and AVX2
# instruction set. If the host CPU doesn't support those, we simply ignore their
# functions at runtime during dispatch.
#
# We must make sure that those files are at the end of the input list when
# linking the torch_cpu library. Otherwise, the following error scenario might
# occur:
# 1. A non-AVX and an AVX file both call a function defined with the `inline`
# keyword
# 2. The compiler decides not to inline this function
# 3. Two different versions of the machine code are generated for this function:
# one without AVX instructions and one with AVX.
# 4. When linking, the AVX version is found earlier in the input object files,
# so the linker makes the entire library use it, even in code not guarded by
# the dispatcher.
# 5. A CPU without AVX support executes this function, encounters an AVX
# instruction and crashes.
#
# Thus we organize the input files in the following order:
# 1. All files with no AVX support
# 2. All files with AVX support (conveniently, they all have names ending with
# 'AVX.cpp')
# 3. All files with AVX2 support ('*AVX2.cpp')
set(Caffe2_CPU_SRCS_NON_AVX)
set(Caffe2_CPU_SRCS_AVX)
set(Caffe2_CPU_SRCS_AVX2)
foreach(input_filename ${Caffe2_CPU_SRCS})
if(${input_filename} MATCHES "AVX\\.cpp")
list(APPEND Caffe2_CPU_SRCS_AVX ${input_filename})
elseif(${input_filename} MATCHES "AVX2\\.cpp")
list(APPEND Caffe2_CPU_SRCS_AVX2 ${input_filename})
else()
list(APPEND Caffe2_CPU_SRCS_NON_AVX ${input_filename})
endif()
endforeach(input_filename)
set(Caffe2_CPU_SRCS ${Caffe2_CPU_SRCS_NON_AVX} ${Caffe2_CPU_SRCS_AVX} ${Caffe2_CPU_SRCS_AVX2})
# ==========================================================
# END formerly-libtorch sources
# ==========================================================
add_library(torch_cpu ${Caffe2_CPU_SRCS})
if(HAVE_SOVERSION)
set_target_properties(torch_cpu PROPERTIES
VERSION ${TORCH_VERSION} SOVERSION ${TORCH_SOVERSION})
endif()
torch_compile_options(torch_cpu) # see cmake/public/utils.cmake
if(NOT FMT_LIBRARY)
add_library(fmt STATIC IMPORTED)
find_library(FMT_LIBRARY fmt)
set_property(TARGET fmt PROPERTY IMPORTED_LOCATION "${FMT_LIBRARY}")
endif()
target_link_libraries(torch_cpu PRIVATE fmt)
if(USE_LLVM AND LLVM_FOUND)
llvm_map_components_to_libnames(LLVM_LINK_LIBS
support core analysis executionengine instcombine
scalaropts transformutils native orcjit)
target_link_libraries(torch_cpu PRIVATE ${LLVM_LINK_LIBS})
endif(USE_LLVM AND LLVM_FOUND)
# This is required for older versions of CMake, which don't allow
# specifying add_library() without a list of source files
set(DUMMY_EMPTY_FILE ${CMAKE_BINARY_DIR}/empty.cpp)
if(MSVC)
set(DUMMY_FILE_CONTENT "__declspec(dllexport) int ignore_this_library_placeholder(){return 0\\;}")
else()
set(DUMMY_FILE_CONTENT "")
endif()
file(WRITE ${DUMMY_EMPTY_FILE} ${DUMMY_FILE_CONTENT})
# Wrapper library for people who link against torch and expect both CPU and CUDA support
# Contains "torch_cpu" and "torch_cuda"
add_library(torch ${DUMMY_EMPTY_FILE})
if(HAVE_SOVERSION)
set_target_properties(torch PROPERTIES
VERSION ${TORCH_VERSION} SOVERSION ${TORCH_SOVERSION})
endif()
if(USE_ROCM)
filter_list(__caffe2_hip_srcs_cpp Caffe2_HIP_SRCS "\\.(cu|hip)$")
set_source_files_properties(${__caffe2_hip_srcs_cpp} PROPERTIES HIP_SOURCE_PROPERTY_FORMAT 1)
endif()
# Compile exposed libraries.
if(USE_ROCM)
set(CUDA_LINK_LIBRARIES_KEYWORD PRIVATE)
hip_add_library(torch_hip ${Caffe2_HIP_SRCS})
set(CUDA_LINK_LIBRARIES_KEYWORD)
torch_compile_options(torch_hip) # see cmake/public/utils.cmake
# TODO: Not totally sure if this is live or not
if(USE_NCCL)
target_link_libraries(torch_hip PRIVATE __caffe2_nccl)
target_compile_definitions(torch_hip PRIVATE USE_NCCL)
endif()
elseif(USE_CUDA)
set(CUDA_LINK_LIBRARIES_KEYWORD PRIVATE)
if(CUDA_SEPARABLE_COMPILATION)
# Separate compilation fails when kernels using `thrust::sort_by_key`
# are linked with the rest of CUDA code. Workaround by linking the separateley
set(_generated_name "torch_cuda_w_sort_by_key_intermediate_link${CMAKE_C_OUTPUT_EXTENSION}")
set(torch_cuda_w_sort_by_key_link_file "${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/torch_cuda.dir/${CMAKE_CFG_INTDIR}/${_generated_name}")
cuda_wrap_srcs(torch_cuda OBJ Caffe2_GPU_W_SORT_BY_KEY_OBJ ${Caffe2_GPU_SRCS_W_SORT_BY_KEY})
CUDA_LINK_SEPARABLE_COMPILATION_OBJECTS("${torch_cuda_w_sort_by_key_link_file}" torch_cpu "${_options}" "${torch_cuda_SEPARABLE_COMPILATION_OBJECTS}")
set( torch_cuda_SEPARABLE_COMPILATION_OBJECTS )
# Pass compiled sort-by-key object + device-linked fatbin as extra dependencies of torch_cuda
cuda_add_library(torch_cuda ${Caffe2_GPU_SRCS} ${torch_cuda_w_sort_by_key_link_file} ${Caffe2_GPU_W_SORT_BY_KEY_OBJ})
else()
cuda_add_library(torch_cuda ${Caffe2_GPU_SRCS} ${Caffe2_GPU_SRCS_W_SORT_BY_KEY})
endif()
set(CUDA_LINK_LIBRARIES_KEYWORD)
torch_compile_options(torch_cuda) # see cmake/public/utils.cmake
if(USE_NCCL)
target_link_libraries(torch_cuda PRIVATE __caffe2_nccl)
target_compile_definitions(torch_cuda PRIVATE USE_NCCL)
endif()
endif()
# ==========================================================
# formerly-libtorch flags
# ==========================================================
if(NOT INTERN_BUILD_MOBILE)
# Forces caffe2.pb.h to be generated before its dependents are compiled.
# Adding the generated header file to the ${TORCH_SRCS} list is not sufficient
# to establish the dependency, since the generation procedure is declared in a different CMake file.
# See https://samthursfield.wordpress.com/2015/11/21/cmake-dependencies-between-targets-and-files-and-custom-commands/#custom-commands-in-different-directories
add_dependencies(torch_cpu Caffe2_PROTO)
endif()
if(NOT INTERN_BUILD_MOBILE OR NOT BUILD_CAFFE2_MOBILE)
if(NOT NO_API)
target_include_directories(torch_cpu PRIVATE
${TORCH_SRC_DIR}/csrc/api
${TORCH_SRC_DIR}/csrc/api/include)
endif()
if(USE_CUDA AND MSVC)
# -INCLUDE is used to ensure torch_cuda is linked against in a project that relies on it.
# Related issue: https://github.com/pytorch/pytorch/issues/31611
target_link_libraries(torch_cuda INTERFACE "-INCLUDE:?warp_size@cuda@at@@YAHXZ")
endif()
set(TH_CPU_INCLUDE
# dense
aten/src/TH
${CMAKE_CURRENT_BINARY_DIR}/aten/src/TH
${TORCH_ROOT}/aten/src
${CMAKE_CURRENT_BINARY_DIR}/aten/src
${CMAKE_BINARY_DIR}/aten/src)
target_include_directories(torch_cpu PRIVATE ${TH_CPU_INCLUDE})
set(ATen_CPU_INCLUDE
${TORCH_ROOT}/aten/src
${CMAKE_CURRENT_BINARY_DIR}/../aten/src
${CMAKE_CURRENT_BINARY_DIR}/../aten/src/ATen
${CMAKE_BINARY_DIR}/aten/src)
if(USE_TBB)
list(APPEND ATen_CPU_INCLUDE ${TBB_ROOT_DIR}/include)
target_link_libraries(torch_cpu PUBLIC tbb)
endif()
target_include_directories(torch_cpu PRIVATE ${ATen_CPU_INCLUDE})
target_include_directories(torch_cpu PRIVATE
${TORCH_SRC_DIR}/csrc)
target_include_directories(torch_cpu PRIVATE
${TORCH_ROOT}/third_party/miniz-2.0.8)
install(DIRECTORY "${TORCH_SRC_DIR}/csrc"
DESTINATION ${TORCH_INSTALL_INCLUDE_DIR}/torch
FILES_MATCHING PATTERN "*.h")
install(FILES
"${TORCH_SRC_DIR}/script.h"
"${TORCH_SRC_DIR}/extension.h"
"${TORCH_SRC_DIR}/custom_class.h"
"${TORCH_SRC_DIR}/library.h"
"${TORCH_SRC_DIR}/custom_class_detail.h"
DESTINATION ${TORCH_INSTALL_INCLUDE_DIR}/torch)
if(BUILD_TEST AND NOT USE_ROCM)
add_subdirectory(${TORCH_ROOT}/test/cpp/jit ${CMAKE_BINARY_DIR}/test_jit)
add_subdirectory(${TORCH_ROOT}/test/cpp/tensorexpr ${CMAKE_BINARY_DIR}/test_tensorexpr)
if(USE_DISTRIBUTED AND NOT WIN32)
add_subdirectory(${TORCH_ROOT}/test/cpp/rpc ${CMAKE_BINARY_DIR}/test_cpp_rpc)
endif()
endif()
if(BUILD_TEST AND NOT NO_API)
add_subdirectory(${TORCH_ROOT}/test/cpp/api ${CMAKE_BINARY_DIR}/test_api)
add_subdirectory(${TORCH_ROOT}/test/cpp/dist_autograd ${CMAKE_BINARY_DIR}/dist_autograd)
endif()
# XXX This ABI check cannot be run with arm-linux-androideabi-g++
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU")
if(DEFINED GLIBCXX_USE_CXX11_ABI)
message(STATUS "_GLIBCXX_USE_CXX11_ABI is already defined as a cmake variable")
else()
message(STATUS "${CMAKE_CXX_COMPILER} ${TORCH_SRC_DIR}/abi-check.cpp -o ${CMAKE_BINARY_DIR}/abi-check")
execute_process(
COMMAND
"${CMAKE_CXX_COMPILER}"
"${TORCH_SRC_DIR}/abi-check.cpp"
"-o"
"${CMAKE_BINARY_DIR}/abi-check"
RESULT_VARIABLE ABI_CHECK_COMPILE_RESULT)
if(ABI_CHECK_COMPILE_RESULT)
message(FATAL_ERROR "Could not compile ABI Check: ${ABI_CHECK_COMPILE_RESULT}")
endif()
execute_process(
COMMAND "${CMAKE_BINARY_DIR}/abi-check"
RESULT_VARIABLE ABI_CHECK_RESULT
OUTPUT_VARIABLE GLIBCXX_USE_CXX11_ABI)
if(ABI_CHECK_RESULT)
message(WARNING "Could not run ABI Check: ${ABI_CHECK_RESULT}")
endif()
endif()
message(STATUS "Determined _GLIBCXX_USE_CXX11_ABI=${GLIBCXX_USE_CXX11_ABI}")
endif()
# CMake config for external projects.
configure_file(
${PROJECT_SOURCE_DIR}/cmake/TorchConfigVersion.cmake.in
${PROJECT_BINARY_DIR}/TorchConfigVersion.cmake
@ONLY)
configure_file(
${TORCH_ROOT}/cmake/TorchConfig.cmake.in
${PROJECT_BINARY_DIR}/TorchConfig.cmake
@ONLY)
install(FILES
${PROJECT_BINARY_DIR}/TorchConfigVersion.cmake
${PROJECT_BINARY_DIR}/TorchConfig.cmake
DESTINATION share/cmake/Torch)
if(USE_DISTRIBUTED)
add_subdirectory(${TORCH_SRC_DIR}/lib/c10d lib_c10d)
endif()
# ---[ Torch python bindings build
add_subdirectory(../torch torch)
endif()
# ==========================================================
# END formerly-libtorch flags
# ==========================================================
if(NOT NO_API)
target_include_directories(torch_cpu PUBLIC
$<BUILD_INTERFACE:${TORCH_SRC_DIR}/csrc/api>
$<BUILD_INTERFACE:${TORCH_SRC_DIR}/csrc/api/include>)
endif()
if(USE_OPENMP)
find_package(OpenMP QUIET)
endif()
if(USE_OPENMP AND OPENMP_FOUND)
if(MSVC AND OpenMP_CXX_LIBRARIES MATCHES "libiomp5md\\.lib")
set(AT_MKL_MT 1)
else()
set(AT_MKL_MT 0)
endif()
message(STATUS "pytorch is compiling with OpenMP. \n"
"OpenMP CXX_FLAGS: ${OpenMP_CXX_FLAGS}. \n"
"OpenMP libraries: ${OpenMP_CXX_LIBRARIES}.")
target_compile_options(torch_cpu PRIVATE ${OpenMP_CXX_FLAGS})
target_link_libraries(torch_cpu PRIVATE ${OpenMP_CXX_LIBRARIES})
endif()
if(USE_ROCM)
target_compile_definitions(torch_hip PRIVATE
USE_ROCM
__HIP_PLATFORM_HCC__
)
# NB: Massive hack. torch/csrc/jit/codegen/fuser/codegen.cpp includes
# torch/csrc/jit/codegen/fuser/cuda/resource_strings.h which changes the
# strings depending on if you're __HIP_PLATFORM_HCC__ or not.
# But that file is in torch_cpu! So, against all odds, this macro
# has to be set on torch_cpu too. I also added it to torch for
# better luck
target_compile_definitions(torch_cpu PRIVATE
USE_ROCM
__HIP_PLATFORM_HCC__
)
target_compile_definitions(torch PRIVATE
USE_ROCM
__HIP_PLATFORM_HCC__
)
target_include_directories(torch_hip PRIVATE
/opt/rocm/include
/opt/rocm/hcc/include
/opt/rocm/rocblas/include
/opt/rocm/hipsparse/include
)
endif()
# Pass USE_DISTRIBUTED to torch_cpu, as some codes in jit/pickler.cpp and
# jit/unpickler.cpp need to be compiled only when USE_DISTRIBUTED is set
if(USE_DISTRIBUTED)
target_compile_definitions(torch_cpu PRIVATE
USE_DISTRIBUTED
)
# Pass USE_RPC in order to reduce use of
# #if defined(USE_DISTRIBUTED) && !defined(_WIN32)
# need to be removed when RPC is supported
if(NOT WIN32)
target_compile_definitions(torch_cpu PRIVATE
USE_RPC
)
endif()
# Pass USE_TENSORPIPE to torch_cpu as some parts of rpc/utils.cpp
# can only be compiled with USE_TENSORPIPE is set.
if(USE_TENSORPIPE)
target_compile_definitions(torch_cpu PRIVATE
USE_TENSORPIPE
)
endif()
endif()
if(NOT INTERN_BUILD_MOBILE OR BUILD_CAFFE2_MOBILE)
caffe2_interface_library(caffe2_protos caffe2_protos_whole)
target_link_libraries(torch_cpu PRIVATE caffe2_protos_whole)
if(${CAFFE2_LINK_LOCAL_PROTOBUF})
target_link_libraries(torch_cpu INTERFACE protobuf::libprotobuf)
else()
target_link_libraries(torch_cpu PUBLIC protobuf::libprotobuf)
endif()
endif()
if(USE_OPENMP AND OPENMP_FOUND)
message(STATUS "Caffe2 is compiling with OpenMP. \n"
"OpenMP CXX_FLAGS: ${OpenMP_CXX_FLAGS}. \n"
"OpenMP libraries: ${OpenMP_CXX_LIBRARIES}.")
target_link_libraries(torch_cpu PRIVATE ${OpenMP_CXX_LIBRARIES})
endif()
if($ENV{TH_BINARY_BUILD})
if(NOT MSVC AND USE_CUDA AND NOT APPLE)
# Note [Extra MKL symbols for MAGMA in torch_cpu]
#
# When we build CUDA libraries and link against MAGMA, MAGMA makes use of
# some BLAS symbols in its CPU fallbacks when it has no GPU versions
# of kernels. Previously, we ensured the BLAS symbols were filled in by
# MKL by linking torch_cuda with BLAS, but when we are statically linking
# against MKL (when we do wheel builds), this actually ends up pulling in a
# decent chunk of MKL into torch_cuda, inflating our torch_cuda binary
# size by 8M. torch_cpu exposes most of the MKL symbols we need, but
# empirically we determined that there are four which it doesn't provide. If
# we link torch_cpu with these --undefined symbols, we can ensure they
# do get pulled in, and then we can avoid statically linking in MKL to
# torch_cuda at all!
#
# We aren't really optimizing for binary size on Windows (and this link
# line doesn't work on Windows), so don't do it there.
#
# These linker commands do not work on OS X, do not attempt this there.
# (It shouldn't matter anyway, though, because OS X has dropped CUDA support)
set_target_properties(torch_cpu PROPERTIES LINK_FLAGS "-Wl,--undefined=mkl_lapack_slaed0 -Wl,--undefined=mkl_lapack_dlaed0 -Wl,--undefined=mkl_lapack_dormql -Wl,--undefined=mkl_lapack_sormql")
endif()
endif()
target_link_libraries(torch_cpu PUBLIC c10)
target_link_libraries(torch_cpu PUBLIC ${Caffe2_PUBLIC_DEPENDENCY_LIBS})
target_link_libraries(torch_cpu PRIVATE ${Caffe2_DEPENDENCY_LIBS})
target_link_libraries(torch_cpu PRIVATE ${Caffe2_DEPENDENCY_WHOLE_LINK_LIBS})
target_include_directories(torch_cpu INTERFACE $<INSTALL_INTERFACE:include>)
target_include_directories(torch_cpu PRIVATE ${Caffe2_CPU_INCLUDE})
target_include_directories(torch_cpu SYSTEM PRIVATE "${Caffe2_DEPENDENCY_INCLUDE}")
# Set standard properties on the target
torch_set_target_props(torch_cpu)
target_compile_options(torch_cpu PRIVATE "-DCAFFE2_BUILD_MAIN_LIB")
if(USE_CUDA)
target_compile_options(torch_cuda PRIVATE "-DTORCH_CUDA_BUILD_MAIN_LIB")
# NB: This must be target_compile_definitions, not target_compile_options,
# as the latter is not respected by nvcc
target_compile_definitions(torch_cuda PRIVATE "-DTORCH_CUDA_BUILD_MAIN_LIB")
elseif(USE_ROCM)
target_compile_options(torch_hip PRIVATE "-DTORCH_HIP_BUILD_MAIN_LIB")
target_compile_definitions(torch_hip PRIVATE "-DTORCH_HIP_BUILD_MAIN_LIB")
endif()
set(EXPERIMENTAL_SINGLE_THREAD_POOL "0" CACHE STRING
"Experimental option to use a single thread pool for inter- and intra-op parallelism")
if("${EXPERIMENTAL_SINGLE_THREAD_POOL}")
target_compile_definitions(torch_cpu PUBLIC "-DAT_EXPERIMENTAL_SINGLE_THREAD_POOL=1")
endif()
if(MSVC AND NOT BUILD_SHARED_LIBS)
# Note [Supporting both static and dynamic libraries on Windows]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# A Windows library may be distributed as either a static or dynamic
# library. The chosen distribution mechanism affects how you setup
# the headers for the library: if you statically link a function,
# all you need is an ordinary signature:
#
# void f();
#
# But if you *dynamically* link it, then you must provide a __declspec
# specifying that it should be imported from a DLL:
#
# __declspec(dllimport) void f();
#
# Mixing the two situations will not work: if you specify dllimport
# while statically linking, the linker will complain it cannot find
# the __imp_f symbol (which serve as the DLL entrypoint); if you
# fail to specify dllimport for a symbol that's coming from a DLL,
# the linker will complain that it can't find f. Joy!
#
# Most places on the Internet, you will find people have written
# their headers under the assumption that the application will
# only ever be dynamically linked, as they define a macro which
# tags a function as __declspec(dllexport) if you are actually
# building the library, and __declspec(dllimport) otherwise. But
# if you want these headers to also work if you are linking against
# a static library, you need a way to avoid adding these __declspec's
# at all. And that "mechanism" needs to apply to any downstream
# libraries/executables which are going to link against your library.
#
# As an aside, why do we need to support both modes?
# For historical reasons, PyTorch ATen on Windows is built dynamically,
# while Caffe2 on Windows is built statically (mostly because if
# we build it dynamically, we are over the DLL exported symbol limit--and
# that is because Caffe2 hasn't comprehensively annotated all symbols
# which cross the DLL boundary with CAFFE_API). So any code
# which is used by both PyTorch and Caffe2 needs to support both
# modes of linking.
#
# So, you have a macro (call it AT_CORE_STATIC_WINDOWS) which you need to have
# set for any downstream library/executable that transitively includes your
# headers. How are you going to do this? You have two options:
#
# 1. Write out a config.h header which stores whether or not
# you are linking statically or dynamically.
#
# 2. Force all of users to set the the macro themselves. If they
# use cmake, you can set -DAT_CORE_STATIC_WINDOWS=1 as a PUBLIC
# compile option, in which case cmake will automatically
# add the macro for you.
#
# Which one is better? Well, it depends: they trade off implementor
# ease versus user ease: (1) is more work for the library author
# but the user doesn't have to worry about it; (2) requires the user
# to set the macro themselves... but only if they don't use cmake.
#
# So, which is appropriate in our situation? In my mind, here is
# the distinguishing factor: it is more common to distribute
# DLLs, since they don't require you to line up the CRT version
# (/MD, /MDd, /MT, /MTd) and MSVC version at the use site. So,
# if a user is already in the business of static linkage, they're
# already in "expert user" realm. So, I've decided that at this
# point in time, the simplicity of implementation of (2) wins out.
#
# NB: This must be target_compile_definitions, not target_compile_options,
# as the latter is not respected by nvcc
target_compile_definitions(torch_cpu PUBLIC "AT_CORE_STATIC_WINDOWS=1")
endif()
if(MSVC AND BUILD_SHARED_LIBS)
# ONNX is linked statically and needs to be exported from this library
# to be used externally. Make sure that references match the export.
target_compile_options(torch_cpu PRIVATE "-DONNX_BUILD_MAIN_LIB")
endif()
caffe2_interface_library(torch_cpu torch_cpu_library)
if(USE_CUDA)
caffe2_interface_library(torch_cuda torch_cuda_library)
elseif(USE_ROCM)
caffe2_interface_library(torch_hip torch_hip_library)
endif()
caffe2_interface_library(torch torch_library)
install(TARGETS torch_cpu torch_cpu_library EXPORT Caffe2Targets DESTINATION "${TORCH_INSTALL_LIB_DIR}")
if(USE_CUDA)
install(TARGETS torch_cuda torch_cuda_library EXPORT Caffe2Targets DESTINATION "${TORCH_INSTALL_LIB_DIR}")
elseif(USE_ROCM)
install(TARGETS torch_hip torch_hip_library EXPORT Caffe2Targets DESTINATION "${TORCH_INSTALL_LIB_DIR}")
endif()
install(TARGETS torch torch_library EXPORT Caffe2Targets DESTINATION "${TORCH_INSTALL_LIB_DIR}")
target_link_libraries(torch PUBLIC torch_cpu_library)
if(USE_CUDA)
target_link_libraries(torch PUBLIC torch_cuda_library)
elseif(USE_ROCM)
target_link_libraries(torch PUBLIC torch_hip_library)
endif()
# Install PDB files for MSVC builds
if(MSVC AND BUILD_SHARED_LIBS)
install(FILES $<TARGET_PDB_FILE:torch_cpu> DESTINATION "${TORCH_INSTALL_LIB_DIR}" OPTIONAL)
if(USE_CUDA)
install(FILES $<TARGET_PDB_FILE:torch_cuda> DESTINATION "${TORCH_INSTALL_LIB_DIR}" OPTIONAL)
elseif(USE_ROCM)
install(FILES $<TARGET_PDB_FILE:torch_hip> DESTINATION "${TORCH_INSTALL_LIB_DIR}" OPTIONAL)
endif()
endif()
# ---[ CUDA library.
if(USE_CUDA)
target_link_libraries(torch_cuda INTERFACE torch::cudart)
target_link_libraries(torch_cuda PUBLIC c10_cuda torch::nvtoolsext)
target_include_directories(
torch_cuda INTERFACE $<INSTALL_INTERFACE:include>)
target_include_directories(
torch_cuda PRIVATE ${Caffe2_GPU_INCLUDE})
target_link_libraries(
torch_cuda PRIVATE ${Caffe2_CUDA_DEPENDENCY_LIBS})
# These public dependencies must go after the previous dependencies, as the
# order of the libraries in the linker call matters here when statically
# linking; libculibos and cublas must be last.
target_link_libraries(torch_cuda PUBLIC torch_cpu_library ${Caffe2_PUBLIC_CUDA_DEPENDENCY_LIBS})
endif()
# Note [Global dependencies]
# Some libraries (e.g. OpenMPI) like to dlopen plugins after they're initialized,
# and they assume that all of their symbols will be available in the global namespace.
# On the other hand we try to be good citizens and avoid polluting the symbol
# namespaces, so libtorch is loaded with all its dependencies in a local scope.
# That usually leads to missing symbol errors at run-time, so to avoid a situation like
# this we have to preload those libs in a global namespace.
if(BUILD_SHARED_LIBS)
add_library(torch_global_deps SHARED ${TORCH_SRC_DIR}/csrc/empty.c)
if(HAVE_SOVERSION)
set_target_properties(torch_global_deps PROPERTIES
VERSION ${TORCH_VERSION} SOVERSION ${TORCH_SOVERSION})
endif()
set_target_properties(torch_global_deps PROPERTIES LINKER_LANGUAGE C)
if(USE_MPI)
target_link_libraries(torch_global_deps ${MPI_CXX_LIBRARIES})
endif()
target_link_libraries(torch_global_deps ${MKL_LIBRARIES})
# The CUDA libraries are linked here for a different reason: in some
# cases we load these libraries with ctypes, and if they weren't opened
# with RTLD_GLOBAL, we'll do the "normal" search process again (and
# not find them, because they're usually in non-standard locations)
if(USE_CUDA)
target_link_libraries(torch_global_deps ${Caffe2_PUBLIC_CUDA_DEPENDENCY_LIBS})
target_link_libraries(torch_global_deps torch::cudart torch::nvtoolsext)
endif()
install(TARGETS torch_global_deps DESTINATION "${TORCH_INSTALL_LIB_DIR}")
endif()
# ---[ Caffe2 HIP sources.
if(USE_ROCM)
# Call again since Caffe2_HIP_INCLUDE is extended with ATen include dirs.
# Get Compile Definitions from the directory (FindHIP.cmake bug)
get_directory_property(MY_DEFINITIONS COMPILE_DEFINITIONS)
if(MY_DEFINITIONS)
foreach(_item ${MY_DEFINITIONS})
list(APPEND HIP_HCC_FLAGS "-D${_item}")
endforeach()
endif()
# Call again since Caffe2_HIP_INCLUDE is extended with ATen include dirs.
hip_include_directories(${Caffe2_HIP_INCLUDE})
# Since PyTorch files contain HIP headers, these flags are required for the necessary definitions to be added.
target_compile_options(torch_hip PUBLIC ${HIP_CXX_FLAGS}) # experiment
target_link_libraries(torch_hip PUBLIC c10_hip)
if(NOT INTERN_BUILD_MOBILE)
# TODO: Cut this over to ATEN_HIP_FILES_GEN_LIB. At the moment, we
# only generate CUDA files
# NB: This dependency must be PRIVATE, because we don't install
# ATEN_CUDA_FILES_GEN_LIB (it's a synthetic target just to get the
# correct dependency from generated files.)
target_link_libraries(torch_hip PRIVATE ATEN_CUDA_FILES_GEN_LIB)
endif()
target_link_libraries(torch_hip PUBLIC torch_cpu_library ${Caffe2_HIP_DEPENDENCY_LIBS})
# Since PyTorch files contain HIP headers, this is also needed to capture the includes.
target_include_directories(torch_hip PRIVATE ${Caffe2_HIP_INCLUDE})
target_include_directories(torch_hip INTERFACE $<INSTALL_INTERFACE:include>)
endif()
if(BUILD_STATIC_RUNTIME_BENCHMARK)
add_subdirectory(${TORCH_ROOT}/benchmarks/static_runtime ${PROJECT_BINARY_DIR}/bin)
add_executable(static_runtime_bench "${STATIC_RUNTIME_BENCHMARK_SRCS}")
add_executable(static_runtime_test "${STATIC_RUNTIME_TEST_SRCS}")
target_link_libraries(static_runtime_bench torch_library benchmark)
target_link_libraries(static_runtime_test torch_library gtest_main)
endif()
if(BUILD_MOBILE_BENCHMARK)
foreach(benchmark_src ${ATen_MOBILE_BENCHMARK_SRCS})
get_filename_component(benchmark_name ${benchmark_src} NAME_WE)
add_executable(${benchmark_name} "${benchmark_src}")
target_link_libraries(${benchmark_name} torch_library benchmark)
target_include_directories(${benchmark_name} PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(${benchmark_name} PRIVATE $<BUILD_INTERFACE:${CMAKE_BINARY_DIR}/include>)
target_include_directories(${benchmark_name} PRIVATE ${ATen_CPU_INCLUDE})
target_link_options(${benchmark_name} PRIVATE "LINKER:--allow-multiple-definition")
endforeach()
endif()
if(BUILD_MOBILE_TEST)
foreach(test_src ${ATen_MOBILE_TEST_SRCS})
get_filename_component(test_name ${test_src} NAME_WE)
add_executable(${test_name} "${test_src}")
target_link_libraries(${test_name} torch_library gtest_main)
target_include_directories(${test_name} PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(${test_name} PRIVATE $<BUILD_INTERFACE:${CMAKE_BINARY_DIR}/include>)
target_include_directories(${test_name} PRIVATE ${ATen_CPU_INCLUDE})
add_test(NAME ${test_name} COMMAND $<TARGET_FILE:${test_name}>)
endforeach()
endif()
# ---[ Test binaries.
if(BUILD_TEST)
foreach(test_src ${ATen_VEC256_TEST_SRCS})
foreach(i RANGE ${NUM_CPU_CAPABILITY_NAMES})
get_filename_component(test_name ${test_src} NAME_WE)
list(GET CPU_CAPABILITY_NAMES ${i} CPU_CAPABILITY)
list(GET CPU_CAPABILITY_FLAGS ${i} FLAGS)
separate_arguments(FLAGS UNIX_COMMAND "${FLAGS}")
add_executable(${test_name}_${CPU_CAPABILITY} "${test_src}")
target_link_libraries(${test_name}_${CPU_CAPABILITY} torch_library gtest_main sleef)
target_include_directories(${test_name}_${CPU_CAPABILITY} PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(${test_name}_${CPU_CAPABILITY} PRIVATE $<BUILD_INTERFACE:${CMAKE_BINARY_DIR}/include>)
target_include_directories(${test_name}_${CPU_CAPABILITY} PRIVATE ${ATen_CPU_INCLUDE})
target_compile_definitions(${test_name}_${CPU_CAPABILITY} PRIVATE CPU_CAPABILITY=${CPU_CAPABILITY} CPU_CAPABILITY_${CPU_CAPABILITY})
target_compile_options(${test_name}_${CPU_CAPABILITY} PRIVATE ${FLAGS})
if(NOT MSVC)
target_compile_options(${test_name}_${CPU_CAPABILITY} PRIVATE -Wno-ignored-qualifiers)
endif(NOT MSVC)
add_test(NAME ${test_name}_${CPU_CAPABILITY} COMMAND $<TARGET_FILE:${test_name}_${CPU_CAPABILITY}>)
endforeach()
endforeach()
foreach(test_src ${Caffe2_CPU_TEST_SRCS})
get_filename_component(test_name ${test_src} NAME_WE)
add_executable(${test_name} "${test_src}")
target_link_libraries(${test_name} torch_library gtest_main)
target_include_directories(${test_name} PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(${test_name} PRIVATE $<BUILD_INTERFACE:${CMAKE_BINARY_DIR}/include>)
target_include_directories(${test_name} PRIVATE ${Caffe2_CPU_INCLUDE})
add_test(NAME ${test_name} COMMAND $<TARGET_FILE:${test_name}>)
if(INSTALL_TEST)
install(TARGETS ${test_name} DESTINATION test)
# Install PDB files for MSVC builds
if(MSVC AND BUILD_SHARED_LIBS)
install(FILES $<TARGET_PDB_FILE:${test_name}> DESTINATION test OPTIONAL)
endif()
endif()
endforeach()
if(USE_CUDA)
foreach(test_src ${Caffe2_GPU_TEST_SRCS})
get_filename_component(test_name ${test_src} NAME_WE)
cuda_add_executable(${test_name} "${test_src}")
target_link_libraries(${test_name} torch_library gtest_main)
target_include_directories(${test_name} PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(${test_name} PRIVATE ${Caffe2_CPU_INCLUDE})
add_test(NAME ${test_name} COMMAND $<TARGET_FILE:${test_name}>)
if(INSTALL_TEST)
install(TARGETS ${test_name} DESTINATION test)
# Install PDB files for MSVC builds
if(MSVC AND BUILD_SHARED_LIBS)
install(FILES $<TARGET_PDB_FILE:${test_name}> DESTINATION test OPTIONAL)
endif()
endif()
endforeach()
endif()
if(USE_VULKAN)
foreach(test_src ${Caffe2_VULKAN_TEST_SRCS})
get_filename_component(test_name ${test_src} NAME_WE)
add_executable(${test_name} "${test_src}")
target_link_libraries(${test_name} torch_library gtest_main)
target_include_directories(${test_name} PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(${test_name} PRIVATE ${Caffe2_CPU_INCLUDE})
add_test(NAME ${test_name} COMMAND $<TARGET_FILE:${test_name}>)
if(INSTALL_TEST)
install(TARGETS ${test_name} DESTINATION test)
# Install PDB files for MSVC builds
if(MSVC AND BUILD_SHARED_LIBS)
install(FILES $<TARGET_PDB_FILE:${test_name}> DESTINATION test OPTIONAL)
endif()
endif()
endforeach()
endif()
if(USE_ROCM)
foreach(test_src ${Caffe2_HIP_TEST_SRCS})
get_filename_component(test_name ${test_src} NAME_WE)
add_executable(${test_name} "${test_src}")
target_link_libraries(${test_name} torch_library gtest_main)
target_include_directories(${test_name} PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(${test_name} PRIVATE ${Caffe2_CPU_INCLUDE} ${Caffe2_HIP_INCLUDE})
target_compile_options(${test_name} PRIVATE ${HIP_CXX_FLAGS})
add_test(NAME ${test_name} COMMAND $<TARGET_FILE:${test_name}>)
if(INSTALL_TEST)
install(TARGETS ${test_name} DESTINATION test)
endif()
endforeach()
endif()
# For special tests that explicitly uses dependencies, we add them here
if(USE_MPI)
target_link_libraries(mpi_test ${MPI_CXX_LIBRARIES})
if(USE_CUDA)
target_link_libraries(mpi_gpu_test ${MPI_CXX_LIBRARIES})
endif()
endif()
endif()
# Note: we only install the caffe2 python files if BUILD_CAFFE2_OPS is ON
# This is because the build rules here written in such a way that they always
# appear to need to be re-run generating >600 pieces of work during the pytorch
# rebuild step. The long-term fix should be to clean up these rules so they
# only rerun when needed.
if(BUILD_PYTHON)
# Python site-packages
# Get canonical directory for python site packages (relative to install
# location). It varies from system to system.
# We should pin the path separator to the forward slash on Windows.
# More details can be seen at
# https://github.com/pytorch/pytorch/tree/master/tools/build_pytorch_libs.bat#note-backslash-munging-on-windows
pycmd(PYTHON_SITE_PACKAGES "
import os
from distutils import sysconfig
print(sysconfig.get_python_lib(prefix=''))
")
file(TO_CMAKE_PATH ${PYTHON_SITE_PACKAGES} PYTHON_SITE_PACKAGES)
set(PYTHON_SITE_PACKAGES ${PYTHON_SITE_PACKAGES} PARENT_SCOPE) # for Summary
# ---[ Options.
set(PYTHON_LIB_REL_PATH "${PYTHON_SITE_PACKAGES}" CACHE STRING "Python installation path (relative to CMake installation prefix)")
message(STATUS "Using ${PYTHON_LIB_REL_PATH} as python relative installation path")
# Python extension suffix
# Try to get from python through sysconfig.get_env_var('EXT_SUFFIX') first,
# fallback to ".pyd" if windows and ".so" for all others.
pycmd(PY_EXT_SUFFIX "
from distutils import sysconfig
ext_suffix = sysconfig.get_config_var('EXT_SUFFIX')
print(ext_suffix if ext_suffix else '')
")
if("${PY_EXT_SUFFIX}" STREQUAL "")
if(MSVC)
set(PY_EXT_SUFFIX ".pyd")
else()
set(PY_EXT_SUFFIX ".so")
endif()
endif()
# Allow different install locations for libcaffe2
# For setuptools installs (that all build Python), install libcaffe2 into
# site-packages, alongside the torch libraries. The pybind11 library needs
# an rpath to the torch library folder
# For cmake installs, including c++ only installs, install libcaffe2 into
# CMAKE_INSTALL_PREFIX/lib . The pybind11 library can have a hardcoded
# rpath
set(caffe2_pybind11_rpath "${_rpath_portable_origin}")
if(${BUILDING_WITH_TORCH_LIBS})
# site-packages/caffe2/python/caffe2_pybind11_state
# site-packages/torch/lib
set(caffe2_pybind11_rpath "${_rpath_portable_origin}/../../torch/lib")
endif(${BUILDING_WITH_TORCH_LIBS})
# Must also include `CMAKE_SHARED_LINKER_FLAGS` in linker flags for
# `caffe2_pybind11_state_*` targets because paths to required libraries may
# need to be found there (e.g., specifying path to `libiomp5` with `LDFLAGS`).
set(_caffe2_pybind11_state_linker_flags "${CMAKE_SHARED_LINKER_FLAGS}")
if(APPLE)
set(_caffe2_pybind11_state_linker_flags "${_caffe2_pybind11_state_linker_flags} -undefined dynamic_lookup")
endif()
# ---[ Python.
if(BUILD_CAFFE2)
add_library(caffe2_pybind11_state MODULE ${Caffe2_CPU_PYTHON_SRCS})
if(NOT MSVC)
set_target_properties(caffe2_pybind11_state PROPERTIES COMPILE_FLAGS "-fvisibility=hidden")
endif()
torch_set_target_props(caffe2_pybind11_state)
set_target_properties(caffe2_pybind11_state PROPERTIES PREFIX "" DEBUG_POSTFIX "")
set_target_properties(caffe2_pybind11_state PROPERTIES SUFFIX ${PY_EXT_SUFFIX})
set_target_properties(caffe2_pybind11_state PROPERTIES LINK_FLAGS "${_caffe2_pybind11_state_linker_flags}")
target_include_directories(caffe2_pybind11_state PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(caffe2_pybind11_state PRIVATE ${Caffe2_CPU_INCLUDE})
target_link_libraries(
caffe2_pybind11_state torch_library)
if(WIN32)
target_link_libraries(caffe2_pybind11_state ${PYTHON_LIBRARIES})
target_link_libraries(caffe2_pybind11_state onnx_proto)
endif(WIN32)
# Install caffe2_pybind11_state(_gpu|hip) in site-packages/caffe2/python,
# so it needs an rpath to find libcaffe2
set_target_properties(
caffe2_pybind11_state PROPERTIES LIBRARY_OUTPUT_DIRECTORY
${CMAKE_BINARY_DIR}/caffe2/python)
install(TARGETS caffe2_pybind11_state DESTINATION "${PYTHON_LIB_REL_PATH}/caffe2/python")
if(MSVC AND BUILD_SHARED_LIBS)
install(FILES $<TARGET_PDB_FILE:caffe2_pybind11_state> DESTINATION "${PYTHON_LIB_REL_PATH}/caffe2/python" OPTIONAL)
endif()
set_target_properties(caffe2_pybind11_state PROPERTIES INSTALL_RPATH "${caffe2_pybind11_rpath}")
if(USE_CUDA)
add_library(caffe2_pybind11_state_gpu MODULE ${Caffe2_GPU_PYTHON_SRCS})
if(NOT MSVC)
set_target_properties(caffe2_pybind11_state_gpu PROPERTIES COMPILE_FLAGS "-fvisibility=hidden")
endif()
torch_set_target_props(caffe2_pybind11_state_gpu)
set_target_properties(caffe2_pybind11_state_gpu PROPERTIES PREFIX "" DEBUG_POSTFIX "")
set_target_properties(caffe2_pybind11_state_gpu PROPERTIES SUFFIX ${PY_EXT_SUFFIX})
set_target_properties(caffe2_pybind11_state_gpu PROPERTIES LINK_FLAGS "${_caffe2_pybind11_state_linker_flags}")
target_include_directories(caffe2_pybind11_state_gpu PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(caffe2_pybind11_state_gpu PRIVATE ${Caffe2_CPU_INCLUDE})
target_link_libraries(caffe2_pybind11_state_gpu torch_library)
if(WIN32)
target_link_libraries(caffe2_pybind11_state_gpu ${PYTHON_LIBRARIES})
target_link_libraries(caffe2_pybind11_state_gpu onnx_proto)
endif(WIN32)
# Install with same rpath as non-gpu caffe2_pybind11_state
set_target_properties(
caffe2_pybind11_state_gpu PROPERTIES LIBRARY_OUTPUT_DIRECTORY
${CMAKE_BINARY_DIR}/caffe2/python)
install(TARGETS caffe2_pybind11_state_gpu DESTINATION "${PYTHON_LIB_REL_PATH}/caffe2/python")
if(MSVC AND BUILD_SHARED_LIBS)
install(FILES $<TARGET_PDB_FILE:caffe2_pybind11_state_gpu> DESTINATION "${PYTHON_LIB_REL_PATH}/caffe2/python" OPTIONAL)
endif()
set_target_properties(caffe2_pybind11_state_gpu PROPERTIES INSTALL_RPATH "${caffe2_pybind11_rpath}")
endif()
if(USE_ROCM)
add_library(caffe2_pybind11_state_hip MODULE ${Caffe2_HIP_PYTHON_SRCS})
if(NOT MSVC)
target_compile_options(caffe2_pybind11_state_hip PRIVATE ${HIP_CXX_FLAGS} -fvisibility=hidden)
endif()
torch_set_target_props(caffe2_pybind11_state_hip)
set_target_properties(caffe2_pybind11_state_hip PROPERTIES PREFIX "")
set_target_properties(caffe2_pybind11_state_hip PROPERTIES SUFFIX ${PY_EXT_SUFFIX})
set_target_properties(caffe2_pybind11_state_hip PROPERTIES LINK_FLAGS "${_caffe2_pybind11_state_linker_flags}")
target_include_directories(caffe2_pybind11_state_hip PRIVATE $<INSTALL_INTERFACE:include>)
target_include_directories(caffe2_pybind11_state_hip PRIVATE ${Caffe2_CPU_INCLUDE} ${Caffe2_HIP_INCLUDE})
target_link_libraries(caffe2_pybind11_state_hip torch_library)
if(WIN32)
target_link_libraries(caffe2_pybind11_state_hip ${PYTHON_LIBRARIES})
endif(WIN32)
# Install with same rpath as non-hip caffe2_pybind11_state
set_target_properties(
caffe2_pybind11_state_hip PROPERTIES LIBRARY_OUTPUT_DIRECTORY
${CMAKE_BINARY_DIR}/caffe2/python)
install(TARGETS caffe2_pybind11_state_hip DESTINATION "${PYTHON_LIB_REL_PATH}/caffe2/python")
set_target_properties(caffe2_pybind11_state_hip PROPERTIES INSTALL_RPATH "${caffe2_pybind11_rpath}")
endif()
if(MSVC AND CMAKE_GENERATOR MATCHES "Visual Studio")
# If we are building under windows, we will copy the file from
# build/caffe2/python/{Debug,Release}/caffe2_pybind11_state.pyd
# to its parent folder so that we can do in-build execution.
add_custom_target(windows_python_copy_lib ALL)
add_dependencies(windows_python_copy_lib caffe2_pybind11_state)
add_custom_command(
TARGET windows_python_copy_lib POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy
$<TARGET_FILE:caffe2_pybind11_state>
${CMAKE_BINARY_DIR}/caffe2/python)
if(USE_CUDA)
add_dependencies(windows_python_copy_lib caffe2_pybind11_state_gpu)
add_custom_command(
TARGET windows_python_copy_lib POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy
$<TARGET_FILE:caffe2_pybind11_state_gpu>
${CMAKE_BINARY_DIR}/caffe2/python)
endif()
if(USE_ROCM)
add_dependencies(windows_python_copy_lib caffe2_pybind11_state_hip)
add_custom_command(
TARGET windows_python_copy_lib POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy
$<TARGET_FILE:caffe2_pybind11_state_hip>
${CMAKE_BINARY_DIR}/caffe2/python)
endif()
endif()
# Finally, Copy all python files to build directory
# Create a custom target that copies all python files.
file(GLOB_RECURSE PYTHON_SRCS RELATIVE ${PROJECT_SOURCE_DIR}
"${PROJECT_SOURCE_DIR}/caffe2/*.py")
endif()
# generated pb files are copied from build/caffe2 to caffe2
# if we copied them back to build this would create a build cycle
# consider removing the need for globs
filter_list_exclude(PYTHON_SRCS PYTHON_SRCS "proto/.*_pb")
set(build_files)
foreach(python_src ${PYTHON_SRCS})
add_custom_command(OUTPUT ${CMAKE_BINARY_DIR}/${python_src}
DEPENDS ${PROJECT_SOURCE_DIR}/${python_src}
COMMAND ${CMAKE_COMMAND} -E copy
${PROJECT_SOURCE_DIR}/${python_src}
${CMAKE_BINARY_DIR}/${python_src})
list(APPEND build_files ${CMAKE_BINARY_DIR}/${python_src})
endforeach()
add_custom_target(python_copy_files ALL DEPENDS ${build_files})
# Install commands
# Pick up static python files
install(DIRECTORY ${CMAKE_BINARY_DIR}/caffe2 DESTINATION ${PYTHON_LIB_REL_PATH}
FILES_MATCHING PATTERN "*.py")
# Caffe proto files
install(DIRECTORY ${CMAKE_BINARY_DIR}/caffe DESTINATION ${PYTHON_LIB_REL_PATH}
FILES_MATCHING PATTERN "*.py")
# Caffe2 proto files
install(DIRECTORY ${CMAKE_BINARY_DIR}/caffe2 DESTINATION ${PYTHON_LIB_REL_PATH}
FILES_MATCHING PATTERN "*.py")
endif()
|