File: load_save_op.cc

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (295 lines) | stat: -rw-r--r-- 9,943 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#include "caffe2/operators/load_save_op.h"

namespace caffe2 {

template <>
void LoadOp<CPUContext>::SetCurrentDevice(BlobProto* proto) {
  if (proto->has_tensor()) {
    proto->mutable_tensor()->clear_device_detail();
    proto->mutable_tensor()->mutable_device_detail()->set_device_type(
        PROTO_CPU);
  }
}

template <int VALUE_TYPE = TensorProto_DataType_FLOAT>
std::vector<TensorShape> LoadTensorInference(
    const OperatorDef& def,
    const vector<TensorShape>& /* unused */) {
  ArgumentHelper helper(def);
  auto shape = helper.GetRepeatedArgument<int64_t>("shape");
  vector<TensorShape> out;
  // Currently load op supports only shape.
  // TODO: We have to extend it to support shapes vector.
  // Since it support just one shape, we return
  // the right shape information only when there is just one blob loaded.
  // Otherwise, we return unknown TensorShapes.
  if (def.output_size() == 1 && shape.size() > 0) {
    TensorShape ts;
    ts.set_data_type(static_cast<TensorProto_DataType>(
        helper.GetSingleArgument<int>("dtype", VALUE_TYPE)));
    for (auto d : shape) {
      ts.add_dims(d);
    }
    out.push_back(ts);
  } else {
    for (int i = 0; i < def.output_size(); i++) {
      TensorShape ts;
      ts.set_unknown_shape(true);
      out.push_back(ts);
    }
  }
  return out;
}

REGISTER_CPU_OPERATOR(DBExists, DBExistsOp<CPUContext>);
REGISTER_CPU_OPERATOR(Load, LoadOp<CPUContext>);
REGISTER_CPU_OPERATOR(Save, SaveOp<CPUContext>);
REGISTER_CPU_OPERATOR(Checkpoint, CheckpointOp<CPUContext>);
// CPU Operator old name: do NOT use, we may deprecate this later.
REGISTER_CPU_OPERATOR(Snapshot, CheckpointOp<CPUContext>);

OPERATOR_SCHEMA(DBExists)
    .NumInputs(0)
    .NumOutputs(1)
    .SetDoc(R"DOC(
Checks if the db described by the arguments exists.

Github Links:

- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/load_save_op.cc

<details>

<summary> <b>Example</b> </summary>

**Code**

```
workspace.ResetWorkspace()

op = core.CreateOperator(
    "DBExists",
    [],
    ["exists"],
    db_name="test_db",
    db_type="leveldb",
)

workspace.RunOperatorOnce(op)
print("exists:", workspace.FetchBlob("exists"))

```

</details>

)DOC")
    .Output(0, "exists", "*(type: Tensor`<bool>`)* Scalar boolean output "
    "tensor. True if the db exists, else false.")
    .Arg(
        "absolute_path",
        "*(type: int; default: 0)* If set to non-zero, save the db directly to "
        "the path specified by the `db` arg. If not set (default), prepend the "
        "path of the current root folder of the workspace to the path specified "
        "by the `db` arg.")
    .Arg("db_name", "*(type: string)* Path to the db in question; see the "
    "`absolute_path` arg details for options regarding the current root folder "
    "of the workspace.")
    .Arg("db_type", "*(type: string)* Type of db to save (options: \"lmdb\", "
    "\"leveldb\", \"minidb\").");

OPERATOR_SCHEMA(Load)
    .NumInputs(0, INT_MAX)
    .NumOutputs(0, INT_MAX)
    .TensorInferenceFunction(LoadTensorInference<>)
    .SetDoc(R"DOC(
The Load operator loads a set of serialized blobs from a db or multiple dbs. It
takes $[0, \infty)$ number of inputs and $[0, \infty)$ number of outputs, using
the db keys to match the db entries with the outputs.

If at least one input is passed, then it is assumed that that input blobs are a
set of DBReaders to load from. Otherwise the `db` or `dbs` argument is used to load
blobs from one single db or multiple dbs respectively. `db_type` argument is used
to specify the type of the input db/dbs.

Github Links:

- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/load_save_op.cc

<details>

<summary> <b>Example</b> </summary>

**Code**

```
workspace.ResetWorkspace()

op = core.CreateOperator(
    "Load",
    [],
    ["X", "Y"],
    db="test_db",
    db_type="lmdb"
)

workspace.RunOperatorOnce(op)
print("X:", workspace.FetchBlob("X"))
print("Y:", workspace.FetchBlob("Y"))

```

</details>

)DOC")
    .Input(
      0,
      "X, Y, ...",
      "*(type: List(DBReader))* [OPTIONAL] List of DBReaders to load from. Can "
      "use this instead of the `db`/`dbs` args.")
    .Arg(
        "absolute_path",
        "*(type: int; default: 0)* If set to non-zero, save the db directly to "
        "the path specified by the `db` arg. If not set (default), prepend the "
        "path of the current root folder of the workspace to the path specified "
        "by the `db` arg.")
    .Arg(
        "add_prefix",
        "*(type: string, default: \"\")* Blobs will be prefixed with this when "
        "loading. Useful for avoiding collisions with blobs existing in the "
        "workspace. The output blob names specified to this op should include "
        "this prefix.")
    .Arg(
        "strip_prefix",
        "*(type: string, default: \"\")* Characters in the provided blob names "
        "that match `strip_prefix` will be removed prior to saving. Also, "
        "characters that precede `strip_prefix` will be removed. Useful for "
        "removing device scope from blob names.")
    .Arg("db", "*(type: string)* The output path of the db. See the "
        "`absolute_path` arg details for options regarding the current root folder "
        "of the workspace.")
    .Arg(
        "dbs",
        "*(type: List(string))* List of paths to dbs to load blobs from. See "
        "the `absolute_path` arg details for options regarding the current "
        "root folder of the workspace.")
    .Arg("db_type", "(type: string)* Type of db to save (options: \"lmdb\", "
        "\"leveldb\", \"minidb\").")
    .Arg(
        "keep_device",
        "*(type: int; default: 0)* If nonzero, the blobs are loaded into the "
        "device that is specified in the serialized `BlobProto`. Otherwise, "
        "the device will be set as the one that the `Load` operator is being "
        "run under.")
    .Arg(
        "load_all",
        "*(type: int; default: 0)* If nonzero, will load all blobs pointed to "
        "by the db to the workspace overwriting/creating blobs as needed.")
    .Arg(
        "allow_incomplete",
        "*(type: bool; default: False)* If True, will allow not loading all "
        "the output blobs specified in the outputs.")
    .Arg(
        "source_blob_names",
        "*(type: List(string))* If set, used instead of output blob names to "
        "specify which blobs in the db shall be loaded. Must be the same "
        "length as number of output blobs.");

OPERATOR_SCHEMA(Save)
    .NumInputs(1, INT_MAX)
    .NumOutputs(0)
    .SetDoc(R"DOC(
Saves a set of blobs to a db. It takes $[1, \infty)$ number of inputs and has
no output. The contents of the inputs are written into the db using the
settings specified by the arguments.

Github Links:

- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/load_save_op.cc

<details>

<summary> <b>Example</b> </summary>

**Code**

```
workspace.ResetWorkspace()

op = core.CreateOperator(
    "Save",
    ["X", "Y", "Z"],
    [],
    db="test_db2",
    db_type="leveldb",
    blob_name_overrides=["x_scores", "y_scores", "z_scores"]
)

workspace.FeedBlob("X", np.random.randint(20, size=(5,5)))
workspace.FeedBlob("Y", np.random.randint(20, size=(5,5)))
workspace.FeedBlob("Z", np.random.randint(20, size=(5,5)))
workspace.RunOperatorOnce(op)

```

</details>

)DOC")
    .Arg(
        "absolute_path",
        "*(type: int; default: 0)* If set to non-zero, save the db directly to "
        "the path specified by the `db` arg. If not set (default), prepend the "
        "path of the current root folder of the workspace to the path specified "
        "by the `db` arg.")
     .Arg(
         "strip_prefix",
         "*(type: string, default: \"\")* Characters in the provided blob names "
         "that match `strip_prefix` will be removed prior to saving. Also, "
         "characters that precede `strip_prefix` will be removed. Useful for "
         "removing device scope from blob names.")
    .Arg(
        "blob_name_overrides",
        "*(List(string))* If set, used as blob names instead of original blob "
        "names. Must be same length as number of blobs.")
    .Arg("db", "*(type: string)* The output path of the db. See the "
    "`absolute_path` arg details for options regarding the current root folder "
    "of the workspace.")
    .Arg("db_type", "*(type: string)* Type of db to save (options: \"lmdb\", "
    "\"leveldb\", \"minidb\").")
    .Arg("chunk_size", "*(type: string; default: kDefaultChunkSize)* The chunk "
    "size to split tensor data into. If not set, caffe2_tensor_chunk_size will "
    "be used")
    .Input(0, "X", "*(type: Tensor)* Input tensor(s).");

OPERATOR_SCHEMA(Checkpoint)
    .NumInputs(1, INT_MAX)
    .NumOutputs(0)
    .SetDoc(R"DOC(
The Checkpoint operator is similar to the Save operator, but allows one to save
to db every few iterations, with a db name that is appended with the iteration
count. It takes [1, infinity) number of inputs and has no output. The first
input has to be a TensorCPU of type int and has size 1 (i.e. the iteration
counter). This is determined whether we need to do checkpointing.
)DOC")
    .Arg(
        "absolute_path",
        "(int, default 0) if set, use the db path directly and do not prepend "
        "the current root folder of the workspace.")
    .Arg(
        "db",
        "(string) a template string that one can combine with the "
        "iteration to create the final db name. For example, "
        "\"/home/lonestarr/checkpoint_%08d.db\"")
    .Arg("db_type", "(string) the type of the db.")
    .Arg(
        "every",
        "(int, default 1) the checkpointing is carried out when "
        "(iter mod every) is zero.");

OPERATOR_SCHEMA(Snapshot);

NO_GRADIENT(Load);
SHOULD_NOT_DO_GRADIENT(DBExists);
SHOULD_NOT_DO_GRADIENT(Save);
SHOULD_NOT_DO_GRADIENT(Checkpoint);
SHOULD_NOT_DO_GRADIENT(Snapshot);
}  // namespace caffe2