1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
#ifndef CAFFE2_CORE_CONTEXT_H_
#define CAFFE2_CORE_CONTEXT_H_
#include <cstdlib>
#include <ctime>
#include <random>
#include <unordered_map>
#include <c10/util/typeid.h>
#include "caffe2/core/allocator.h"
#include "caffe2/core/context_base.h"
#include "caffe2/core/event.h"
#include "caffe2/core/logging.h"
#include "caffe2/proto/caffe2_pb.h"
#include <c10/util/ArrayRef.h>
C10_DECLARE_bool(caffe2_report_cpu_memory_usage);
namespace caffe2 {
/**
* A function to generate a random number seed that is unique in a best-effort
* basis, using an ever-incrementing seed and the current time.
*/
CAFFE2_API uint32_t RandomNumberSeed();
/**
* The CPU Context, representing the bare minimum of what a Context class in
* Caffe2 should implement.
*
* // TODO modify docs
* See operator.h, especially Operator<Context>, for how Context are used in
* actual operator implementations that are associated with specific devices.
* In general, the Context class is passed in as a template argument, and
* the operator can use the functions defined in the context to execute whatever
* computation it has.
*
*/
class CAFFE2_API CPUContext final : public BaseContext {
public:
typedef std::mt19937 rand_gen_type;
CPUContext() {}
explicit CPUContext(const DeviceOption& option)
: random_seed_(option.has_random_seed() ? option.random_seed() : 1701),
random_seed_set_(option.has_random_seed() ? true : false) {
CAFFE_ENFORCE_EQ(option.device_type(), PROTO_CPU);
}
explicit CPUContext(const at::Device& device)
: CPUContext(DeviceToOption(device)) {}
~CPUContext() noexcept override {}
inline void SwitchToDevice(int /*stream_id*/) override {}
using BaseContext::SwitchToDevice;
inline void WaitEvent(const Event& ev) override {
ev.Wait(CPU, this);
}
inline void Record(Event* ev, const char* err_msg = nullptr) const override {
CAFFE_ENFORCE(ev, "Event must not be null.");
ev->Record(CPU, this, err_msg);
}
inline void FinishDeviceComputation() override {}
inline rand_gen_type& RandGenerator() {
if (!random_generator_.get()) {
random_generator_.reset(new rand_gen_type(RandSeed()));
}
return *random_generator_.get();
}
inline uint32_t RandSeed() {
if (!random_seed_set_) {
random_seed_ = RandomNumberSeed();
random_seed_set_ = true;
}
return static_cast<uint32_t>(random_seed_);
}
inline static at::DataPtr New(size_t nbytes) {
return GetCPUAllocator()->allocate(nbytes);
}
void CopyBytesSameDevice(size_t nbytes, const void* src, void* dst) override;
void CopyBytesFromCPU(size_t nbytes, const void* src, void* dst) override {
CopyBytesSameDevice(nbytes, src, dst);
}
void CopyBytesToCPU(size_t nbytes, const void* src, void* dst) override {
CopyBytesSameDevice(nbytes, src, dst);
}
bool SupportsNonFundamentalTypes() const override {
// CPU non fumdamental type copy OK
return true;
}
template <class SrcContext, class DstContext>
inline void CopyBytes(size_t nbytes, const void* src, void* dst);
template <typename T, class SrcContext, class DstContext>
inline void Copy(size_t n, const T* src, T* dst) {
if (c10::guts::is_fundamental<T>::value) {
CopyBytes<SrcContext, DstContext>(
n * sizeof(T),
static_cast<const void*>(src),
static_cast<void*>(dst));
} else {
for (size_t i = 0; i < n; ++i) {
dst[i] = src[i];
}
}
}
template <class SrcContext, class DstContext>
inline void
CopyItems(const TypeMeta& meta, size_t n, const void* src, void* dst) {
if (meta.copy()) {
meta.copy()(src, dst, n);
} else {
CopyBytes<SrcContext, DstContext>(n * meta.itemsize(), src, dst);
}
}
// By default CPU operators don't have async device parts
static bool HasAsyncPartDefault() {
return false;
}
static bool SupportsAsyncScheduling() {
return false;
}
// CPU streams are not implemented and are silently ignored by CPU ops,
// return true to signal executor to schedule a CPU op
static bool IsStreamFree(
const DeviceOption& /* option */,
int /* stream_id */) {
return true;
}
at::Device device() const override {
// TODO: numa?
return at::Device(CPU);
}
DeviceType device_type() const override {
return CPU;
}
static constexpr DeviceType GetDeviceType() {
return CPU;
}
protected:
// TODO(jiayq): instead of hard-coding a generator, make it more flexible.
int random_seed_{1701};
bool random_seed_set_{false};
std::unique_ptr<rand_gen_type> random_generator_;
};
template <>
inline void CPUContext::CopyBytes<CPUContext, CPUContext>(
size_t nbytes,
const void* src,
void* dst) {
if (nbytes == 0) {
return;
}
CAFFE_ENFORCE(src);
CAFFE_ENFORCE(dst);
memcpy(dst, src, nbytes);
}
} // namespace caffe2
#endif // CAFFE2_CORE_CONTEXT_H_
|