File: tt_pad_op_test.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (60 lines) | stat: -rw-r--r-- 1,944 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################






import numpy as np

from hypothesis import given
import hypothesis.strategies as st

from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu


class TestTTPad(hu.HypothesisTestCase):
    @given(K=st.integers(min_value=2, max_value=10),
           M=st.integers(min_value=10, max_value=20),
           N=st.integers(min_value=10, max_value=20),
           **hu.gcs)
    def test_tt_pad(self, K, M, N, gc, dc):
        op = core.CreateOperator(
            'TTPad',
            ['A'],
            ['A', 'dim0'],
            scale=(K))

        A = np.random.rand(M, N).astype(np.float32)
        workspace.FeedBlob('A', A)
        workspace.RunOperatorOnce(op)

        def tt_pad_ref(A_):
            M_ = A_.shape[0]
            if M_ % K == 0:
                new_dim0 = M_
            else:
                new_dim0 = (M_ // K + 1) * K
            return (np.vstack((A_, np.zeros((new_dim0 - M_, A_.shape[1])))),
                    np.array([A.shape[0]]))

        # Check against numpy reference
        self.assertReferenceChecks(gc, op, [A], tt_pad_ref)
        # Check over multiple devices
        self.assertDeviceChecks(dc, op, [A], [0])
        # Gradient check wrt A
        self.assertGradientChecks(gc, op, [A], 0, [0])