1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
#ifndef ANDROID
#include <gtest/gtest.h>
#include "caffe2/core/init.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/plan_executor.h"
namespace caffe2 {
TEST(PlanExecutorTest, EmptyPlan) {
PlanDef plan_def;
Workspace ws;
EXPECT_TRUE(ws.RunPlan(plan_def));
}
namespace {
static std::atomic<int> cancelCount{0};
static std::atomic<bool> stuckRun{false};
} // namespace
class StuckAsyncOp final : public Operator<CPUContext> {
public:
StuckAsyncOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<CPUContext>(operator_def, ws) {}
bool RunOnDevice() override {
// notify Error op we've ran.
stuckRun = true;
// explicitly don't call SetFinished so this gets stuck
return true;
}
void CancelAsyncCallback() override {
LOG(INFO) << "cancelled";
cancelCount += 1;
}
bool HasAsyncPart() const override {
return true;
}
};
REGISTER_CPU_OPERATOR(StuckAsync, StuckAsyncOp);
OPERATOR_SCHEMA(StuckAsync).NumInputs(0).NumOutputs(0);
class TestError : public std::exception {
const char* what() const noexcept override {
return "test error";
}
};
class ErrorOp final : public Operator<CPUContext> {
public:
ErrorOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<CPUContext>(operator_def, ws) {}
bool RunOnDevice() override {
// Wait for StuckAsyncOp to run first.
while (!stuckRun) {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
throw TestError();
return true;
}
};
REGISTER_CPU_OPERATOR(Error, ErrorOp);
OPERATOR_SCHEMA(Error).NumInputs(0).NumOutputs(0);
PlanDef parallelErrorPlan() {
PlanDef plan_def;
auto* stuck_net = plan_def.add_network();
stuck_net->set_name("stuck_net");
stuck_net->set_type("async_scheduling");
{
auto* op = stuck_net->add_op();
op->set_type("StuckAsync");
}
auto* error_net = plan_def.add_network();
error_net->set_name("error_net");
error_net->set_type("async_scheduling");
{
auto op = error_net->add_op();
op->set_type("Error");
}
auto* execution_step = plan_def.add_execution_step();
execution_step->set_concurrent_substeps(true);
{
auto* substep = execution_step->add_substep();
substep->add_network(stuck_net->name());
}
{
auto* substep = execution_step->add_substep();
substep->add_network(error_net->name());
}
return plan_def;
}
struct HandleExecutorThreadExceptionsGuard {
HandleExecutorThreadExceptionsGuard() {
globalInit({
"caffe2",
"--caffe2_handle_executor_threads_exceptions=1",
});
}
~HandleExecutorThreadExceptionsGuard() {
globalInit({
"caffe2",
});
}
HandleExecutorThreadExceptionsGuard(
const HandleExecutorThreadExceptionsGuard&) = delete;
void operator=(const HandleExecutorThreadExceptionsGuard&) = delete;
private:
void globalInit(std::vector<std::string> args) {
std::vector<char*> args_ptrs;
for (auto& arg : args) {
args_ptrs.push_back(const_cast<char*>(arg.data()));
}
char** new_argv = args_ptrs.data();
int new_argc = args.size();
CAFFE_ENFORCE(GlobalInit(&new_argc, &new_argv));
}
};
TEST(PlanExecutorTest, ErrorAsyncPlan) {
HandleExecutorThreadExceptionsGuard guard;
PlanDef plan_def = parallelErrorPlan();
Workspace ws;
ASSERT_THROW(ws.RunPlan(plan_def), TestError);
ASSERT_EQ(cancelCount, 1);
}
} // namespace caffe2
#endif
|