1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
#include "caffe2/operators/elementwise_ops_utils.h"
namespace caffe2 {
namespace elementwise_ops_utils {
std::tuple<size_t, size_t, size_t>
ComputeLegacyBroadcastSizes(const Tensor& A, const Tensor& B, int axis) {
CAFFE_ENFORCE_GE(
A.dim(),
B.dim(),
"If you are doing broadcasting, input1 should have "
"a smaller or equal number of dimensions.");
if (axis == -1) {
axis = A.dim() - B.dim();
}
CAFFE_ENFORCE(
axis >= 0 && axis <= A.dim() - B.dim(),
"Broadcast axis should be in the range of"
"[0, A.ndim() - B.ndim()], but axis = ",
axis);
int b_dim_start = 0;
while (b_dim_start < B.dim() && B.size(b_dim_start) == 1) {
++b_dim_start;
}
int b_dim_end = B.dim() - 1;
while (b_dim_end >= b_dim_start && B.size(b_dim_end) == 1) {
--b_dim_end;
}
size_t pre = 1, n = 1, post = 1;
for (int i = 0; i < axis + b_dim_start; ++i) {
pre *= A.size(i);
}
for (int i = b_dim_start; i <= b_dim_end; ++i) {
CAFFE_ENFORCE_EQ(
A.size(i + axis), B.size(i), "Broadcast dimension mismatch.");
n *= B.size(i);
}
for (int i = axis + b_dim_end + 1; i < A.dim(); ++i) {
post *= A.size(i);
}
return std::make_tuple(pre, n, post);
}
std::vector<int> ComputeBinaryBroadcastForwardDims(
const std::vector<int>& A_dims,
const std::vector<int>& B_dims) {
const int ndim = std::max(A_dims.size(), B_dims.size());
std::vector<int> C_dims(ndim);
int i = A_dims.size() - 1;
int j = B_dims.size() - 1;
int k = ndim - 1;
for (; i >= 0 && j >= 0; --k) {
const int A_dim = A_dims[i];
const int B_dim = B_dims[j];
CAFFE_ENFORCE(A_dim == B_dim || A_dim == 1 || B_dim == 1);
if (A_dim == 0 || B_dim == 0) {
C_dims[k] = 0;
} else {
C_dims[k] = std::max(A_dims[i], B_dims[j]);
}
--i;
--j;
}
for (; i >= 0; --i) {
C_dims[k--] = A_dims[i];
}
for (; j >= 0; --j) {
C_dims[k--] = B_dims[j];
}
return C_dims;
}
void ComputeBinaryBroadcastBackwardAxes(
const std::vector<int>& A_dims,
const std::vector<int>& B_dims,
std::vector<int>* A_axes,
std::vector<int>* B_axes) {
A_axes->clear();
B_axes->clear();
const int ndim = std::max(A_dims.size(), B_dims.size());
int i = A_dims.size() - 1;
int j = B_dims.size() - 1;
int k = ndim - 1;
for (; i >= 0 && j >= 0; --k) {
CAFFE_ENFORCE(A_dims[i] == B_dims[j] || A_dims[i] == 1 || B_dims[j] == 1);
if (A_dims[i] != B_dims[j]) {
if (A_dims[i] == 1) {
A_axes->push_back(k);
}
if (B_dims[j] == 1) {
B_axes->push_back(k);
}
}
--i;
--j;
}
if (i < 0) {
for (; k >= 0; --k) {
A_axes->push_back(k);
}
} else {
for (; k >= 0; --k) {
B_axes->push_back(k);
}
}
std::reverse(A_axes->begin(), A_axes->end());
std::reverse(B_axes->begin(), B_axes->end());
}
void ComputeBinaryBroadcastBackwardDims(
const std::vector<int>& A_dims,
const std::vector<int>& B_dims,
std::vector<int>* A_back_dims,
std::vector<int>* B_back_dims) {
const int ndim = std::max(A_dims.size(), B_dims.size());
A_back_dims->assign(ndim, 1);
B_back_dims->assign(ndim, 1);
std::copy(A_dims.crbegin(), A_dims.crend(), A_back_dims->rbegin());
std::copy(B_dims.crbegin(), B_dims.crend(), B_back_dims->rbegin());
}
} // namespace elementwise_ops_utils
} // namespace caffe2
|