1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
#!/usr/bin/python
import argparse
from textwrap import dedent
from subprocess import call
def parse_lines(lines):
# States
EMPTY = 0
OP = 1
MACRO = 2
parse_state = EMPTY
# Preprocess the macros
curr_macro = ""
macros = {}
index = 0
while index < len(lines):
line = lines[index]
if line.lower().startswith("macro"):
assert parse_state == EMPTY
macro_line = line.split(" ")
# Support macros that look like attributes
# e.g. macro - CONV_LIKE
curr_macro = " ".join(macro_line[1:])
assert curr_macro not in macros, 'Macro "{}" defined twice.'.format(
curr_macro
)
macros[curr_macro] = []
parse_state = MACRO
lines = lines[:index] + lines[index + 1 :]
continue
elif line.lower().startswith("endmacro"):
assert parse_state == MACRO
parse_state = EMPTY
lines = lines[:index] + lines[index + 1 :]
continue
elif parse_state == MACRO:
macros[curr_macro].append(line)
lines = lines[:index] + lines[index + 1 :]
continue
index += 1
index = 0
while index < len(lines):
line = lines[index]
if line in macros:
lines = lines[:index] + macros[line] + lines[index + 1 :]
index += len(macros[line]) - 1
index += 1
# Now parse the file
curr_op = ""
# dict of the form
# opName : { attributes: [], ... }
ops = {}
# To preserve parsing order for dependencies (for things like init_from)
op_list = []
for line in lines:
if not len(line):
continue
if line[0] == "-":
assert parse_state is OP
attr = [_.strip() for _ in line[1:].split(":")]
assert attr[0][0].isupper()
if len(attr) == 2: # attribute : type
ops[curr_op]["attributes"].append((attr[0], attr[1]))
elif len(attr) == 3: # attribute : type
ops[curr_op]["attributes"].append((attr[0], attr[1], attr[2]))
else:
op = [l.strip() for l in line.split(":")]
assert len(op[0].split(" ")) == 1
parse_state = OP
curr_op = op[0]
assert curr_op not in ops
ops[curr_op] = {}
op_list.append(curr_op)
if len(op) > 1:
ops[curr_op]["init_from"] = [op[1]]
ops[curr_op]["attributes"] = []
return ops, op_list
def gen_class(op, op_def):
attributes = op_def["attributes"]
attribute_args = []
default_init = "NeuralNetOperator(NNKind::{op})".format(op=op)
attribute_init = [default_init]
attribute_declarations = []
attribute_getters = []
attribute_setters = []
for attr in attributes:
lower_name = attr[0][0].lower() + attr[0][1:]
private_name = lower_name + "_"
default_arg = "" if len(attr) < 3 else " = {}".format(attr[2])
name = attr[0]
t = attr[1]
attr_arg = "{type} {lower_name}".format(
type=t, lower_name=lower_name + default_arg
)
attr_init = "{private_name}({lower_name})".format(
private_name=private_name, lower_name=lower_name)
attr_declare = "{type} {private_name};".format(
type=t, private_name=private_name)
attr_get = dedent(
"""
{type} get{name}() const {{
return {private_name};
}}
""".format(
type=t, name=name, private_name=private_name
)
)
attr_set = dedent(
"""
void set{name}({type} {lower_name}) {{
{private_name} = {lower_name};
}}
""".format(
type=t, name=name, private_name=private_name, lower_name=lower_name
)
)
attribute_args.append(attr_arg)
attribute_init.append(attr_init)
attribute_declarations.append(attr_declare)
attribute_getters.append(attr_get)
attribute_setters.append(attr_set)
extra_init = ""
if "init_from" in op_def:
for other_op in op_def["init_from"]:
lower_other_op = other_op[0].lower() + other_op[1:]
other_init = [default_init]
for attr in attributes:
lower_name = attr[0][0].lower() + attr[0][1:]
private_name = lower_name + "_"
other_init.append(
"{private_name}({other_op}.get{name}())".format(
name=attr[0], private_name=private_name, other_op=lower_other_op
)
)
init = dedent(
"""
{op}(const {other_op}& {lower_other_op}) :
{other_init} {{}}
""".format(
op=op,
other_op=other_op,
lower_other_op=lower_other_op,
other_init=",\n ".join(other_init),
)
)
extra_init += init
return dedent(
"""
class {op} : public NeuralNetOperator {{
public:
{op}({attribute_args}) :
{attribute_init} {{}}
{extra_init}
~{op}() {{}}
NOMNIGRAPH_DEFINE_NN_RTTI({op});
{getters}{setters}
private:
{attribute_declarations}
}};
""".format(
op=op,
extra_init=extra_init,
getters="".join(attribute_getters),
setters="".join(attribute_setters),
attribute_args=",\n".join(attribute_args),
attribute_init=",\n".join(attribute_init),
attribute_declarations="\n".join(attribute_declarations),
)
)
def gen_classes(ops, op_list):
f = ""
for op in op_list:
f += gen_class(op, ops[op])
return f
def gen_enum(op_list):
return ",\n".join([op for op in op_list]) + "\n"
def gen_names(op_list):
f = ""
for op in op_list:
f += dedent(
"""
case NNKind::{name}:
return \"{name}\";
""".format(
name=op
)
)
return f
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate op files.")
parser.add_argument("--install_dir", help="installation directory")
parser.add_argument("--source_def", help="ops.def", action="append")
args = parser.parse_args()
install_dir = args.install_dir
sources = args.source_def
lines = []
for source in sources:
with open(source, "rb") as f:
lines_tmp = f.readlines()
lines += [l.strip().decode("utf-8") for l in lines_tmp]
ops, op_list = parse_lines(lines)
with open(install_dir + "/OpClasses.h", "wb") as f:
f.write(gen_classes(ops, op_list).encode("utf-8"))
with open(install_dir + "/OpNames.h", "wb") as f:
f.write(gen_names(op_list).encode("utf-8"))
with open(install_dir + "/OpEnum.h", "wb") as f:
f.write(gen_enum(op_list).encode("utf-8"))
try:
cmd = ["clang-format", "-i", install_dir + "/OpClasses.h"]
call(cmd)
cmd = ["clang-format", "-i", install_dir + "/OpNames.h"]
call(cmd)
cmd = ["clang-format", "-i", install_dir + "/OpEnum.h"]
call(cmd)
except Exception:
pass
|