File: key_split_ops.h

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (53 lines) | stat: -rw-r--r-- 1,400 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#pragma once

#include <vector>

#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"

namespace caffe2 {
template <typename T, class Context>
class KeySplitOp : public Operator<Context> {
 public:
  USE_OPERATOR_CONTEXT_FUNCTIONS;

  template <class... Args>
  explicit KeySplitOp(Args&&... args)
      : Operator<Context>(std::forward<Args>(args)...),
        categorical_limit_(
            this->template GetSingleArgument<int>("categorical_limit", 0)) {
    CAFFE_ENFORCE_GT(categorical_limit_, 0);
  }

  bool RunOnDevice() override {
    auto& keys = Input(0);
    int N = keys.numel();
    const T* keys_data = keys.template data<T>();
    std::vector<int> counts(categorical_limit_);
    std::vector<int*> eids(categorical_limit_);
    for (int k = 0; k < categorical_limit_; k++) {
      counts[k] = 0;
    }
    for (int i = 0; i < N; i++) {
      int k = keys_data[i];
      CAFFE_ENFORCE_GT(categorical_limit_, k);
      CAFFE_ENFORCE_GE(k, 0);
      counts[k]++;
    }
    for (int k = 0; k < categorical_limit_; k++) {
      auto* eid = Output(k, {counts[k]}, at::dtype<int>());
      eids[k] = eid->template mutable_data<int>();
      counts[k] = 0;
    }
    for (int i = 0; i < N; i++) {
      int k = keys_data[i];
      eids[k][counts[k]++] = i;
    }
    return true;
  }

 private:
  int categorical_limit_;
};
} // namespace caffe2