File: gloo_test.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (707 lines) | stat: -rw-r--r-- 25,317 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
#!/usr/bin/python






from hypothesis import given, settings
import hypothesis.strategies as st
from multiprocessing import Process, Queue

import numpy as np
import os
import pickle
import tempfile
import shutil

from caffe2.python import core, workspace, dyndep
import caffe2.python.hypothesis_test_util as hu
from gloo.python import IoError

dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:file_store_handler_ops")
dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:redis_store_handler_ops")
dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:store_ops")
dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/gloo:gloo_ops")
dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/gloo:gloo_ops_gpu")

op_engine = 'GLOO'


class TemporaryDirectory:
    def __enter__(self):
        self.tmpdir = tempfile.mkdtemp()
        return self.tmpdir

    def __exit__(self, type, value, traceback):
        shutil.rmtree(self.tmpdir)


class TestCase(hu.HypothesisTestCase):
    test_counter = 0
    sync_counter = 0

    def run_test_locally(self, fn, device_option=None, **kwargs):
        # Queue for assertion errors on subprocesses
        queue = Queue()

        # Capture any exception thrown by the subprocess
        def run_fn(*args, **kwargs):
            try:
                with core.DeviceScope(device_option):
                    fn(*args, **kwargs)
                    workspace.ResetWorkspace()
                    queue.put(True)
            except Exception as ex:
                queue.put(ex)

        # Start N processes in the background
        procs = []
        for i in range(kwargs['comm_size']):
            kwargs['comm_rank'] = i
            proc = Process(
                target=run_fn,
                kwargs=kwargs)
            proc.start()
            procs.append(proc)

        # Test complete, join background processes
        while len(procs) > 0:
            proc = procs.pop(0)
            while proc.is_alive():
                proc.join(10)

            # Raise exception if we find any. Otherwise each worker
            # should put a True into the queue
            # Note that the following is executed ALSO after
            # the last process was joined, so if ANY exception
            # was raised, it will be re-raised here.
            self.assertFalse(queue.empty(), "Job failed without a result")
            o = queue.get()
            if isinstance(o, Exception):
                raise o
            else:
                self.assertTrue(o)

    def run_test_distributed(self, fn, device_option=None, **kwargs):
        comm_rank = os.getenv('COMM_RANK')
        self.assertIsNotNone(comm_rank)
        comm_size = os.getenv('COMM_SIZE')
        self.assertIsNotNone(comm_size)
        kwargs['comm_rank'] = int(comm_rank)
        kwargs['comm_size'] = int(comm_size)
        with core.DeviceScope(device_option):
            fn(**kwargs)
            workspace.ResetWorkspace()

    def create_common_world(self, comm_rank, comm_size, tmpdir=None, existing_cw=None):
        store_handler = "store_handler"

        # If REDIS_HOST is set, use RedisStoreHandler for rendezvous.
        if existing_cw is None:
            redis_host = os.getenv("REDIS_HOST")
            redis_port = int(os.getenv("REDIS_PORT", 6379))
            if redis_host is not None:
                workspace.RunOperatorOnce(
                    core.CreateOperator(
                        "RedisStoreHandlerCreate",
                        [],
                        [store_handler],
                        prefix=str(TestCase.test_counter) + "/",
                        host=redis_host,
                        port=redis_port))
            else:
                workspace.RunOperatorOnce(
                    core.CreateOperator(
                        "FileStoreHandlerCreate",
                        [],
                        [store_handler],
                        path=tmpdir))
            common_world = "common_world"
        else:
            common_world = str(existing_cw) + ".forked"

        if existing_cw is not None:
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "CloneCommonWorld",
                    [existing_cw],
                    [common_world],
                    sync=True,
                    engine=op_engine))
        else:
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "CreateCommonWorld",
                    [store_handler],
                    [common_world],
                    size=comm_size,
                    rank=comm_rank,
                    sync=True,
                    engine=op_engine))
        return (store_handler, common_world)

    def synchronize(self, store_handler, value, comm_rank=None):
        TestCase.sync_counter += 1
        blob = "sync_{}".format(TestCase.sync_counter)
        if comm_rank == 0:
            workspace.FeedBlob(blob, pickle.dumps(value))
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "StoreSet",
                    [store_handler, blob],
                    []))
        else:
            workspace.RunOperatorOnce(
                core.CreateOperator(
                    "StoreGet",
                    [store_handler],
                    [blob]))
        return pickle.loads(workspace.FetchBlob(blob))

    def _test_broadcast(self,
                        comm_rank=None,
                        comm_size=None,
                        blob_size=None,
                        num_blobs=None,
                        tmpdir=None,
                        use_float16=False,
                        ):
        store_handler, common_world = self.create_common_world(
            comm_rank=comm_rank,
            comm_size=comm_size,
            tmpdir=tmpdir)

        blob_size = self.synchronize(
            store_handler,
            blob_size,
            comm_rank=comm_rank)

        num_blobs = self.synchronize(
            store_handler,
            num_blobs,
            comm_rank=comm_rank)

        for i in range(comm_size):
            blobs = []
            for j in range(num_blobs):
                blob = "blob_{}".format(j)
                offset = (comm_rank * num_blobs) + j
                value = np.full(blob_size, offset,
                                np.float16 if use_float16 else np.float32)
                workspace.FeedBlob(blob, value)
                blobs.append(blob)

            net = core.Net("broadcast")
            net.Broadcast(
                [common_world] + blobs,
                blobs,
                root=i,
                engine=op_engine)

            workspace.CreateNet(net)
            workspace.RunNet(net.Name())

            for j in range(num_blobs):
                np.testing.assert_array_equal(
                    workspace.FetchBlob(blobs[j]),
                    i * num_blobs)

            # Run the net a few more times to check the operator
            # works not just the first time it's called
            for _tmp in range(4):
                workspace.RunNet(net.Name())

    @given(comm_size=st.integers(min_value=2, max_value=8),
           blob_size=st.integers(min_value=int(1e3), max_value=int(1e6)),
           num_blobs=st.integers(min_value=1, max_value=4),
           device_option=st.sampled_from([hu.cpu_do]),
           use_float16=st.booleans())
    @settings(deadline=10000)
    def test_broadcast(self, comm_size, blob_size, num_blobs, device_option,
                       use_float16):
        TestCase.test_counter += 1
        if os.getenv('COMM_RANK') is not None:
            self.run_test_distributed(
                self._test_broadcast,
                blob_size=blob_size,
                num_blobs=num_blobs,
                use_float16=use_float16,
                device_option=device_option)
        else:
            with TemporaryDirectory() as tmpdir:
                self.run_test_locally(
                    self._test_broadcast,
                    comm_size=comm_size,
                    blob_size=blob_size,
                    num_blobs=num_blobs,
                    device_option=device_option,
                    tmpdir=tmpdir,
                    use_float16=use_float16)

    def _test_allreduce(self,
                        comm_rank=None,
                        comm_size=None,
                        blob_size=None,
                        num_blobs=None,
                        tmpdir=None,
                        use_float16=False
                        ):
        store_handler, common_world = self.create_common_world(
            comm_rank=comm_rank,
            comm_size=comm_size,
            tmpdir=tmpdir)

        blob_size = self.synchronize(
            store_handler,
            blob_size,
            comm_rank=comm_rank)

        num_blobs = self.synchronize(
            store_handler,
            num_blobs,
            comm_rank=comm_rank)

        blobs = []
        for i in range(num_blobs):
            blob = "blob_{}".format(i)
            value = np.full(blob_size, (comm_rank * num_blobs) + i,
                            np.float16 if use_float16 else np.float32)
            workspace.FeedBlob(blob, value)
            blobs.append(blob)

        net = core.Net("allreduce")
        net.Allreduce(
            [common_world] + blobs,
            blobs,
            engine=op_engine)

        workspace.CreateNet(net)
        workspace.RunNet(net.Name())

        for i in range(num_blobs):
            np.testing.assert_array_equal(
                workspace.FetchBlob(blobs[i]),
                (num_blobs * comm_size) * (num_blobs * comm_size - 1) / 2)

        # Run the net a few more times to check the operator
        # works not just the first time it's called
        for _tmp in range(4):
            workspace.RunNet(net.Name())

    def _test_allreduce_multicw(self,
                                comm_rank=None,
                                comm_size=None,
                                tmpdir=None
                                ):
        _store_handler, common_world = self.create_common_world(
            comm_rank=comm_rank,
            comm_size=comm_size,
            tmpdir=tmpdir)

        _, common_world2 = self.create_common_world(
            comm_rank=comm_rank,
            comm_size=comm_size,
            tmpdir=tmpdir,
            existing_cw=common_world)

        blob_size = int(1e4)
        num_blobs = 4

        for cw in [common_world, common_world2]:
            blobs = []
            for i in range(num_blobs):
                blob = "blob_{}".format(i)
                value = np.full(blob_size, (comm_rank * num_blobs) + i, np.float32)
                workspace.FeedBlob(blob, value)
                blobs.append(blob)

            net = core.Net("allreduce_multicw")
            net.Allreduce(
                [cw] + blobs,
                blobs,
                engine=op_engine)

            workspace.RunNetOnce(net)
            for i in range(num_blobs):
                np.testing.assert_array_equal(
                    workspace.FetchBlob(blobs[i]),
                    (num_blobs * comm_size) * (num_blobs * comm_size - 1) / 2)

    @given(comm_size=st.integers(min_value=2, max_value=8),
           blob_size=st.integers(min_value=int(1e3), max_value=int(1e6)),
           num_blobs=st.integers(min_value=1, max_value=4),
           device_option=st.sampled_from([hu.cpu_do]),
           use_float16=st.booleans())
    @settings(deadline=10000)
    def test_allreduce(self, comm_size, blob_size, num_blobs, device_option,
                       use_float16):
        TestCase.test_counter += 1
        if os.getenv('COMM_RANK') is not None:
            self.run_test_distributed(
                self._test_allreduce,
                blob_size=blob_size,
                num_blobs=num_blobs,
                use_float16=use_float16,
                device_option=device_option)
        else:
            with TemporaryDirectory() as tmpdir:
                self.run_test_locally(
                    self._test_allreduce,
                    comm_size=comm_size,
                    blob_size=blob_size,
                    num_blobs=num_blobs,
                    device_option=device_option,
                    tmpdir=tmpdir,
                    use_float16=use_float16)

    def _test_reduce_scatter(self,
                             comm_rank=None,
                             comm_size=None,
                             blob_size=None,
                             num_blobs=None,
                             tmpdir=None,
                             use_float16=False
                             ):
        store_handler, common_world = self.create_common_world(
            comm_rank=comm_rank,
            comm_size=comm_size,
            tmpdir=tmpdir)

        blob_size = self.synchronize(
            store_handler,
            blob_size,
            comm_rank=comm_rank)

        num_blobs = self.synchronize(
            store_handler,
            num_blobs,
            comm_rank=comm_rank)

        blobs = []
        for i in range(num_blobs):
            blob = "blob_{}".format(i)
            value = np.full(blob_size, (comm_rank * num_blobs) + i,
                            np.float16 if use_float16 else np.float32)
            workspace.FeedBlob(blob, value)
            blobs.append(blob)

        # Specify distribution among ranks i.e. number of elements
        # scattered/distributed to each process.
        recv_counts = np.zeros(comm_size, dtype=np.int32)
        remaining = blob_size
        chunk_size = (blob_size + comm_size - 1) / comm_size
        for i in range(comm_size):
            recv_counts[i] = min(chunk_size, remaining)
            remaining = remaining - chunk_size if remaining > chunk_size else 0
        recv_counts_blob = "recvCounts"
        workspace.FeedBlob(recv_counts_blob, recv_counts)
        blobs.append(recv_counts_blob)

        net = core.Net("reduce_scatter")
        net.ReduceScatter(
            [common_world] + blobs,
            blobs,
            engine=op_engine)

        workspace.CreateNet(net)
        workspace.RunNet(net.Name())

        for i in range(num_blobs):
            np.testing.assert_array_equal(
                np.resize(workspace.FetchBlob(blobs[i]), recv_counts[comm_rank]),
                (num_blobs * comm_size) * (num_blobs * comm_size - 1) / 2)

        # Run the net a few more times to check the operator
        # works not just the first time it's called
        for _tmp in range(4):
            workspace.RunNet(net.Name())

    @given(comm_size=st.integers(min_value=2, max_value=8),
           blob_size=st.integers(min_value=int(1e3), max_value=int(1e6)),
           num_blobs=st.integers(min_value=1, max_value=4),
           device_option=st.sampled_from([hu.cpu_do]),
           use_float16=st.booleans())
    @settings(deadline=10000)
    def test_reduce_scatter(self, comm_size, blob_size, num_blobs,
                            device_option, use_float16):
        TestCase.test_counter += 1
        if os.getenv('COMM_RANK') is not None:
            self.run_test_distributed(
                self._test_reduce_scatter,
                blob_size=blob_size,
                num_blobs=num_blobs,
                use_float16=use_float16,
                device_option=device_option)
        else:
            with TemporaryDirectory() as tmpdir:
                self.run_test_locally(
                    self._test_reduce_scatter,
                    comm_size=comm_size,
                    blob_size=blob_size,
                    num_blobs=num_blobs,
                    device_option=device_option,
                    tmpdir=tmpdir,
                    use_float16=use_float16)

    def _test_allgather(self,
                        comm_rank=None,
                        comm_size=None,
                        blob_size=None,
                        num_blobs=None,
                        tmpdir=None,
                        use_float16=False
                        ):
        store_handler, common_world = self.create_common_world(
            comm_rank=comm_rank,
            comm_size=comm_size,
            tmpdir=tmpdir)

        blob_size = self.synchronize(
            store_handler,
            blob_size,
            comm_rank=comm_rank)

        num_blobs = self.synchronize(
            store_handler,
            num_blobs,
            comm_rank=comm_rank)

        blobs = []
        for i in range(num_blobs):
            blob = "blob_{}".format(i)
            value = np.full(blob_size, (comm_rank * num_blobs) + i,
                            np.float16 if use_float16 else np.float32)
            workspace.FeedBlob(blob, value)
            blobs.append(blob)

        net = core.Net("allgather")
        net.Allgather(
            [common_world] + blobs,
            ["Gathered"],
            engine=op_engine)

        workspace.CreateNet(net)
        workspace.RunNet(net.Name())
        # create expected output
        expected_output = np.array([])
        for i in range(comm_size):
            for j in range(num_blobs):
                value = np.full(blob_size, (i * num_blobs) + j,
                                np.float16 if use_float16 else np.float32)
                expected_output = np.concatenate((expected_output, value))
        np.testing.assert_array_equal(
            workspace.FetchBlob("Gathered"), expected_output)

        # Run the net a few more times to check the operator
        # works not just the first time it's called
        for _tmp in range(4):
            workspace.RunNet(net.Name())

    @given(comm_size=st.integers(min_value=2, max_value=8),
           blob_size=st.integers(min_value=int(1e3), max_value=int(1e6)),
           num_blobs=st.integers(min_value=1, max_value=4),
           device_option=st.sampled_from([hu.cpu_do]),
           use_float16=st.booleans())
    @settings(max_examples=10, deadline=None)
    def test_allgather(self, comm_size, blob_size, num_blobs, device_option,
                       use_float16):
        TestCase.test_counter += 1
        if os.getenv('COMM_RANK') is not None:
            self.run_test_distributed(
                self._test_allgather,
                blob_size=blob_size,
                num_blobs=num_blobs,
                use_float16=use_float16,
                device_option=device_option)
        else:
            with TemporaryDirectory() as tmpdir:
                self.run_test_locally(
                    self._test_allgather,
                    comm_size=comm_size,
                    blob_size=blob_size,
                    num_blobs=num_blobs,
                    device_option=device_option,
                    tmpdir=tmpdir,
                    use_float16=use_float16)

    @given(device_option=st.sampled_from([hu.cpu_do]))
    @settings(deadline=10000)
    def test_forked_cw(self, device_option):
        TestCase.test_counter += 1
        if os.getenv('COMM_RANK') is not None:
            self.run_test_distributed(
                self._test_allreduce_multicw,
                device_option=device_option)
        else:
            # Note: this test exercises the path where we fork a common world.
            # We therefore don't need a comm size larger than 2. It used to be
            # run with comm_size=8, which causes flaky results in a stress run.
            # The flakiness was caused by too many listening sockets being
            # created by Gloo context initialization (8 processes times
            # 7 sockets times 20-way concurrency, plus TIME_WAIT).
            with TemporaryDirectory() as tmpdir:
                self.run_test_locally(
                    self._test_allreduce_multicw,
                    comm_size=2,
                    device_option=device_option,
                    tmpdir=tmpdir)

    def _test_barrier(
        self,
        comm_rank=None,
        comm_size=None,
        tmpdir=None,
    ):
        store_handler, common_world = self.create_common_world(
            comm_rank=comm_rank, comm_size=comm_size, tmpdir=tmpdir
        )

        net = core.Net("barrier")
        net.Barrier(
            [common_world],
            [],
            engine=op_engine)

        workspace.CreateNet(net)
        workspace.RunNet(net.Name())

        # Run the net a few more times to check the operator
        # works not just the first time it's called
        for _tmp in range(4):
            workspace.RunNet(net.Name())

    @given(comm_size=st.integers(min_value=2, max_value=8),
           device_option=st.sampled_from([hu.cpu_do]))
    @settings(deadline=10000)
    def test_barrier(self, comm_size, device_option):
        TestCase.test_counter += 1
        if os.getenv('COMM_RANK') is not None:
            self.run_test_distributed(
                self._test_barrier,
                device_option=device_option)
        else:
            with TemporaryDirectory() as tmpdir:
                self.run_test_locally(
                    self._test_barrier,
                    comm_size=comm_size,
                    device_option=device_option,
                    tmpdir=tmpdir)

    def _test_close_connection(
        self,
        comm_rank=None,
        comm_size=None,
        tmpdir=None,
    ):
        '''
        One node calls close connection, others wait it on barrier.
        Test will check that all will exit eventually.
        '''
        # Caffe's for closers only:
        # https://www.youtube.com/watch?v=QMFwFgG9NE8
        closer = comm_rank == comm_size // 2,

        store_handler, common_world = self.create_common_world(
            comm_rank=comm_rank, comm_size=comm_size, tmpdir=tmpdir
        )

        net = core.Net("barrier_or_close")
        if not closer:
            net.Barrier(
                [common_world],
                [],
                engine=op_engine)
        else:
            net.DestroyCommonWorld(
                [common_world], [common_world], engine=op_engine)
            # Sleep a bit to ensure others start the barrier
            import time
            time.sleep(0.1)

        workspace.CreateNet(net)
        workspace.RunNet(net.Name())

    @given(comm_size=st.integers(min_value=2, max_value=8),
           device_option=st.sampled_from([hu.cpu_do]))
    @settings(deadline=10000)
    def test_close_connection(self, comm_size, device_option):
        import time
        start_time = time.time()
        TestCase.test_counter += 1
        if os.getenv('COMM_RANK') is not None:
            self.run_test_distributed(
                self._test_close_connection,
                device_option=device_option)
        else:
            with TemporaryDirectory() as tmpdir:
                self.run_test_locally(
                    self._test_close_connection,
                    comm_size=comm_size,
                    device_option=device_option,
                    tmpdir=tmpdir)
        # Check that test finishes quickly because connections get closed.
        # This assert used to check that the end to end runtime was less
        # than 2 seconds, but this may not always be the case if there
        # is significant overhead in starting processes. Ideally, this
        # assert is replaced by one that doesn't depend on time but rather
        # checks the success/failure status of the barrier that is run.
        self.assertLess(time.time() - start_time, 20.0)

    def _test_io_error(
        self,
        comm_rank=None,
        comm_size=None,
        tmpdir=None,
    ):
        '''
        Only one node will participate in allreduce, resulting in an IoError
        '''
        store_handler, common_world = self.create_common_world(
            comm_rank=comm_rank,
            comm_size=comm_size,
            tmpdir=tmpdir)

        if comm_rank == 0:
            blob_size = 1000
            num_blobs = 1

            blobs = []
            for i in range(num_blobs):
                blob = "blob_{}".format(i)
                value = np.full(
                    blob_size, (comm_rank * num_blobs) + i, np.float32
                )
                workspace.FeedBlob(blob, value)
                blobs.append(blob)

            net = core.Net("allreduce")
            net.Allreduce(
                [common_world] + blobs,
                blobs,
                engine=op_engine)

            workspace.CreateNet(net)
            workspace.RunNet(net.Name())

    @given(comm_size=st.integers(min_value=2, max_value=8),
           device_option=st.sampled_from([hu.cpu_do]))
    @settings(deadline=10000)
    def test_io_error(self, comm_size, device_option):
        TestCase.test_counter += 1
        with self.assertRaises(IoError):
            if os.getenv('COMM_RANK') is not None:
                self.run_test_distributed(
                    self._test_io_error,
                    device_option=device_option)
            else:
                with TemporaryDirectory() as tmpdir:
                    self.run_test_locally(
                        self._test_io_error,
                        comm_size=comm_size,
                        device_option=device_option,
                        tmpdir=tmpdir)

if __name__ == "__main__":
    import unittest
    unittest.main()