1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
|
#include "caffe2/operators/utility_ops.h"
#include "caffe2/core/operator.h"
#include "caffe2/ideep/ideep_utils.h"
using namespace caffe2;
namespace {
class CopyCPUToIDEEPOp final : public IDEEPOperator {
public:
USE_SIMPLE_IDEEP_CTOR_DTOR(CopyCPUToIDEEPOp);
USE_IDEEP_DEF_ALIASES();
bool RunOnDevice() override {
const auto& X = OperatorBase::Input<Tensor>(0, CPU);
auto* Y = OperatorBase::OutputBlob(0);
itensor::dims src_dims(X.sizes().begin(), X.sizes().end());
if (!(Y->template IsType<itensor>() &&
Y->Get<itensor>().get_data_type() == itensor::data_type::f32) ||
Y->Get<itensor>().get_dims() != src_dims) {
Y->Reset(new itensor());
Y->GetMutable<itensor>()->resize(src_dims, itensor::data_type::f32);
}
Y->GetMutable<itensor>()->feed_from(
src_dims, itensor::data_type::f32, X.raw_data());
return true;
}
};
class IDEEPCopyOp final : public IDEEPOperator {
public:
USE_SIMPLE_IDEEP_CTOR_DTOR(IDEEPCopyOp);
USE_IDEEP_DEF_ALIASES();
bool RunOnDevice() override {
const auto& X = OperatorBase::Input<itensor>(0);
auto* Y = Output(0);
if (X != *Y) {
Y->reinit_like(X);
ideep::direct_copy::compute(X, *Y);
}
return true;
}
};
class CopyIDEEPToCPUOp final : public IDEEPOperator {
public:
USE_SIMPLE_IDEEP_CTOR_DTOR(CopyIDEEPToCPUOp);
USE_IDEEP_DEF_ALIASES();
bool RunOnDevice() override {
const auto& input_blob = OperatorBase::InputBlob(0);
if (BlobIsTensorType(input_blob, CPU)) {
VLOG(2) << "Directing sharing of TensorCPU";
const auto& X = OperatorBase::Input<Tensor>(0, CPU);
OutputTensorCopyFrom(0, at::device(CPU), X);
} else {
const auto& X = OperatorBase::Input<itensor>(0);
if (X.get_data_type() == itensor::data_type::f32) {
std::vector<int64_t> dims;
for (int i = 0; i < X.get_dims().size(); ++i) {
dims.push_back(X.get_dims()[i]);
}
auto* Y =
OperatorBase::OutputTensor(0, dims, at::dtype<float>().device(CPU));
X.to_public(Y->template mutable_data<float>());
} else {
CAFFE_THROW("Unsupported ideep type: ",
static_cast<int>(X.get_data_type()));
}
}
return true;
}
};
class IDEEPWeightedSumOp : public IDEEPOperator {
public:
USE_IDEEP_DEF_ALIASES();
USE_IDEEP_OPERATOR_FUNCTIONS();
IDEEPWeightedSumOp(const OperatorDef& operator_def, Workspace* ws)
: IDEEPOperator(operator_def, ws) {}
bool RunOnDevice() override {
CAFFE_ENFORCE_EQ(InputSize() % 2, 0);
auto ndims = Input(0).ndims();
auto nelems = Input(0).get_nelems();
auto w_nelems = Input(1).get_nelems();
CAFFE_ENFORCE_GT(nelems, 0);
CAFFE_ENFORCE_EQ(w_nelems, 1);
auto* output = Output(0);
std::vector<float> scales;
scales.reserve(InputSize() / 2);
std::vector<itensor> inputs;
inputs.reserve(InputSize() / 2);
for (int i = 0; i < InputSize(); i += 2) {
auto& X = Input(i);
CAFFE_ENFORCE(X.ndims() == ndims);
CAFFE_ENFORCE(X.get_nelems() == nelems);
CAFFE_ENFORCE(Input(i + 1).get_nelems() == w_nelems);
inputs.push_back(X);
auto scale = static_cast<float *>(Input(i + 1).get_data_handle());
scales.push_back(scale[0]);
}
ideep::sum::compute(scales, inputs, *output);
return true;
}
};
REGISTER_IDEEP_OPERATOR(CopyCPUToIDEEP, CopyCPUToIDEEPOp);
REGISTER_IDEEP_OPERATOR(CopyIDEEPToCPU, CopyIDEEPToCPUOp);
REGISTER_IDEEP_OPERATOR(Copy, IDEEPCopyOp);
REGISTER_IDEEP_OPERATOR(WeightedSum, IDEEPWeightedSumOp);
OPERATOR_SCHEMA(CopyCPUToIDEEP)
.NumInputs(1)
.NumOutputs(1)
.Input(0, "cpu_blob", "The input TensorCPU to copy")
.Output(0, "ideep_blob", "The output IDEEP tensort to copy to");
OPERATOR_SCHEMA(CopyIDEEPToCPU)
.NumInputs(1)
.NumOutputs(1)
.Input(0, "ideep_blob", "The input IDEEP tensort to copy")
.Output(0, "cpu_blob", "The output TensorCPU to copy to");
} // namespace
|